The Horava Gravity : The Theory of 97 %?

Mu-In Park
Chunbuk Nat’al Univ.

Based on arXiv:0905.4480v3, and work to appear
Excuse

• There are several points that I don’t understand, still!

• But, what I can say is what I can do!
0. Outline

1. Horava gravity and its IR modification

2. FRW cosmology in IR modified Horava gravity

3. Comparison with observational data

4. Open problems
1. Motivation of IR modification of Horava gravity

Horava gravity \sim Einstein gravity (with a deformation parameter λ)

+ non-covariant deformations with higher spatial derivatives (up to 6 orders)

+ “detailed balance” in the coefficients (5 constant parameters: $\kappa, \lambda, \nu, \mu, \Lambda W$)

Cf. In Einstein gravity, we have 3 fundamental constants c, G, Λ
Detailed balance condition:

• We need (foliation preserving Diff invariant) potential term having 6th order spatial derivatives at most (power-counting renormalizable with $z=3$):

$$S_V = \int dt \, d^Dx \, \sqrt{g} N \, V[g_{ij}]$$

• There are large numbers of possible terms, which are invariant by themselves, like ...
\[\nabla_k R_{ij} \nabla^k R^{ij}, \quad \nabla_k R_{ij} \nabla^i R^{jk}, \quad R \Delta R, \quad R^{ij} \Delta R_{ij}; \]
\[R^3, \quad R^i_j R^j_k R^k_i, \quad RR_{ij} R^{ij}, \]

- But there are **too many couplings** for explicit computations, though some of them may be constrained by the **stability** and **unitarity**. We need some **pragmatic** way of reducing in a reliable manner.
• Horava required the potential to be of

\[S_V = \frac{\kappa^2}{8} \int dt \, d^Dx \sqrt{g} N E^{ij} G_{ijkl} E^{kl}, \]

by demanding

\[\sqrt{g} E^{ij} = \frac{\delta W [g_{kl}]}{\delta g_{ij}} \]

for some action \(W \), and \(G_{ijkl} \), the inverse of De Witt metric

\[G^{ijkl} = \frac{1}{2} \left(g^{ik} g^{jl} + g^{il} g^{jk} \right) - \lambda g^{ij} g^{kl} \]

• There is a similar method in non-equilibrium critical phenomena.
• **W** is 3-dimensional Euclidean action.

• First, we may consider Einstein-Hilbert action,

\[W = \frac{1}{\kappa_W^2} \int d^D x \sqrt{g} (R - 2\Lambda_W). \]

then, this gives 4’th-derivative order potential

\[S_V = \frac{\kappa^2}{8\kappa_W^4} \int dt d^D x \sqrt{g} N \left(R^{ij} - \frac{1}{2} Rg^{ij} + \Lambda_W g^{ij} \right) g_{i j k \ell} \left(R^{k \ell} - \frac{1}{2} Rg^{k \ell} + \Lambda_W g^{k \ell} \right). \]

• So, this is **not enough** to get 6’th order !!
• In 3-dim, we also have a peculiar, 3’rd-derivative order action, called (gravitational) Chern-Simons action.

\[
W = \frac{1}{w^2} \int_\Sigma \omega_3(\Gamma).
\]

\[
\omega_3(\Gamma) = \text{Tr} \left(\Gamma \wedge d\Gamma + \frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma \right) \equiv \varepsilon^{ijk} \left(\Gamma^m_{i\ell} \partial_j \Gamma^\ell_{km} + \frac{2}{3} \Gamma^m_{i\ell} \Gamma^\ell_{jm} \Gamma^m_{kn} \right) d^3x
\]

• This produce the potential

\[- \frac{\kappa^2}{2w^4} C_{ij} C^{ij} \]

with the Cotton tensor

\[
C^{ij} = \varepsilon^{ikl} \nabla_k \left(R^j_\ell - \frac{1}{4} R \delta^j_\ell \right)
\]
Then, in total, he got the 6’th order

\[S = \int dt \, d^3x \, \sqrt{g} \, N \left\{ \frac{2}{\kappa^2} K_{ij} G^{ijkl} K_{kl} - \frac{\kappa^2}{2} \left[\frac{1}{w^2} C^{ij} - \frac{\mu}{2} \left(R^{ij} - \frac{1}{2} R g^{ij} + \Lambda_W g^{ij} \right) \right] \right\} \times g_{ijkl} \left[\frac{1}{w^2} C^{kl} - \frac{\mu}{2} \left(R^{kl} - \frac{1}{2} R g^{kl} + \Lambda_W g^{kl} \right) \right] \]

from

\[W = \frac{1}{w^2} \int \omega_3(\Gamma) + \mu \int d^3x \, \sqrt{g} (R - 2\Lambda_W). \]

So, we have 5 constant parameters, which seems to be minimum, from the detailed balancing.
• Some **improved UV** behaviors are expected, i.e., renormalizability

Predictable Quantum Gravity !!(?)

