in (GAUGED) SUPERGRAVITY and EXCEPTIONAL GEOMETRY

JAKOB PALMKVIST TEXAS A&M UNIVERSITY

After dualization, the p-form potentials transform in representations R_p of \mathfrak{e}_n $(1 \le p \le D-2)$.

After dualization, the p-form potentials transform in representations R_p of \mathfrak{e}_n $(1 \le p \le D-2)$.

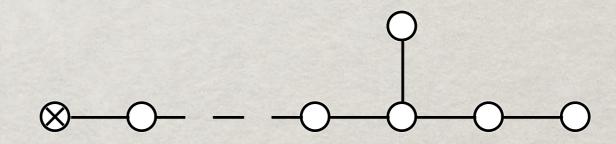
D	7	6	5	4	3
\mathfrak{e}_n	$\mathfrak{e}_4=\mathfrak{sl}(5,\mathbb{R})$	$\mathfrak{e}_5=\mathfrak{so}(5,5)$	\mathfrak{e}_6	e ₇	e ₈
R_1	<u>10</u>	16_c	$\overline{27}$	56	248
R_2	5	10	27	133	
R_3	<u>5</u>	16_{s}	78		
R_4	10	45			
R_5	24				

After dualization, the p-form potentials transform in representations R_p of \mathfrak{e}_n $(1 \le p \le D-2)$.

D	7	6	5	4	3
\mathfrak{e}_n	$\mathfrak{e}_4=\mathfrak{sl}(5,\mathbb{R})$	$\mathfrak{e}_5=\mathfrak{so}(5,5)$	\mathfrak{e}_6	e ₇	e ₈
R_1	10	16_c	$\overline{27}$	56	248
R_2	5	10	27	133	
R_3	<u>5</u>	16_s	78		
R_4	10	45			
R_5	24				

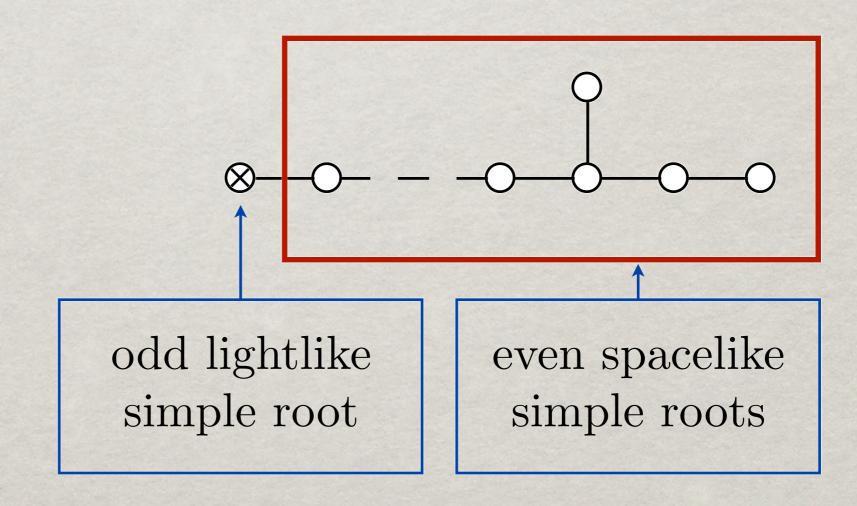
These representations can be derived by extending \mathfrak{e}_n to an infinite-dimensional Borcherds superalgebra \mathscr{B} .

Extending \mathfrak{e}_n to \mathscr{B} corresponds to adding a gray node to the Dynkin diagram.



Extending \mathfrak{e}_n to \mathscr{B} corresponds to adding a gray node to the Dynkin diagram.

The nodes in the Dynkin diagram represent simple roots α_I with inner products given by the Cartan matrix, $a_{IJ} = (\alpha_I, \alpha_J)$.



Extending \mathfrak{e}_n to \mathscr{B} corresponds to adding a gray node to the Dynkin diagram.

