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Motivation

A litmus case for exceptional generalized geometry/exceptional field theory is that of
eight-dimensional compactifications, since this is the first dimension for which the
“problem of dual gravitons” arises.

Any physically meaningful and mathematically consistent formulation of “E8(8)

geometry” should be able to account for the most general geometry (including fluxes)
of supersymmetric backgrounds of eleven-dimensional supergravity given by warped
products of N with M, where N,M are spin manifolds of dimensions dimN = 3 and
dimM = 4, with N pseudo-Riemannian and M Riemannian and compact.

When the corresponding compactification preserves the minimal amount of
supersymmetry (N = 1 in 3-dimensional language), the case N = R

2,1 leads to the
condition that M is conformally of Spin(7) holonomy. However, the geometry is much
more subtle when N = AdS2,1. To have a good testing ground for E8(8) generalized
geometry, we must first:

Give a useful geometric description of the most general Riemannian spin 8-manifolds
M with fluxes which preserve N = 13 supersymmetry when compactifying 11-dim
SUGRA down to AdS2,1 manifolds (N, g3).
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A useful description is one which satisfies the following conditions:

(a) Is geometric in some conceptual sense (i.e. it is not simply a bunch of equations
which one makes no attempt to understand conceptually).

(b) Gives a mathematically equivalent characterization of the supersymmetry
conditions, without loosing information and without making unspecified
supplementary assumptions. In particular, such an equivalent description should
be globally correct.

Previous work on such compactifications:
Martelli and Sparks (2001): proposes a set of equations which fail to satisfy both conditions (a) and (b)
above.

Tsimpis (2007): proposes equations which satisfy condition (b) but not condition (a).

A useful geometric description involves the theory of cosmooth singular foliations
(singular Haefliger structures) endowed with longitudinal G2 structures. In general,
such “supersymmetric” foliations can have both minimal and non-minimal
components, so some of their leaves may be dense in certain subsets of M. This
provides an interesting connection to non-commutative geometry and suggests that
“E8(8) geometries” should admit similar singular foliations.

Such a description was given in:

[1]. E.M. Babalic, C.I. Lazaroiu, Singular foliations for M-theory compactifications, JHEP03(2015)116.

[2]. E. M. Babalic, C. I. Lazaroiu, Foliated 8-manifolds for M-theory compactifications, JHEP01(2015)140.

All results of these references are mathematically rigorous and globally valid.
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M = N ×M , G = ν3 ∧ f + F , f ∈ Ω1(M) , F ∈ Ω4(M) .

When N = 1d=3 supersymmetry is preserved, we have an internal part ξ of the susy
generator, which is a real pinor field on M.

If ξ is everywhere chiral =⇒ no fluxes at the classical level, M has Spin(7)
holonomy.

If ξ is everywhere non-chiral =⇒ regular foliation with leafwise G2 structure.

If ξ is chiral somewhere but not everywhere =⇒ cosmooth singular foliation
(Haefliger structure) with leafwise G2 structure.
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Compactifications down to AdS3

SUGRA action in 11 dimensions (involving the SUGRA fields g, C, Ψ):

S11 =
1

2G 2
11

∫

d11y

[

Rν − 1

2
G ∧ ⋆G− 1

6
G ∧ G ∧ C

]

+ terms involving Ψ

The metric on M = N ×M is a warped product:

ds211 = e2∆ds211 , ds211 = ds23 + gmndx
mdxn , ∆ ∈ C∞(M,R) .

G = e3∆G , G = vol3 ∧ f + F , f ∈ Ω1(M), F ∈ Ω4(M)

Susy conditions: δηΨA = DAη = 0 , A = 0, ...,10

η = e
∆
2 η with η = ζ ⊗ ξ , ζ ∈ Γ(N, S3) , ξ ∈ Γ(M, S) ,
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The chiral and nonchiral loci

ξ = ξ+ + ξ− , ξ±
def.
=

1

2
(1± γ(ν))ξ ∈ Γ(M, S±)

||ξ||2 = ||ξ+||2 + ||ξ−||2 = 1 , b = ||ξ+||2 − ||ξ−||2 ⇐⇒ ||ξ±||2 =
1

2
(1± b)

The purely non-chiral locus U (ξ is Majorana, but not Weyl, b 6= ±1):

U def.
= {p ∈ M|ξ 6∈ S+

p ∪ S−
p } = {p ∈ M|ξ+p 6= 0 and ξ−p 6= 0} = {p ∈ M||b(p)| < 1}

The chiral locus W = W+ ⊔W−:

W± def.
= {p ∈ M|ξp ∈ S±

p } = {p ∈ M|b(p) = ±1} = {p ∈ M|ξ∓p = 0} .