• But, it seems that the **detailed balance** condition is too strong to get general spacetimes with an **arbitrary** cosmological constant.

• For example, there is **no Minkowski**, i.e., vanishing c.c. vacuum solution! (Lu, Mei, Pope)
• A "soft" breaking of the detailed balance is given by the action:

\[
S_g = \int dt d^3 x \sqrt{g} N \left[\frac{2}{\kappa^2} \left(K_{ij} K^{ij} - \lambda K^2 \right) - \frac{\kappa^2}{2 \nu^4} C_{ij} C^{ij} + \frac{\kappa^2 \mu}{2 \nu^2} \epsilon^{ijk} R^{(3)} \nabla_j R^{(3)} \ell_k \\
- \frac{\kappa^2 \mu^2}{8} R^{(3)}_{ij} R^{(3)}_{ij} + \frac{\kappa^2 \mu^2}{8(3\lambda - 1)} \left(\frac{4\lambda - 1}{4} (R^{(3)})^2 - \Lambda_W R^{(3)} + 3\Lambda_W^2 \right) + \frac{\kappa^2 \mu^2 \omega}{8(3\lambda - 1)} R^{(3)} \right]
\]

IR modification term

• It is found that there does exit the black hole which converges to the usual Schwarzschild solution in Minkowski limit, i.e., \(\Lambda_W \rightarrow 0 \) for \(\lambda = 1 \) (s.t. Einstein-Hilbert in IR) (Kehagias, Stetsos).
• Black hole solution for $\Lambda_W \rightarrow 0$ limit (\(\lambda = 1 \)):

$$ds^2 = -N(r)^2 c^2 dt^2 + \frac{dr^2}{f(r)} + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right)$$

$$N^2 = f = 1 + \omega r^2 - \sqrt{r[\omega^2 r^3 + 4\omega M]}$$

$$\approx 1 - \frac{2M}{r} + \mathcal{O}(r^{-4})$$

\(\sim \) Schwarzshild Solution

: Independently of \(\omega \) !!

\((G = c \equiv 1) \)
General Remarks

KS considered $\omega = \frac{8\mu^2(3\lambda - 1)}{\kappa^2}$ but it can be considered as an independent parameter: **One more parameter** than the Horava gravity with the detailed balance, i.e., we have 6 constant parameters

\[\kappa, \lambda, \nu, \mu, \Lambda_W, \omega \]

IR modification parameter

- Cosmological constant $\sim \Lambda_W < 0$, i.e., AdS, for consistency! (Horava)
• dS, i.e., positive c.c., can be obtained by the continuation (Lu, Mei, Pope):

$$
\mu \rightarrow i\mu, \quad \nu^2 \rightarrow -i\nu^2, \quad \omega \rightarrow -\omega
$$

$$
\Lambda_W > 0
$$

• Cf: KS: \quad \omega = +16\mu^2/\kappa^2 \rightarrow \omega = -16\mu^2/\kappa^2.
2. FRW cosmology in IR modified Horava gravity

- Homogeneous, isotropic cosmological solution of FRW form:

\[ds^2 = -c^2 dt^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right) \right] \]

\[k = +1, 0, -1 \]

- For a perfect fluid with energy density \(\rho \) and pressure \(p \), the IR modified Horava action gives ...
Friedman equations

\[\left(\frac{\dot{a}}{a} \right)^2 = \frac{\kappa^2}{6(3\lambda - 1)} \left[\rho \pm \frac{3\kappa^2 \mu^2}{8(3\lambda - 1)} \left(\frac{-k^2}{R_0^4 a^4} + \frac{2k(\Lambda_W - \omega)}{R_0^2 a^2} - \Lambda_W^2 \right) \right] \]

\[\frac{\ddot{a}}{a} = \frac{\kappa^2}{6(3\lambda - 1)} \left[\frac{1}{2}(\rho + 3p) \pm \frac{3\kappa^2 \mu^2}{8(3\lambda - 1)} \left(\frac{k^2}{R_0^4 a^4} - \Lambda_W^2 \right) \right]. \]

\(R_0 \) is the current \((a=1)\) radius of curvature of universe

[Upper \((\text{Lower}) \) sign for AdS \((\text{dS}) \)]
Remarks

• The $\frac{1}{a^4}$ term, which is the contribution from the higher-derivative terms in Horava gravity, exists only for, i.e., non-flat universe and becomes dominant for small α : The cosmological solutions for GR are recovered at large scales.