The nodes in the Dynkin diagram represent simple roots α_I with inner products given by the Cartan matrix, $a_{IJ} = (\alpha_I, \alpha_J)$.

$$a_{IJ} = \begin{pmatrix} 0 & -1 & 0 & \cdots \\ -1 & 2 & -1 & \cdots \\ 0 & -1 & 2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
The Cartan matrix a_{ij} of $\mathfrak{e}_n \subset \mathscr{B}$

The Kac-Moody algebra \mathfrak{e}_n is constructed from its Dynkin diagram

as the Lie algebra generated by 3n elements e_i , f_i , h_i modulo the Chevalley-Serre relations

$$[h_i, e_j] = a_{ij}e_j$$
 $[e_i, f_j] = \delta_{ij}h_j$
 $[h_i, f_j] = -a_{ij}f_j$ $[h_i, h_j] = 0$

$$(ad e_i)^{1-a_{ij}}(e_j) = (ad f_i)^{1-a_{ij}}(f_j) = 0$$

$$i = 1, \dots, n$$

The Borcherds superalgebra \mathcal{B}_n is constructed from its Dynkin diagram

as the Lie superalgebra generated by 3(n+1) elements e_I , f_I , h_I modulo the Chevalley-Serre relations

$$[h_I, e_J] = a_{IJ}e_J$$
 $[e_I, f_J] = \delta_{IJ}h_J$
 $[h_I, f_J] = -a_{IJ}f_J$ $[h_I, h_J] = 0$

$$(ad e_I)^{1-a_{IJ}}(e_J) = (ad f_I)^{1-a_{IJ}}(f_J) = 0$$

odd:
$$e_0, f_0$$
 $I = 0, 1, ..., n$

even:
$$e_i, f_i, h_I$$
 $i = 1, \ldots, n$

$$E_{\mathcal{M}_1 \cdots \mathcal{M}_p} = [E_{\mathcal{M}_1}, [E_{\mathcal{M}_2}, \dots [E_{\mathcal{M}_{p-1}}, E_{\mathcal{M}_p}] \cdots]]$$

$$E_{\mathcal{M}_1 \cdots \mathcal{M}_p} = [E_{\mathcal{M}_1}, [E_{\mathcal{M}_2}, \dots [E_{\mathcal{M}_{p-1}}, E_{\mathcal{M}_p}] \cdots]]$$

$$E_{\mathcal{M}\mathcal{N}} = [E_{\mathcal{M}}, E_{\mathcal{N}}]$$

$$E_{\mathcal{M}_1 \cdots \mathcal{M}_p} = [E_{\mathcal{M}_1}, [E_{\mathcal{M}_2}, \dots [E_{\mathcal{M}_{p-1}}, E_{\mathcal{M}_p}] \cdots]]$$

$$E_{\mathcal{M}\mathcal{N}} = [E_{\mathcal{M}}, E_{\mathcal{N}}]$$

$$E_{\mathcal{MNP}} = [E_{\mathcal{M}}, [E_{\mathcal{N}}, E_{\mathcal{P}}]]$$

The \mathbb{Z} -grading $[\mathscr{U}_p, \mathscr{U}_p] = \mathscr{U}_{p+q}$ leads to representations R_p of the subalgebra $\mathfrak{e}_n \subset \mathscr{U}_0$ acting on the subspace \mathscr{U}_p .

$$E_{\mathcal{M}_1 \cdots \mathcal{M}_p} = [E_{\mathcal{M}_1}, [E_{\mathcal{M}_2}, \dots [E_{\mathcal{M}_{p-1}}, E_{\mathcal{M}_p}] \cdots]]$$

$$E_{\mathcal{M}\mathcal{N}} = [E_{\mathcal{M}}, E_{\mathcal{N}}]$$

$$E_{\mathcal{MNP}} = [E_{\mathcal{M}}, [E_{\mathcal{N}}, E_{\mathcal{P}}]]$$

The \mathbb{Z} -grading $[\mathscr{U}_p, \mathscr{U}_p] = \mathscr{U}_{p+q}$ leads to representations R_p of the subalgebra $\mathfrak{e}_n \subset \mathscr{U}_0$ acting on the subspace \mathscr{U}_p .