The loci U±:

U± def.
= U ∪W± = {p ∈ M|ξ±p 6= 0} .

Calin Lazaroiu Center for Geometry and Physics, Institute for Basic Science, Pohang, KoreaFoliations, non-commutative geometry and exceptional generalized geometry



Introduction
Kähler-Atiyah formulation for the N = 1 case

Topology of the foliation

M-theory flux compactifications to AdS3
The chiral and nonchiral loci
A topological no-go theorem

A topological no-go theorem

Bianchi identity and e.o.m. for G:

dF = df = 0 , d ⋆ G+
1

2
G ∧ G = 0 . (1)

Theorem. Assume that the supersymmetry conditions, the Bianchi identity and
equations of motion for G as well as the Einstein equations are satisfied. There exist
only the following four possibilities:

1 The set W+ coincides with M and hence W− and U are empty. In this case, ξ is
a chiral spinor of positive chirality which is covariantly constant on M and we
have κ = f = F = 0 while ∆ is constant on M.

2 The set W− coincides with M and hence W+ and U are empty. In this case, ξ is
a chiral spinor of negative chirality which is covariantly constant on M and we
have κ = f = F = 0 while ∆ is constant on M.

3 The set U coincides with M and hence W+ and W− are empty.

4 At least one of the sets W+ or W− is non-empty but both of these sets have
empty interior. In this case, U is dense in M and the union W = W+ ∪W−

coincides with the topological frontier of U .
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Character of chiral and nonchiral loci
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Sketch of chiral loci of two subcases of Case 4: when W+ and W− are finite sets of points and
when they are submanifolds of various dimensions. The non-chiral locus U is the complement of
W in M and is indicated by white space.
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Reduction of SUSY to a CGKS problem

For ζ a Killing spinor on N, susy conditions =⇒ CGKS equations on M:

Dξ = 0 , Qξ = 0

DX = ∇S
X +

1

4
γ(XyF ) +

1

4
γ((X♯ ∧ f )ν) + κγ(Xyν) , X ∈ Γ(M,TM)

Q =
1

2
γ(d∆) − 1

6
γ(ιf ν)−

1

12
γ(F ) − κγ(ν)

Kähler-Atiyah formalism – rigorous formulation of the “method of bilinears” using
Kähler-Atiyah bundles: eliminate pinors using the differential forms:

B(ξ, γa1...ak ξ
′)ea1...ak ∈ Ωk(M) , ξ, ξ′ ∈ Γ(S,M)

and perform operations using the geometric product:

ω ⋄ η =
d

∑

k=0

(−1)[
k+1
2 ]πk(ω)△k η , △k =

1

k!
∧k , ω, η ∈ Ω(M)
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Geometric algebra analysis for the N = 1 case

Theorem: Giving a globally-defined smooth real pinor ξ ∈ Γ(M, S) satisfying the
CGKS equations is equivalent to giving a globally-defined inhomogeneous form:

Ě =
1

16

8
∑

k=1

1

k!
B(ξ, γa1...ak ξ)e

a1...ak =
1

16
(1 + V + Y + Z + bν) ∈ Ω(M)

such that:

∇mĚ = −[Ǎm, Ě ]−,⋄ , Q̌ ⋄ Ě = 0 (2)

where

||ξ||2 = 1 , b ∈ C∞(M,R)(R,M) , V ∈ Ω1(M) , Y ∈ Ω4(M) , Z ∈ Ω5(M)