• There is no contribution from the soft IR modification to the second Friedman Eq.: Identical to that of Lu, Mei, Pope.
What is the implication of the Horava gravity to our universe?

Is there any critical test of the theory if we are live in Horava gravity?

It seems to be “yes”! How?
How to **test** the theory?

- If we are live in the Horava gravity (with some **IR** modifications), the additional contributions to the Friedman Eq. from the higher-(spatial) derivative terms may **not be distinguishable** from the **dark energy** with (including C.C. term)

\[
\rho_{\text{D.E.}} = \pm \frac{3\kappa^2 \mu^2}{8(3\lambda - 1)} \left(\frac{-k^2}{R_0^4 a^4} - \frac{2k\omega}{R_0^2 a^2} - \Lambda_W^2 \right),
\]
\[
p_{\text{D.E.}} = \mp \frac{\kappa^2 \mu^2}{8(3\lambda - 1)} \left(\frac{k^2}{R_0^4 a^4} - \frac{2k\omega}{R_0^2 a^2} - 3\Lambda_W^2 \right),
\]
• We would see the Friedman Eq. as

\[
\left(\frac{\ddot{a}}{a} \right)^2 = \frac{8\pi \tilde{G}}{3c^2} \left(\rho_{\text{matter}} + \rho_{\text{D.E.}} \right) - \frac{c^2 k}{a^2},
\]

\[
\frac{\ddot{a}}{a} = -\frac{4\pi \tilde{G}}{3c^2} \left[(\rho_{\text{matter}} + \rho_{\text{D.E.}}) + 3(p_{\text{matter}} + p_{\text{D.E.}}) \right],
\]

where

\[
c^2 \equiv \mp \frac{\kappa^4 \mu^2 \Lambda_W}{8(3\lambda - 1)^2}, \quad \tilde{G} = \frac{\kappa^2 c^2}{16\pi (3\lambda - 1)}, \quad \Lambda = \frac{3}{2} \Lambda_W c^2.
\]
• The Eq. of state parameter is given by

\[w_{\text{D.E.}} = \frac{p_{\text{D.E.}}}{\rho_{\text{D.E.}}} = \left(\frac{k^2 - 2k\bar{\omega}a^2 - 3\bar{\Lambda}_W^2 a^4}{3k^2 + 6k\bar{\omega}a^2 + 3\bar{\Lambda}_W^2 a^4} \right) \]

\[\bar{\omega} \equiv \omega R_0^2, \quad \bar{\Lambda}_W = \Lambda_W R_0^2 \]

• And it depends on the constant parameters \(k, \omega, \Lambda_W \) ...
Remarks

• \(c^2 \) is non-negative always!
• The Newton’s constant \(G \) can be negative, i.e., anti-gravity, for \(\lambda < 1/3 \) : \(\lambda_c = 1/3 \) is the upper bound for the consistency with our universe, i.e., no anti-gravity: Physical bound
Remarks Cont’d

• The definition of speed of light seems to have some ambiguity: One might consider include ω term in c^2,

$$c^2 \equiv \mp \frac{\kappa^4 \mu^2 (\Lambda_W - \omega)}{8(3\lambda - 1)^2}$$

, rather than including in $\rho_{\text{D.E.}}$ as

$$\rho_{\text{D.E.}} = \pm \frac{3\kappa^2 \mu^2}{8(3\lambda - 1)} \left(\frac{-k^2}{R_0^4 a^4} - \frac{2k\omega}{R_0^2 a^2} - \Lambda_W^2 \right)$$

??
• But c^2 can be negative when $|\omega| > |\Lambda_W|$.

