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Witten’s half Fourier transform

Consider R*? with metric signature 4+ + ——. For a spin 0 field, massless
equation is given by
Of =0

Momentum vector should satisfy null condition p,p* = 0.
Lorentz transform is given by SO(2, 2) and it is locally isomorphic with
SL(2,R) x SL(2,R). Then all the SO(2, 2) vectors can be replaced by spinor
indices using gamma matrices. Null momentum p,, is represented by two real
spinors

Pac = Aaa s pup" =detp=0.

Fourier transform

") /d pf(pu)e™ 8 (p /d AN F(A, N)er™A



e For f(\, )) introduce a Fourier transform with respect to A only [Witten, 2004]
%) = [ i pes

the (A, ) are twistor variables.

e Then the massless field is written as
£) = [ AAEuFOL 0%+

This equation is so called Penrose transformation . Here the u+ zA =0is
called incidence relation, which defines 2-dimensional null surfaces within R*>



From twistor to Grassmannian

Grassmannian: The space of all k-planes in an n-dimensional space R™ is
called the Grassmannian Gr(k, n). For the R*? with O(2, 2) metric signature we
can define null Grassmannian Gro(k,n) C Gr(k, n), which is the space of all

null planes.
We can specify a k-plane in n dimensions by giving k x n matrices II;’ € R**™,
whose span defines the plane.
For Gry(2, 4), null-planes in 4-dimension, II;* is determined by twistor variable
Aq @S

Hi“(w)da N Hbda _ 56(1)\@
Generalization to d-dimensional plane on a T2¢ with O(d, d) metric is

straightforward.



Correspondence

e Comparison between DFT and Penrose transform

DFT Penrose transform

weakly constrained fields massless fields
level matching constraint wave equation

section condition light cone



Difficulties



Level matching constraint

e Physical states should satisfy level matching constraint
(Lo — Lo)|phys) = 0,
4o/ (nqw® + N —N) =0.
e Assumethat N = N = 1.
8:0'(f - g) = 0ifd'g+ 0igd' f #0

e Prescription: Requiring strong constraint.



Cocycle factor

e Tachyon vertex operator with winding modes is

Ve (o) = el(55 050 i)

with OPE

o'kpkl /2 _o'kpklz/2
212

Viep kg (21, 20)Vig ket (22, 22) ~ 219 Viktk!) (bt g (22, Z2)

Under the interchange 1 < 2 and momentum k <« k', the lefthand side is

symmetric but a sign factor arises on the righthand side
exp[mi(nw’ +wn')]
e Vertex operator requires an additional sign factor
C(k, P) = explrmi(kr — kr)(Pr + Pr)a’ /4]

o When we take a field theory limit, this factor should be disappeared!



e Main issue of this talk

(1) Level matching constraint
— [K.L 2015]

(2) Cocycle factor

(3) Consistent field theory



Radon (X-ray) transform on a torus



Closed d-dimensional plane on a torus

e Consider a doubled torus 7> with periodic coordinates X’

X'~ Xx'+1, I=1,2---,2d
I a’ .
X' = , i =1,2 ,d
T

e [ J,--- are O(d,d) vector indices with a O(d, d) metric

J =
1 0



e A closed d-dimensional plane D(X?,II) on a T%¢ passing through a point

X1 ¢ 172 is parametrized as
DX 1) = {X" + 4,110 < t; < 1and IT € Py}
Pa is a set of d x 2d integer matrices of rank d, whose Smith normal form is
II = LDV

where L € PSL(d,Z), V € PSL(2d,Z) and Dy = (14 04)



e A closed d-dimensional plane D(X?,II) on a T%¢ passing through a point

X1 ¢ 172 is parametrized as
DX 1) = {X" + 4,110 < t; < 1and IT € Py}
Pa is a set of d x 2d integer matrices of rank d, whose Smith normal form is
II = LDV

where L € PSL(d,Z), V € PSL(2d,Z) and Dy = (14 04)

e Py -> Grassmannian G(d, 2d)
the closed d-dimensional plane is defined as a section or cutting plane of 724,

and the IT determines how to slice.



e A closed d-dimensional null-plane is parametrized
DX, ) = (X" + ;11" |0<t; < 1and 1T € PY}

PJ is a subset of the P4 such that for an arbitrary element IT € P, the row

vectors II* are mutually orthogonal and null
HinIJ(Ht)Jj -0
Since the tangent vectors for D° (X’ 1I) are IT%, it is a null-plane.
e For II € PY, the Smith normal form of II is given by
II = LDyV

where L € PSL(d,Z)and V € O(d,d;Z) .



o Note that the parametrization of d-plane is not unique, but there is a PSL(d,Z)

equivalence relation
'y ~a' TP, o' € PSL(d,2)

e If two slicing matrices II' and II are related by PSL(d, Z) rotation, then they
parametrize the same d-plane because the a € PSL(d, Z) can be absorbed into

the parameter t* by redefining ¢; = t;a’;.