Ǎm =
1

4
emyF +

1

4
(em♯ ∧ f ) ⋄ ν + κem♯ ⋄ ν , Q̌ =

1

2
d∆− 1

6
f ⋄ ν − 1

12
F − κν
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The Fierz identities are encoded by the relations:

Ě2 = Ě , S(Ě) = 1 , τ(Ě ) = Ě , |S(νĚ)| < 1 (3)

and are equivalent with:

||V ||2 = 1− b2 > 0 ,

ιV ∗ Z = 0

ιVZ = Y − b ∗ Y

(ιu(∗Z)) ∧ (ιv (∗Z)) ∧ (∗Z) = −6 < u ∧ V , v ∧ V > ιV ν , ∀u, v ∈ Ω1(M)

Calin Lazaroiu Center for Geometry and Physics, Institute for Basic Science, Pohang, KoreaFoliations, non-commutative geometry and exceptional generalized geometry



Introduction
Kähler-Atiyah formulation for the N = 1 case

Topology of the foliation

The non-chiral locus
Solving the supersymmetry conditions
Geometry of the foliation
Eliminating the fluxes

The non-chiral locus

One has the decomposition Ě |U =
1

16
(1 + V + bν)(1 + ψ) = P|UΠ where

P =
1

2
(1 + V + bν) , Π =

1

8
(1 + ψ)

(3) is equivalent with:

V 2 = ||V ||2 = 1− b2 , Y = (1 + bν)ψ , Z = Vψ

where : ψ =
1

1− b2
ι
V
Z (⊥ V )

Let: ϕ = ∗(V̂ ∧ ψ) = ∗⊥ψ (⊥ V ) , where V̂ = V
||V ||

The self-dual and anti-selfual parts of ψ:

ψ± =
1

2
(ψ ± ∗ψ) = 1

2
(ψ ± V̂ ∧ ϕ) ∈ Ω4(U)
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The supersymmetry conditions imply:

dω = 0 , ω = f − db (4)

where ω = 4κe3d∆V , b = e3d∆b , f = e3d∆f

The Frobenius integrability theorem implies that the (generalized) distribution
D = kerV (or ω) integrates to a (singular) codimension one foliation F , which has a
longitudinal G2 structure given by the coassociative 4-form ψ (or equivalently by the
associative 3-form ϕ = ∗⊥ψ). The complementary distribution determine a foliation

F⊥ whose leaves are integral curves of n = V̂ ♯ = V ♯

||V ||
.
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Parameterization of the 4-form fluxes

Since any form can be decomposed into parallel and orthogonal parts to any one-form,
we have:

F = F⊥ + V̂ ∧ F⊤ , f = f⊥ + f⊤V̂

with components F⊥,F⊤, f⊥, f⊤ ∈ Ω7(M,D) living on the 7-dim. distribution.

The G2 structure gives decompositions:

F⊥ = F
(1)
⊥ + F

(7)
⊥ + F

(27)
⊥ ≡ F

(7)
⊥ + F

(S)
⊥ ∈ Ω4(M,D)

F⊤ = F
(1)
⊤ + F

(7)
⊤ + F

(27)
⊤ ≡ F

(7)
⊤ + F

(S)
⊤ ∈ Ω3(M,D) , D = TF

with the parameterization:

F
(7)
⊥ = α1 ∧ ϕ , F

(S)
⊥ = −ĥkle

k ∧ ιe lψ = −4

7
trg (ĥ)ψ − h

(0)
kl

ek ∧ ιe lψ

F
(7)
⊤ = −ια2ψ , F

(S)
⊤ = χkle

k ∧ ιe lϕ =
3

7
trg (χ)ϕ− χ

(0)
kl

ek ∧ ιe lϕ

α1, α2 ∈ Ω1(M,D) and ĥ, χ are symmetric tensors.
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Solving the Q̌-constraints.

Theorem 1. Let ||V || =
√
1− b2. Then the Q̌-constraints are equivalent with the

following relations, which determine (in terms of ∆, b, V̂ , ψ and f ) the components of

F
(1)
⊤ , F

(1)
⊥ and F

(7)
⊤ , F

(7)
⊥ :

α1 =
1

2||V || (f − 3bd∆)⊥ ,

α2 = − 1

2||V || (bf − 3d∆)⊥ ,

trg (ĥ) = −3

4
trg (h) =

1

2||V || (bf − 3d∆)⊤ ,

trg (χ̂) = −3

4
trg (χ) = 3κ− 1

2||V || (f − 3bd∆)⊤ .