• Actually there are infinitely many definitions of c^2, depending on how much the ω term contributes to c^2. Here, I do not consider all these possibilities but consider only the simplest choice which can be matched with the experiments: In experiments, I need at least two parameters to fit to data and I have two parameters Λ_W, ω in my choice also.
FIG. 4: Plot of equation of state parameter $w_{\text{D.E.}}$ vs. scale factor $a(t)$ for $\omega^2 > \Lambda_W^2, \ k\omega < 0$. There are two infinite discontinuities of $w_{\text{D.E.}}$ at $\tilde{a}^{\pm} = \sqrt{-k\omega \pm |k|\sqrt{\omega^2 - \Lambda_W^2}/|\Lambda_W| R_0}$ where $\rho_{\text{D.E.}}$ vanishes. Here, I considered $|\omega| R_0^2 = 2, |\Lambda_W| R_0^2 = 1$ case ($\omega R_0^2 = -2, k = +1$ or $\omega R_0^2 = +2, k = -1$).
FIG. 5: Plot of equation of state parameter $w_{\text{D,E.}}$ vs. scale factor $a(t)$ for $\omega^2 = \Lambda_W^2$, $k\omega < 0$. The two points of infinite discontinuities \tilde{a}^\pm in Fig.4 merge as $|\omega|$ approaches to $|\Lambda_W|$ and they meet at $\tilde{a}^\pm = \sqrt{|k|}/|\Lambda_W|R_0$ when $\omega^2 = \Lambda_W^2$. In this plot, I considered $|\omega|R_0^2 = |\Lambda_W|R_0^2 = 1$ ($\omega R_0^2 = -1, k = +1$ or $\omega R_0^2 = +1, k = -1$).
FIG. 6: Plots of equation of state parameters $w_{\text{D,E.}}$ vs. scale factor $a(t)$ for $\omega^2 < \Lambda^2_W$, $k\omega < 0$ ($\omega R^2_0 = +1/1.3, +1/2, +1/10$, $k = -1$ or $\omega R^2_0 = -1/1.3, -1/2, -1/10$, $k = +1$ with $\Lambda_W R^2_0 = 1$ (top to bottom in the left region)). When $|\omega|$ is not far from $|\Lambda_W|$, there is a region where $w_{\text{D,E.}}$ is fluctuating beyond the UV and IR limits and this can be understood as a smooth deformation of the plot of Fig.5. When $|\omega|$ is small enough, $w_{\text{D,E.}}$ is monotonically decreasing from $1/3$ in the UV limit to -1 in the IR limit.
FIG. 7: Plots of equation of state parameters \(w_{\text{D,E.}} \) vs. scale factor \(a(t) \) for \(k \omega > 0 \) (\(\omega R_0^2 = +2, +1, +1/2, k = +1 \) or \(\omega R_0^2 = -2, -1, -1/2, k = -1 \) with \(|\Lambda_W| R_0^2 = 1 \) (top to bottom in the left region). In this case \(w_{\text{D,E.}} \) is “always” monotonically decreasing from 1/3 in the UV limit to \(-1\) in the IR limit.
3a. Comparison with observational data

(1) Deceleration to Acceleration transition

Type Ia Supernova Discoveries at $z > 1$ From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution

To Appear in the Astrophysical Journal, June 2004

Adam G. Riess2, Louis-Gregory Strolger2, John Tonry3, Stefano Casertano2, Henry C. Ferguson2, Bahram Mobasher2, Peter Challis4, Alexei V. Filippenko5, Saurabh Jha5, Weidong Li5, Ryan Chornock5, Robert P. Kirshner4, Bruno Leibundgut6, Mark Dickinson2, Mario Livio2, Mauro Giavalisco2, Charles C. Steidel7, Narciso Benitez8 and Zlatan Tsvetanov8

ABSTRACT

We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration.

Y. Gong, astro-ph/0405446: \(z_T = 0.30 \).

Class. Quant. Grav. 22, 2121 (2005)

Model independent analysis of dark energy: Supernova fitting result

Figure 5. The best fit to the 157 gold sample SNe Ia with the prior \(\Omega_{m0} = 0.3 \pm 0.04 \). The upper panel shows \(\omega_{DE}(z) \), the dotted dash lines are the 1\(\sigma \) regions. The lower panel shows \(\Omega_m(z) \) and \(\Omega_{DE}(z) \).
• Actually, in our Horava gravity (the second Friedman Eq.), there is the transition point from deceleration to acceleration phase, neglecting matter contributions, at

\[a_T = \sqrt{|k|/|\Lambda_W|} \]

• If I use \(a_T \sim 1/1.03 \approx 0.9709 \) or \(z_T \sim 0.30 \) (\(z = 1/a - 1 \)), I get \(|\Lambda_W| \sim (1.03)^2 R_0^{-2} \approx 1.0609 R_0^{-2} \) for the non-flat universe with \(|k| = 1 \).
Remarks