Radon (X-ray) transform

e Radon (X-ray) transform on a torus is an integral transform mapping a
continuous function f(X?’) on a 72 to the integrals of this function over the

d-dimensional closed planes D(X’, 1)
1 1

Rf(XI;H):/ / dty -~ dtaf (X" + 6,11
0 0

where X7 is a point on the 72¢ and IT* € P,.

o X-ray transform for 72¢ is an injective mapping, and it is possible to define the

inverse transformation [Abouelaz, Rouviere, 2011]

¢ In general, the X-ray transform can be applied to any continuous functions, but

we will focus only on weakly constrained fields.



Example: a null plane wave

. ; I . .
e Let us consider a null plane wave ex = e>™¥1X" with an integer momentum K;

satisfying
KiK'=0

e Then the t integrals in X-ray transform can be done for the ex trivially

. I il . I i e
R@K(XI;H):/ddt627mKI(X +t,; 11 ):e27r1K1X /ddt€27r1K1tll'I

= €K 5H771K1,0



Then we have two constraints on K7 for a given II:

(1) I"K;=0, i=1---d

(2) KiK'=0
The first constraint eliminates d degrees of freedom of K'. Thus K’ is
expanded by d-momentum ¢;

Kr = £,%';
where U'; is a d x 2d integer valued matrix of rank d.
From the second condition, the row vectors of ¥ should be mutually null and
orthogonal vectors
VT =0

and the ¥’ become a basis of a maximal null subspace N

Also ¥ and II are orthogonal by the (1)



Recall that the orthogonal complement of a maximal null subspace N is
identical with itself, N = N, .

Since II generates N, , we can identify IT and ¥ without loss of generality.

Then the doubled momentum K7 is represented by
Kr=41';, and 17, =0
Thus I defines a null d-dimensional plane D°(X ', 1T € PY).
The X-ray transform of the ex can be rewritten by d-dimensional momenta ¢;
"ReK(XI;Hi) _ ezmeini,xf _ ezm'zizf 7 L= HiIXI

After X-ray transform, the Fourier basis ex on 72¢ reduces to a Fourier basis of

d-dimensional null plane defined by IT*;.



« To get a X-ray transform for an arbitrary function f(X”), we carry out Fourier

expansion and use the previous result Rey (X*;11)

o - N
Rf(z5IY) = Z fre®™ KX Ol iy 0
Kez2d

_Zf 271'7.1 z

where f/;, = fliniI, and it is reduced to the usual d-dimensional Fourier
expansion. This is known as Fourier slice theorem.
e The X-ray transform maps a 2d-dimensional weakly constrained field to a

d-dimensional strongly constrained field on a d-dimensional null plane.



Inverse X-ray transfrom

Inverse X-ray transform : Reconstruction of the original 2d-dimensional weakly
constrained field f(X) in terms of d-dimensional strongly constrained fields
Rf(z";1I) [Abouelaz, 2011]
FXN =) e fu(z")
nery
where ¢(II) is a weight factor for convergence of this series
p(IT') = exp(—|IL[|*) = exp(—= Y _(II'1)?)
i1
The fn(2') is defined in terms of R f(z*; 1)
fn(2i§ni) :/

2d 1 i Iy 2miKp(XT—yT)
Tde Y;WR]‘(HIY Ye2 ik



e Each fr(2) is strongly constrained field on a null plane D°(X’,1I). Hence,

Weakly constrained fields can be represented as a collection of

strongly constrained fields through inverse X-ray transform.