(5)

Notice that the Q̌-constraints do not determine the components F
(27)
⊤ and F

(27)
⊥ .
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Intrinsic and extrinsic geometry of the foliation

The fundamental equations of the foliation:

∇nn = H (⊥ n) , (Gauss eq. for F⊥)

∇X⊥n = −AX⊥ (⊥ n) , (Weingarten eq. for F)

∇n(X⊥) = −g(H,X⊥)n + Dn(X⊥) , (Weingarten eq. for F⊥)

∇X⊥(Y⊥) = ∇⊥
X⊥ (Y⊥) + g(AX⊥,Y⊥)n (Gauss eq. for F)

Have:
Dnϕ = 3ιϑψ , Dnψ = −3ϑ ∧ ϕ , (6)

where ϑ ∈ Ω1(D) parameterizes the adapted part of the normal connection. The
torsion forms τk ∈ Ωk(M,D) of the longitudinal G2 structure are uniquely determined
by:

d⊥ψ = 4τ1 ∧ ψ + ∗⊥τ2 , d⊥ϕ = τ0ψ + 3τ1 ∧ ϕ+ ∗⊥τ3
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Theorem 2. Let ||V || =

√

1 − b2 and suppose that (F , f ) is consistent with the quadruple (∆, b, V̂ , ψ), i.e. that the

Q̌-constraints are satisfied. Then the supersymmetry constraints are equivalent with the following conditions:
1 The function b ∈ C∞(M, (−1, 1)) satisfies:

e
−3∆

d(e
3∆

b) = f − 4κ

√

1 − b2V̂ (7)

2 The fundamental tensors H and A of F and F⊥ are given by the following expressions in terms of b, ψ and f , F :

H♯ =
2

||V ||
α2 = −

1

||V ||2
(bf − 3d∆)⊥ ,

AX⊥ =
1

||V ||

[

(bχ
(0)
ij

− h
(0)
ij

)X
j
⊥e

i
+

1

7

(

14κb − 8trg (ĥ) − 6b trg (χ̂)
)

X⊥
]

=

=
1

||V ||

[

(bχ
(0)
ij

− h
(0)
ij

)X
j
⊥e

i
+

1

7

(

− 4κb + 9||V ||(d∆)⊤ −
1

||V ||
(bf − 3d∆)⊤

)

X⊥
]

,

(8)

3 The one-form ϑ ∈ Ω(D) is given by the following relation in terms of ∆, b and f :

ϑ =
bα2 − α1

3||V ||
=

1

6||V ||2
[

− (1 + b
2
)f + 6bd∆

]

⊥ (9)

4 The torsion classes of the leafwise G2 structure (in the conventions of are given by the following expressions in terms of ∆, b and
f , F :

τ0 =
4

7||V ||
(b trg (ĥ) − trg (χ̂) + 7κ) =

4

7||V ||

[

4κ +
(1 + b2)f⊤ − 6b(d∆)⊤

2||V ||

]

,

τ1 = −
3

2
(d∆)⊥ ,

τ2 = 0 ,

τ3 =
1

||V ||
(χ

(0)
ij

− bh
(0)
ij

)e
i ∧ ιejϕ =

1

||V ||
(F

(27)
⊤ − b ∗⊥ F

(27)
⊥ ) .

(10)

In particular, the leafwise G2 structure is integrable (we have τ2 = 0), i.e. it belongs to the class W1 ⊕ W3 ⊕ W4 of theCalin Lazaroiu Center for Geometry and Physics, Institute for Basic Science, Pohang, KoreaFoliations, non-commutative geometry and exceptional generalized geometry
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Eliminating the fluxes

Theorem 3. The following statements are equivalent:

(A) There exist f ∈ Ω1(M) and F ∈ Ω4(M) such that the susy equations admit at least one non-trivial solution
ξ which is everywhere non-chiral (and which we can take to be everywhere of norm one).