- At the transition point, the theory predicts $w_{\text{D.E.}} = -1/3$, independently of the parameters k, ω, Λ_W.
(2) Non-flatness \(\Omega_k : \Omega_{\text{matter}} + \Omega_{\text{D.E.}} + \Omega_k = 1 \)

Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Observations: Implications for Cosmology

D. N. Spergel1,2, R. Bean1,3, O. Doré1,4, M. R. Nolta4,5, C. L. Bennett6,7, J. Dunkley1,5, G. Hinshaw6, N. Jarosik5, E. Komatsu1,8, L. Page5, H. V. Peiris1,9,10, L. Verde1,11, M. Halpern12, R. S. Hill6,15, A. Kogut6, M. Limon6, S. S. Meyer9, N. Odegard6,15, G. S. Tucker13, J. L. Weiland6,15, E. Wollack6, E. L. Wright14

dns@astro.princeton.edu

ABSTRACT
Fig. 17.— Constraints on a non-flat universe with quintessence-like dark energy with constant w (Model M10 in Table 3). The contours show the 2-d marginalized contours for w and Ω_k based on the CMB+2dFGRS+SDSS+supernova data sets. This figure shows that with the full combination of data sets, there are already strong limits on w without the need to assume a flat universe prior. The marginalized best fit values for the equation of state and curvature are $w = -1.08 \pm 0.12$ and $\Omega_k = -0.026^{+0.016}_{-0.015}$ at the 68% confidence level.
Fig. 20.— Range of non-flat cosmological models consistent with the WMAP data only. The models in the figure are all power-law CDM models with dark energy and dark matter, but without the constraint that $\Omega_m + \Omega_\Lambda = 1$ (model M10 in Table 3). The different colors correspond to values of the Hubble constant as indicated in the figure. While models with $\Omega_\Lambda = 0$ are not disfavored by the WMAP data only ($\Delta \chi^2_{eff} = 0$; Model M4 in Table 3), the combination of WMAP data plus measurements of the Hubble constant strongly constrain the geometry and composition of the universe within the framework of these models. The dashed line shows an approximation to the degeneracy track: $\Omega_K = -0.3040 + 0.4067\Omega_\Lambda$. Note that for these open universe models, we assume a flat prior on Ω_Λ.
• If I use \(\Omega_k \sim -0.026 \) in the current epoch \((a = 1)\) and
\[
\Omega_k = \mu^2 k |\Lambda_W| L_P^2 / 2a^2 H^2 R_0^2 M_P^2
\]
for the Hubble parameter \(H \equiv \dot{a}/a \), \(M_P/L_P \equiv 2(3\lambda - 1)/\kappa^2 \) and \(k = -1 \), I get
\[
\mu \sim 0.2214 H_0 R M_P / L_P
\]

• If I use \(w_{\text{D.E.}} \sim -1.08 \), with \(k = -1 \)
\[
|\Lambda_W| \sim (1.03)^2 R_0^{-2} \approx 1.0609 R_0^{-2}
\]
I get
\[
\omega \sim 1.0067 R_0^{-2}
\]
To summarize,

- For $k = -1$, I get the constant parameters with

$$|\Lambda_W| \sim (1.03)^2 R_0^{-2} \approx 1.0609 R_0^{-2}$$

$$\omega \sim 1.0067 R_0^{-2}$$

$$\mu \sim 0.2214 H_0 R M_P / L_P$$

which predicts the evolution of $w_{\text{D.E.}}$ as one of the curves of $\omega < |\Lambda_W|$.
• If I use $R_0 \sim 6.2017 \, c/H_0$ from