Binary operations for weakly constrained fields



Binary operations for weakly constrained fields

o Weakly constrained fields form the kernel K of the level matching constraint
Lo — Lo = ;0"
e The K is not closed by ordinary product. For arbitrary f,g € K,
f9¢ K

¢ Q: How we can define a binary operation which is compatible with level
matching constraint?
foge K



e Using the inverse X-ray transform, the f - g is represented as

frg= Y eMel)fu(z")gw (")
IL,11' € PY
¢ To find an additional condition which makes the ordinary product become
compatible with level matching constraint, we act the level matching operator

9:0" to the product

INYTE 13 8JEI'I 8§ !
I(f.q) = g = E il o
010 (f g) 201 f0° g =2 p(I1)(IT)IT* ;11 92 927

ILII' €PY

e A simple and natural way to vanish the right-hand side is to impose an

orthogonality condition on the slicing matrices

HiIJIJH/jJ —0.



e Now we assume that IT and II" are orthogonal.

e Since the row vectors II' define a maximal null subspace, their orthogonal
complement is identical with the original maximal null subspace. Thus the 11" is

represented by a linear combination of I1*
' =a;IP;,  a'; € PSL(d;2)

e By the equivalence relation, D°(X’; II) and D°(X”; alIl) are identical. Then the

X-ray image fields fr and g, live on the same plane.



» Moreover, we can absorb the a’; into the momenta ¢; , which is define by the

relation K1 = ¢;11°; in the Fourier expansion, by redefining £;
O =t

o Without loss of generality, we can always identify IT and TI" if we assume TI and
IT’ are orthogonal.
e We define a novel binary operation o as a product in the space of weakly

constrained fields:



e We can show that the o-product satisfy the following algebraic properties:
o Commutativity
fog=gof
e Associativity
folgoh)=(fog)oh
o Distributivity
fo(g+h)=fog+foh

In addition we can define an identity I satisfying I o f = fol = f
I=>" (-1
neP
e Leibniz rule
O1(fog)=01fog+ fodig



Relation to the Hull-Zwiebach projector

e Hull and Zwiebach defined a projector by inserting an operator 6, _z o within
the Fourier expansion of a function to satisfy level matching constraint. For

massless fields, N = N = 1, the 6,z o is represented as
5LO—1:0,0 = 58,31,0
and the projector is defined for an arbitrary field f

[/1= Z 5K1Kl,ofK62ﬂK’XI

Klez2d

e It is obvious that [f] satisfy
219" [f] =0.



e The projector for the usual product of two weakly constrained fields f and g is
given by

~ . ’ I
If-gl= Z 5KIK'1,0fK§K’62m(K+K X
KI K1

where K and K’ are null vectors.

e One can show that the strong constraint is automatically satisfied
[01f-0"g] =0

and it is commutative
[f9] = [af]

but not associative

[[7glh] # [lghl 1 # [Inflgl # [fghl



We can rewrite the projector of two weakly constrained fields by using an

inverse X-ray transform instead of the Fourier expansion

If -4l

Y. ee(Ir) 8y,91 0 fr(z)an (=)

0
LI €PY

PO (0TI 40/ 1’ 1
= Z S"(H)‘P(HI)Z6/zini1£;n/i1,0fn,lgn’7é’ it G X )

1 €PY 0,0

In order to make sense the Kronecker-delta we impose a vanishing condition
GO T = 0.

If IT and IT" are orthogonal, this condition is satisfied trivially. It corresponds to
o-product.

Nevertheless IT and IT’ are not orthogonal, it is possible to satisfy due to Fourier

zero-modes.



Isolation of the non-associative part

e Example: For O(2,2) case, if we assume that the fu is depend only on 22,
fru(2?), and gy is depend only on 2", g/ ('), then the ¢ and ¢; are remained
and ¢, = ¢, = 0.

o If we denote ¥ = I1°; 11! and assume that
t21 — 0
then the ¢2t21¢} vanish. The other elements also vanish due to the zero-modes
0t = 0820 = 0,472, = 0

the zero mode contribution is missing in o-product.



e Therefore, we can separate HZ projector, [f - ¢], into the associative part and

the non-associative part as
[f-gl=fog+fxg,

e The x-product represents the non-associative part but satisfies level matching
constraint
O fx81g=0



Cocycle factor

¢ o-product implies when we consider OPE between two vertex operators, the

momenta should be located on a same plane.

n:
I ? Al
erf= ("), anf=

w w

e Then the unwanted factor which arises in two OPEs with different ordering is

automatically disappeared
exp[mi(nw’ 4+ wn')] = exp[mi (€T TP )] = 1

Thus we don’t need any cocycle factor for o-product.



Associative subsector of Weakly Constrained
Double Field Theory



Mass scales

Q: Under what conditions do we expect the action to give a reasonable

description of the massless degrees of freedom of string theory?

Massive tower of massive string sates: m; ~ 1/va’

Kaluza-Klein momentum modes: mxx ~ 1/R

string winding modes with m.,, ~ R/c’.

For manifest T-duality, we should treat momentum and winding modes on an
equal footing. Thus the compactification scale should be of order of self-dual
radius R ~ /.