(B) There exist ∆ ∈ C∞(M, R), b ∈ C∞(M, (−1, 1)), V̂ ∈ Ω1(M) and ϕ ∈ Ω3(M) such that:

1. ∆, b, V̂ and ϕ satisfy the conditions:

||V̂ || = 1 , ι
V̂
ϕ = 0 . (11)

Furthermore, the Frobenius distribution D
def.
= ker V̂ is integrable and we let F be the foliation which

integrates it.
2. The quantities H, trA and ϑ of the foliation F are given by:

H♯ =
2

||V ||
α2 = −

b

||V ||2
(db)⊥ + 3(d∆)⊥ =

d⊥||V ||

||V ||
+ 3(d∆)⊥ ,

trA = 12(d∆)⊤ −
b(db)⊤
||V ||2

− 8κ
b

||V ||
= 12∂n∆ +

∂n||V || − 8κb

||V ||
,

ϑ = −
1 + b2

6||V ||2
(db)⊥ +

b

2
(d∆)⊥ .

(12)

3. ϕ induces a leafwise G2 structure on F whose torsion classes satisfy:

τ 0 =
4

7||V ||

[

2κ(3 + b
2
) −

3b

2
||V ||(d∆)⊤ +

1 + b2

2||V ||
(db)⊤

]

,

τ 1 = −
3

2
(d∆)⊥ ,

τ 2 = 0 .

(13)
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Eliminating the fluxes

In this case, the forms f and F are uniquely determined by b,∆,V and ϕ. Namely, the one-form f is given by:

f = 4κV + e
−3∆

d(e
3∆

b) , (14)

while F is given as follows:

(a) We have F
(1)
⊤ = 3

7
trg (χ)ϕ = − 4

7
trg (χ̂)ϕ and F

(1)
⊥ = − 4

7
trg (ĥ)ψ, with:

trg (ĥ) = −
3||V ||

2
(d∆)⊤ + 2κb +

b

2||V ||
(db)⊤ , trg (χ̂) = κ−

1

2||V ||
(db)⊤ (15)

(b) We have F
(7)
⊤ = −ια2

ψ and F
(7)
⊥ = α1 ∧ ϕ, with:

α1 =
1

2||V ||
(db)⊥ , α2 = −

b

2||V ||
(db)⊥ +

3||V ||

2
(d∆)⊥ =

d⊥||V ||

||V ||
+

3||V ||

2
(d∆)⊥ (16)

(c) We have:

h
(0)
ij

= −
b

4||V ||
[〈eiyϕ, ejyτ 3〉 + (i ↔ j)] −

1

||V ||
A
(0)
ij

=
b

||V ||
tij −

1

||V ||
A
(0)
ij

,

χ
(0)
ij

= −
1

4||V ||
[〈eiyϕ, ejyτ 3〉 + (i ↔ j)] −

b

||V ||
A
(0)
ij

=
1

||V ||
tij −

b

||V ||
A
(0)
ij

,

where A(0) is the traceless part of the Weingarten tensor of F while τ 3 is the rank 3 torsion class of the
leafwise G2 structure.
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Remark. The differential and codifferential relations for V do not depend on the
fluxes:

dV = 3V ∧ (d∆)⊥ ,

δV = −8κb + 12||V ||(d∆)⊤ .
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Topology of F in the everywhere non-chiral case

Assuming that M is compact and connected and V nowhere vanishing, the foliation F
is defined by the closed nowhere vanishing one-form ω = 4κe3∆V .

perω([γ]) =

∮

γ

ω =

∮

γ

f = perf ([γ])

The foliation F is a fibration (namely a fibration over S1) iff. all periods of ω can be
commonly rescaled to integers (ω is projectively rational).

When ω is projectively irrational, each leaf of F is non-compact and dense in M,
hence F is not a fibration. The periods of G on noncompact 4-cycles of M are not
quantized, thus we cannot conclude perf ([γ]) need to be commonly rescalable to
integers in M-theory. Hence the case when F is not a fibration might arise as a
consistent background in M-theory. Morita-equivalent models for NC geometry of leaf
space, Latour obstruction etc: see refs.
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The singular distribution

G structure Spin(7)+ Spin(7)− G2 (on D|U ) SO(7) (D|U )

spinor η+ η− η0 = 1√
2
(η++ η−) —

idempotent Π+= 1
16

(1 + Φ++ ν) Π−= 1
16

(1 + Φ−− ν) Π = Π++ Π−= 1
8
(1 + ψ) P = 1

2
(1 + V + bν)

forms Φ+ = 2ψ+ Φ− = 2ψ− ϕ and ψ = ∗⊥ϕ b and V

extends to U+ U− U U

Summary of various G structures and of their reflections in the Kähler-Atiyah algebra.