$$\Omega_k = \frac{k c^2}{H_0^2 R_0^2} \sim -0.026$$

and $H_0 \sim 70 \text{ km s}^{-1}\text{Mpc}^{-1}$, I get

$$\Lambda_W \sim 1.5018 \times 10^{-9}\text{Mpc}^{-2},$$

$$\omega \sim 1.4251 \times 10^{-9}\text{Mpc}^{-2}$$

$$\mu \sim 5.6636 \times 10^{35}\text{kg s}^{-1}$$
Fig. 4.— The ΛCDM model fit to the WMAP data predicts the Hubble parameter redshift relation. The blue band shows the 68% confidence interval for the Hubble parameter, H. The dark blue rectangle shows the HST key project estimate for H_0 and its uncertainties (Freedman et al. 2001). The other points are from measurements of the differential ages of galaxies, based on fits of synthetic stellar population models to galaxy spectroscopy. The squares show values from Jimenez et al. (2003) analyses of SDSS galaxies. The diamonds show values from Simon et al. (2005) analysis of a high redshift sample of red galaxies.
So, our theory predicts
• Or, in the astronomer’s convention
Fig. 4. The best supernova and WMAP data fits to the polynomial model and linear model. The left panel shows Riess gold sample and WMAP data fits to the two parameter polynomial model, the light black lines are for Ω_Q and the dark balck lines for ω_Q, the solid lines are from the best fit. The right panel shows Riess gold sample and WMAP data fits to the two parameter linear model of ω_Q, the solid lines are from the best fit, the light black lines are for the linear model and the dark black lines are for the stable model. The dashed lines define the 1σ boundaries.
Model independent analysis of dark energy: Supernova fitting result

Figure 10. The evolution of ω_{DE} for different parametrizations.
3a. Comparison with observational data II: Latest data, independently of matters.

• Previously, I neglected matters, which occupy about 30% of our current universe, to get $\Lambda W, \omega$, so this would be good within about 70% accuracy, only!

• Is there any more improved analysis to achieve better accuracy, without neglecting matters? Yes! ...
• To this end, let me consider the series expansion of $w_{\text{D.E.}}$ near the current epoch $(a=1)$:

$$w_{\text{D.E.}} = w_0 + w_a (1 - a) + w_b (1 - a)^2 + \cdots$$

$$w_0 = \frac{k^2 - 2k\bar{\omega} - 3\bar{\Lambda}_W^2}{3(k^2 + 2k\bar{\omega} + \bar{\Lambda}_W^2)}, \quad w_a = \frac{8k(\bar{\omega}k^2 + \bar{\omega}\bar{\Lambda}_W^2 + 2k\bar{\Lambda}_W^2)}{3(k^2 + 2k\bar{\omega} + \bar{\Lambda}_W^2)^2}$$

• This agrees exactly with Chevallier, Polarski, and Linder (CPL)'s parametrization!
By knowing \(w_0 \) and \(w_a \) from observational data, one can determine as

\[
\bar{\omega} \quad \bar{\Lambda}_W
\]

\[
\bar{\omega} = \frac{(1 - 2w_0 - 3w_0^2 - w_a)k}{(1 + 4w_0 + 3w_0^2 + w_a)},
\]

\[
\bar{\Lambda}_W^2 = \frac{(-1 + 9w_0^2 + 3w_a)k^2}{3(1 + 4w_0 + 3w_0^2 + w_a)}.
\]
Remarks

• I do not need to know about matter contents, separately.

• Once $\bar{\omega}$, $\bar{\Lambda}_W$ are determined, the whole function $w_{D.E.}(a)$ is completely determined!
Data analysis **without** assuming the flat universe

<table>
<thead>
<tr>
<th>Parameters at $a = 1$</th>
<th>Data analysis Ia [43]</th>
<th>Data analysis Ib [43]</th>
<th>Data analysis II [44]</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>-1.06</td>
<td>-1.10</td>
<td>-1.11</td>
</tr>
<tr>
<td>w_a</td>
<td>0.72</td>
<td>0.39</td>
<td>0.475</td>
</tr>
<tr>
<td>Ω_k</td>
<td>-0.000</td>
<td>-0.009</td>
<td>-0.0008</td>
</tr>
<tr>
<td>$\Omega_{\text{D.E.}}$</td>
<td>0.699</td>
<td>0.730</td>
<td>0.739</td>
</tr>
<tr>
<td>Ω_m</td>
<td>0.301</td>
<td>0.279</td>
<td>0.262</td>
</tr>
<tr>
<td>H_0</td>
<td>65.5</td>
<td>67.6</td>
<td>72.4</td>
</tr>
<tr>
<td>$\bar{\omega}$</td>
<td>1.14</td>
<td>1.32</td>
<td>1.30</td>
</tr>
<tr>
<td>$\bar{\Lambda}_W$</td>
<td>2.10</td>
<td>2.44</td>
<td>2.29</td>
</tr>
</tbody>
</table>

| μ | 0.0000 | 0.0013 | 0.0004 |

TABLE I: A summary of the data sets **without** assuming the flat universe in a priori and their corresponding constant parameters, in the conventional units of H_0 (km s$^{-1}$Mpc$^{-1}$) and μ ($H_0R_0\mathcal{M}/\mathcal{L}_P$).
Data analysis Ia, Ib: CMB+BAO+SN