The all the mass scales are of the same order, ms ~ mxx =~ M.

There is no mass hierarch! there is no specific limit which truncates the massive
string states.

A: There is no such a condition.



Subtheory

Recall electroweak subsector of standard model. Even if we cannot ignore
strong interaction in general, we can focus only on electroweak subsector as a

well-defined independent theory.

If we turn off SU(3) gauge symmetry and gauge field, we can get a consistent
SU(2) x U(1) subsector.

Subtheory: A theory forming part of a larger theory. Action is decomposed as
Stot - Ssub + Sextra

and
5tot = 6sub + 6extra

As a consistency Ssu1, should be inv. under ds,1, and gauge symmetry form a
closed subalgebra.



e Although we cannot decouple string massive excitations, we can focus on

massless subsector to study winding mode dynamics in a simple setup.

o Gague symmetry :
6™ (massless fields) = (massless fields only)+(massive fields + massless fields)

If we denote the massless field sector as ¢°, then it should form a subalgebra of

the full gauge algebra
[6%. 0y (massless fields) = 5% (massless fields)
e Action It should include a massless subsector in the action
Ltull = Lmassless T Lmassivetmassless

and Lmassless Should be invariant under the 6°.



e Weakly constrained DFT




Associative subsector of WDFT

It is very difficult to construct any field theory with the HZ projector due to the

non-associativity. Even O(1, 1) case is hopeless.

Assume that there exits the full WDFT in terms of HZ-projector
Sworr[H,d, [--],C(k, P)],  8{H,d} = {H,d}([--],C(k, P))
Using [f - ¢g] = fog+ f *g, itis always possible to decompose the theory as
Swprr = Sawprr[o] + Snalo, x, Clk, PH
as well as the gauge symmetry
S{H, d} = VP, dY[o] + 6N {H, d} [0, x, C[k, P]]

The associative subsector of full WDFT is a well defined subtheory.



e Associative subsector of WDFT

Associative Subsector
of WDFT




O(d, d; Z) transform

o We have to define O(d, d; Z) group equipped with o-product. To distinguish with
the usual O(d, d) group, we denote as O(d, d; Z),.

e Assume that 7, is the O(d, d; Z), metric which is defined as

0 I
jo - ¢
Is O
where the identity matrix I, is defined by

L= () 14

where 1, = diag(1,---,1). Note that 7 is a constant matrix, but it is not the

0 0y
JoIJ?éjIJ:< ) )
67 0

usual O(d, d) metric



e O(d,d;Z), is defined by a set of 2d x 2d matrices satisfying
Oi 0Jo00 =7,

where O € O(d, d; Z)o.

e J, and O are expanded by inverse X-ray transform

Zso )i s 0= Zso ) On(z:)
e Each X-ray images Oy, are usual O(d, d; Z) elements
1t'[ : jr[ . @n = jn

Thus O(d, d; Z)., element is represented by a collection of O(d, d; Z) elements.



e Then we can show that O(d, d; Z), defines a group. For arbitrary elements
01,002,035 € O(d, d; Z), they satisfy the following the properties:
e Closure
0100, € O(d, d)
e Associativity
Ol [e] (OQ o 05) = (01 OOQ) [¢] 03
o |dentity
AO[Qd:IQdOA:A
e Inverse
Ao A~? :AiloA:IQd



e O(d,d;Z), tensor transforms as
lel...jmhm‘]" (X/) = O[lKl o---00q, Km OTKl.”KlemL" O(QJlL1 o-- -o(/)J”Ln

¢ Since we are assuming torus case only, it should be O(d, d; Z), rather than
O(d, d> R)O



Physical degrees of freedom

o Weakly constrained fields are represented by summing the all possible strongly
constrained fields. Conversely, we may consider a collection of all possible

strongly constrained generalized metric

HIJ(XI) = Z @(H)QHIJ(ZZ.)

nePy

o Weakly constrained generalized metric satisfy following conditions
Hrr =Han HoJooH' =T5 "
e Furthermore, H is an O(d, d; Z), tensor

H—OcHoO



e As strongly constrained DFT, we can parametrize H
-1 -1
g g oB
Hris =
Bog™' g—Bog'oB
where the ¢ is defined by

g log=gog =1

e Even if we consider weakly constrained DFT, the physical degrees of freedom
are same as strongly constrained DFT

This is consistent with the result of string field theory.



Gauge transform

¢ Physical degrees of freedom is given by weakly constrained generalized metric.