We have:
M = Ū = U ∪ W , W = FrU

The 4-form ψ± has a continuous extension to the locus U± def.
= U ∪ W±:

ψ̄
± =

1

1 ± b
Y

±|U±

and describes a Spin(7)± structure. On the locus W± we have b = ±1,,Y± = 2ψ̄± and

V = Z = Y∓ = 0. The generalized distribution D = ker V = kerω determines a cosmooth
singular foliation F̄ of M, which degenerates along the chiral locus W.

Since D is cosmooth rather than smooth, the notion of singular foliation which is appropriate in

our case is that of Haefliger structure. Singular foliations can be very complicated and little is

known about their topology and geometry. The description of F̄ simplifies when ω is of Morse or

Bott-Morse type.
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The singular foliation in the Morse case

Name Morse index Local form of Lp Local form of regular leaves

Center 0 or n • = {p}

Weak saddle between 2 and n − 2

Strong saddle 1 or n − 1

Types of singular points p. The first and third figure on the right depict the case d = 3 for centers and strong
saddles, while the second figure attempts to depict the case d > 3 for a weak saddle (notice that weak saddles do
not exist unless d > 3). In that case, the topology of the leaves does not change locally when they “pass through”
the weak saddle point.
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Classification of leaves

type of L
compactifiable

non-compactifiable
compact non-compact

ordinary Y — Y
special — Y Y

Card(FrL) finite infinite

Classification of the leaves of Fω , where the allowed combinations are indicated by the letter “Y”. A
compactifiable leaf is ordinary iff. it is compact and it is special iff. it is non-compact. A non-compactifiable leaf
may be either ordinary or special. Non-compactifiable leaves coincide with those leaves whose frontier is an infinite
set, while compactifiable leaves are those leaves whose frontier is finite.

p

σ

Σ1(ω)

Ê E

Example of the graphs Ê and E for a Morse form foliation F̄ω with two compact strong singular leaves. The
regular foliation Fω of M∗ has four special leaves, each of which is compactifiable; they are depicted using four
different colors. At the bottom of the picture, we depict Σ1(ω) as well as the schematic the shape of the special

leaves in the case d = 3. The strong singular leaves of F̄ω correspond to the left and right parts of the figure at
the bottom; each of them is a union of two special leaves of Fω and of singular points. Each special leaf
corresponds to a vertex of E.
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The foliation graph
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An example of foliation graph. Regular (a.k.a type I) vertices are represented by black dots, while exceptional
(a.k.a. type II) vertices are represented by green blobs. All terminal vertices are regular vertices and correspond to
center singularities. Notice that the graph can have multiple edges as well as loops.

(a) Foliation graph when W = ∅ and ρ(ω) = 1.
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(b) Foliation graph when W = ∅ and ρ(ω) > 1.

Degenerate foliation graphs in the everywhere non-chiral case.

Calin Lazaroiu Center for Geometry and Physics, Institute for Basic Science, Pohang, KoreaFoliations, non-commutative geometry and exceptional generalized geometry



Introduction
Kähler-Atiyah formulation for the N = 1 case

Topology of the foliation

Topology of F in the everywhere non-chiral case
Description of the singular foliation in the Morse case

Open problems:

Moduli spaces

Characterize the noncommutative geometry of the leaf space for general
cosmooth singular foliations (this requires adapting the work of Androulidakis and
Zambon from the smooth to the cosmooth case).

Give a conceptual explanation of why Haefliger structures appear when studying
higher-dimensional supersymmetric backgrounds (a phenomenon which turns out
to be quite general).

Develop the theory of “G-structured” Haefliger structures (can be done by
enriching the notion of Haefliger groupoid).

Connections with the theory of stratifications and G-spaces/G-manifolds. The
latter turn out to vastly generalize the extremely special classes of “membrane
solutions” which were considered until now in the physics literature (such as the
Bena-Warner/LLM solutions).

Connection with homotopy theory.

Connections with non-commutative field theory.

Connections with real algebraic geometry (Nash-Tognolli theorem).

Now that we have a useful description of such backgrounds, understand how it fits in
with a good theory of E8(8) exceptional generalized geometry/exceptional double field
theory.
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