Table 6

<table>
<thead>
<tr>
<th></th>
<th>χ^2_{min}</th>
<th>Ω_m</th>
<th>h</th>
<th>Ω_k</th>
<th>w_0</th>
<th>w_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMB+BAO+Gold06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No prior</td>
<td>158.3</td>
<td>0.301</td>
<td>0.655</td>
<td></td>
<td>-1.06</td>
<td>0.72</td>
</tr>
<tr>
<td>Prior $h = 0.72 \pm 0.02$</td>
<td>161.3</td>
<td>0.263</td>
<td>0.702</td>
<td>0.014</td>
<td>-1.02</td>
<td>0.69</td>
</tr>
<tr>
<td>Prior $h = 0.62 \pm 0.02$</td>
<td>159.2</td>
<td>0.320</td>
<td>0.634</td>
<td>-0.007</td>
<td>-1.06</td>
<td>0.73</td>
</tr>
<tr>
<td>CMB+BAO+Davis07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No prior</td>
<td>195.4</td>
<td>0.279</td>
<td>0.676</td>
<td></td>
<td>-1.10</td>
<td>0.39</td>
</tr>
<tr>
<td>Prior $h = 0.72 \pm 0.02$</td>
<td>196.6</td>
<td>0.254</td>
<td>0.709</td>
<td>0.006</td>
<td>-1.14</td>
<td>0.80</td>
</tr>
<tr>
<td>Prior $h = 0.62 \pm 0.02$</td>
<td>197.3</td>
<td>0.315</td>
<td>0.638</td>
<td>-0.026</td>
<td>-0.93</td>
<td>-0.92</td>
</tr>
</tbody>
</table>

Table 6: The best fit values for Ω_m, h, Ω_k, w_0 and w_1 for the analysis presented in the panel (d)-(f) of Fig. 8. The minimum values of χ^2 are also shown.
Figure 8: 1σ and 2σ constraints from CMB+BAO+SN in the w_0–w_1 plane marginalizing over Ω_m and h are shown for the cases with (a) no prior on the Hubble constant, (b) assuming a Gaussian prior on the Hubble constant $h = 0.72 \pm 0.02$ and (c) $h = 0.62 \pm 0.02$. In the panels (d)–(f), we allow a non-flat universe and marginalize over Ω_k in addition to Ω_m and h. The black dashed lines show the boundary of the prior Eq. (3). The constraints using the SN data sets from Gold06 (red solid line) and Davis07 (blue dashed line) are shown separately.
Data analysis II: CMB+BAO+SN

TABLE I. Constraints on the dark energy EoS and some background parameters from the latest observations. Here we have shown the mean and the best fit values, which are obtained from the cases with and without the systematic uncertainties of Union compilation, respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>w_0</th>
<th>w_1</th>
<th>Ω_{de}</th>
<th>H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>with sys</td>
<td>w/o sys</td>
<td>with sys</td>
<td>w/o sys</td>
</tr>
<tr>
<td>ΛCDM</td>
<td>BestFit</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>$\Omega_k = 0$</td>
<td>Mean</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>WCDM</td>
<td>BestFit</td>
<td>-0.978</td>
<td>-0.955</td>
<td>0</td>
</tr>
<tr>
<td>$\Omega_k = 0$</td>
<td>Mean</td>
<td>-0.965 ± 0.080</td>
<td>-0.977 ± 0.056</td>
<td>0</td>
</tr>
<tr>
<td>RunW</td>
<td>BestFit</td>
<td>-1.09</td>
<td>-1.08</td>
<td>0.533</td>
</tr>
<tr>
<td>$\Omega_k = 0$</td>
<td>Mean</td>
<td>-0.946 ± 0.194</td>
<td>-0.993 ± 0.128</td>
<td>-0.133 ± 0.749</td>
</tr>
<tr>
<td>RunW</td>
<td>BestFit</td>
<td>-1.11</td>
<td></td>
<td>0.475</td>
</tr>
<tr>
<td>$\Omega_k \neq 0$</td>
<td>Mean</td>
<td>-0.976 ± 0.148</td>
<td></td>
<td>-0.071 ± 0.848</td>
</tr>
<tr>
<td>RunW</td>
<td>BestFit</td>
<td>-1.04</td>
<td></td>
<td>0.290</td>
</tr>
<tr>
<td>w/o Pert.</td>
<td>Mean</td>
<td>-1.00 ± 0.114</td>
<td></td>
<td>0.103 \pm 0.413</td>
</tr>
</tbody>
</table>
FIG. 2: Constraints on the dark energy EoS parameters w_0 and w_1 from the current observations, CMB+BAO+SN. The red solid lines and the blue dash-dot lines are obtained for the flat and non-flat universe, respectively. And the black dashed lines are obtained when (incorrectly) neglecting dark energy perturbations. The magenta solid lines stand for $w_0 = -1$ and $w_0 + w_1 = -1$. In this numerical calculation the systematic uncertainties of Union compilation is not considered.
The **whole** function of a is determined as $a = 1/(1+z)$.