H[J(XI) = Z @(H)ﬁHU(Zi)

meP)

« Gauge transformation of each #n . (z") is given by generalized Lie derivative.
The gauge transformation of ;s should be a collection of generalized Lie

derivatives.

o ltis natural to speculate that the form of gauge transformation of the weakly
constrained fields : replacing all the usual products to o-product in the

generalized Lie derivative
SxHis = X¥ o OxHis+ (31XK — 8KX1) oHrs+ (aJXK — (9KXJ) oHik,

oxd=X"00pd— LopX".



o |t is straight to show that the gauge transform is closed exactly
[0x,0v]HuN = dix,yv) , HMN ,
where the generalized version of C-bracket is defined by
XYY = XY oanY™ - 1xN oMYy — (X & V)
« Under the &'-expansion, the gauge transform is expanded by
8O = 0iN; — OjA; + €7 0 OEij + 8i" 0 Exj + 956" 0 Eux
W&y = —Eino (0" —8'€") 0 &1j + Ak 00 Eij — 0F Ny 0 Erj — DA 0

where £ = g + B. This is exactly same as Hohm, Hull and Zwiebach’s tilde

derivative expansion except the product.



Action

e Suppose an arbitrary action
S = /deX L(z, %)

where L(z, z) is a Lagrangian density.

o Since any 2d-dimensional functions are expanded by X-ray transform

L(z,&) = Y (1) Lu(zn)



e We propose an action for an associative subsector of weakly constrained DFT
SAWDFT = /d2dX [e™*]o o LawprT
where the Lagrangian Lawprt is given by
Laworr = 4H' 0 819,d — 010,H" — 4H" 0 91d 0 05d + 40,H" 0 0,d
+ 21 o o1 o0 HKL — $H' 0 OrH T 0 Ok H L
 The exponentiation of the d, [e=2?],, is defined by
le o =1 —2d+ L(2d) o (2d) — 4(2d) o (2d) o (2d) +

= D> > ek (—2du(z))"

Hepo m>0

= Z @(H)e_Zdn.

meP)



e Using the definition of o-product, the action is expanded as

Lawprt = Z @(I) L (")
neP
o Each Sy is a strongly constrained DFT action on a d-dimensional null plane
D° (X', 1)
lin = 62,21.[ (47:111[‘]818,1621-[ — 818,17%” — 47:[ﬁJ(91628JdAH

+40rHn"’ 0,d + " OrHn ™ 0, Hn kL — 3Ha' 0 Hn " Ok Hia)



Polarization

Three different concepts: Local coordinate, section condition and polarization

Section condition defines a d-dimensional plane(or torus) where a strongly
constrained DFT lives within double torus 7%¢.

Polarization © provides a consistent way to separate the 7% and 7% within the
double torus 72¢ . [Hull, 2004]

For simplicity we identify local coordinate with polarization. Identify = as a usual

coordinate, and z as a winding coordinate. Also section condition is identified
null-planes, II.



¢ In general, there is no reason that section condition is identical with polarization.
However we can always identify these using O(d, d) rotation.

e In AWDFT case, we cannot identify all of them. There is a single global
plarization, but there are infinite number of section conditions.

e Since we cannot identify section condtion and polarization, except one, each
strongly constrained DFT has non-trivial winding dependences and interaction

between momentum and winding modes.



tilde-derivative expansion

e zeroth-order
£O =[e*Y, 0 [ — 19" 0 g7 0 P 0 (0pEni 0 BgEij — Diip © 0jEnq — Dipt © DjEqr)
+20'do & gij +40'd o &-d] ,
where 8" = g" 0 9.
e The next order takes the form
LY =¥, o [%gik 0 g’ 0 g7 0 (Epr 0 8" Ei 0 yis — Eir 0 " Eip 0 OEjq
+E1 08 Epi 0 NEqs) + 9T 0 g 0 (Erg0Bpd 0§ Eij — Epr0ddo

+&po d"do 0¢€ij — Eqr 0 Opd 0 5r(€ji) — Sgij 0&po0d®do 8jd] ,



Concluding Remarks

We constructed an associative subsector of WDFT: Gauge symmetry,
O(d, d; Z), and gauge invariant action.

This is the string effective theory beyond supergravity limit. AWDFT is not
rewriting supergravity at all!

From the X-ray transform and o-product, AWDFT is defined in a very simple and
straightforward way.

Is it a unique associative subsector besides supergravity?
Is it possible to construct the full WDFT?

Is it possible to construct a non-associative subsector of WDFT which is
interpolating full WDFT and associative WDFT?
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Thank you for attention