FIG. 3: Plots of equation of state parameters w_{DE} vs. redshift $z = 1/a - 1$ for latest data sets $(\bar{w}, \bar{\Lambda}_W) = (1.14, 2.10), (1.32, 2.44), (1.30, 2.29)$ from $(\omega_0, \omega_a) = (-1.06, 0.72), (-1.10, 0.39), (-1.11, 0.475)$ and $k = -1$.
Comparison with early estimate

By neglecting matters

Estimated, independently of matters
Similar tendencies 1.

Best Fit: Gold-HST=142 SNe

U. Alam et. al., astro-ph/0403687 (Flat universe is assumed)
Huterer and Cooray, PRD71, 023506 (2005): Uncorrelated estimates (flat universe is assumed)
Remark

• For the **consistency** of our theory, we need

\[\Lambda_{W}^{2} = \frac{(-1 + 9w_{0}^{2} + 3w_{a})k^{2}}{3(1 + 4w_{0} + 3w_{0}^{2} + w_{a})} \geq 0 \]

• Otherwise, we would have **imaginary** valued \(c^{2} \) and \(G \), though \(\Lambda \) would not!!:

\[c^{2} \equiv i\frac{\kappa^{4}\mu^{2}|\Lambda_{W}|}{8(3\lambda - 1)^{2}}, \quad G = \frac{\kappa^{2}c^{2}}{16\pi(3\lambda - 1)}, \quad \Lambda = \frac{3}{2}\Lambda_{W}c^{2} \]
Consistency Conditions $\overline{\Lambda}_W^2 \geq 0$:

\[w_a > \frac{1}{3}(1 - 9w_0^2), \quad -1 - 4w_0 - 3w_0^2 \]

Forbidden !!

\[w_a < \frac{1}{3}(1 - 9w_0^2), \quad -1 - 4w_0 - 3w_0^2 \]

Forbidden !!
In our data sets

![Graph showing data sets II, Ia, and Ib with labeled axes and points]

- Axes: w_0 and $w_α$
- Data sets: II, Ia, Ib
- Graph illustrates the distribution and comparison of data sets
Within confidence levels

Ia

68.3 % Confidence
• Consistency condition may be tested near future by **sharpening** the data sets!
Possible scenario I

• If $k=0$, i.e., flat universe is confirmed, there is no effect of the Horava gravity in FRW cosmology. This is predicted by inflationary cosmology but $k \neq 0$, i.e., non-flat universe can be still consistent with data!

• But, even in this case, it is still open problem to study its effect to anisotropic and non-Gaussianity.
Possible scenario IIa

• If \(w_{\text{D.E.}} < -1 \) and \(k \neq 0 \), the original Horava gravity with the detailed balance, which predicts \(-1 \leq w_{\text{D.E.}} \leq 1/3 \), may be ruled out.

• According to current observational data, this seems to be quite plausible and this is also consistent with other theoretical considerations.
Possible scenario IIb

• Even if $w_{\text{D.E.}} < -1$, $k \neq 0$, and good agreements for small z are confirmed by determining ω and Λ_w, some disagreements or inconsistencies for higher z can occur.

• In this case, one might consider several further modifications:

 (1) More detailed-balancing breaking terms with the additional parameters.

 (2) Another definition of $\rho_{\text{D.E.}}$ and $\rho_{\text{D.E.}}$ by considering different definition c^2.
4. Open problems

• We need some more systematic fitting for the range of allowed constant parameters \(w, \mu, \Lambda_W \) to see whether our theory is really consistent with our universe.

• Can we reproduce other complicated stories with matters? If dark matters are given by the Horava gravity also, as Mukohyama proposed, I can say ...
Estimated distribution of dark matter and dark energy in the universe

In the current epoch (a=1)

- 74% Dark Energy
- 22% Dark Matter
- 3.6% Intergalactic Gas
- 0.4% Stars, etc.
Slogan for gravitists

The Horava gravity is the theory of 97%!!??
If yes, Slogan for gravitists

The Horava gravity is the theory of almost everything!