$$E_{\mathcal{M}_1 \cdots \mathcal{M}_p} = [E_{\mathcal{M}_1}, [E_{\mathcal{M}_2}, \dots [E_{\mathcal{M}_{p-1}}, E_{\mathcal{M}_p}] \cdots]]$$

$$E_{\mathcal{M}\mathcal{N}} = [E_{\mathcal{M}}, E_{\mathcal{N}}] \qquad \qquad R_2 \subseteq (R_1 \times R_1)_+$$

$$E_{\mathcal{MNP}} = [E_{\mathcal{M}}, [E_{\mathcal{N}}, E_{\mathcal{P}}]]$$

The \mathbb{Z} -grading $[\mathscr{U}_p, \mathscr{U}_p] = \mathscr{U}_{p+q}$ leads to representations R_p of the subalgebra $\mathfrak{e}_n \subset \mathscr{U}_0$ acting on the subspace \mathscr{U}_p .

$$E_{\mathcal{M}_1 \cdots \mathcal{M}_p} = [E_{\mathcal{M}_1}, [E_{\mathcal{M}_2}, \dots [E_{\mathcal{M}_{p-1}}, E_{\mathcal{M}_p}] \cdots]]$$

$$E_{\mathcal{MN}} = [E_{\mathcal{M}}, E_{\mathcal{N}}] \qquad R_2 \subseteq (R_1 \times R_1)_+$$

$$E_{\mathcal{MNP}} = [E_{\mathcal{M}}, [E_{\mathcal{N}}, E_{\mathcal{P}}]] \qquad R_3 \subseteq (R_2 \times R_1) - (R_1)^{3+}$$

$$A = A_m^{\mathcal{M}} (\mathrm{d}x^m \otimes E_{\mathcal{M}}) + A_{mn}^{\mathcal{MN}} (\mathrm{d}x^m \wedge \mathrm{d}x^n \otimes E_{\mathcal{MN}}) + \cdots$$

in the tensor product of the differential algebra and \mathcal{B} .

$$A = A_m^{\mathcal{M}} (\mathrm{d}x^m \otimes E_{\mathcal{M}}) + A_{mn}^{\mathcal{MN}} (\mathrm{d}x^m \wedge \mathrm{d}x^n \otimes E_{\mathcal{MN}}) + \cdots$$

in the tensor product of the differential algebra and \mathcal{B} .

$$F = e^{-A} de^{A}$$

$$A = A_m^{\mathcal{M}} (\mathrm{d}x^m \otimes E_{\mathcal{M}}) + A_{mn}^{\mathcal{MN}} (\mathrm{d}x^m \wedge \mathrm{d}x^n \otimes E_{\mathcal{MN}}) + \cdots$$

in the tensor product of the differential algebra and \mathcal{B} .

$$F = e^{-A} de^A$$

$$e^{-A}\delta e^A = \mathrm{d}\Lambda + [F,\Lambda]$$

$$A = A_m^{\mathcal{M}} (\mathrm{d}x^m \otimes E_{\mathcal{M}}) + A_{mn}^{\mathcal{MN}} (\mathrm{d}x^m \wedge \mathrm{d}x^n \otimes E_{\mathcal{MN}}) + \cdots$$

in the tensor product of the differential algebra and \mathcal{B} .

Field strengths:

$$F = e^{-A} de^A$$

Gauge transformations:

$$e^{-A}\delta e^A = \mathrm{d}\Lambda + [F,\Lambda]$$

Bianchi identities:

$$\mathrm{d}F = -F^2$$

$$A = A_m^{\mathcal{M}} (\mathrm{d}x^m \otimes E_{\mathcal{M}}) + A_{mn}^{\mathcal{MN}} (\mathrm{d}x^m \wedge \mathrm{d}x^n \otimes E_{\mathcal{MN}}) + \cdots$$

in the tensor product of the differential algebra and \mathcal{B} .

Field strengths:

Gauge transformations:

Bianchi identities:

Equations of motion:

$$F = e^{-A} de^A$$

$$e^{-A}\delta e^A = \mathrm{d}\Lambda + [F,\Lambda]$$

$$\mathrm{d}F = -F^2$$

$$*F = S(F)$$

$$(S: \mathscr{U}_p \leftrightarrow \mathscr{U}_{D-2-p})$$

$$A = A_m^{\mathcal{M}} (\mathrm{d}x^m \otimes E_{\mathcal{M}}) + A_{mn}^{\mathcal{MN}} (\mathrm{d}x^m \wedge \mathrm{d}x^n \otimes E_{\mathcal{MN}}) + \cdots$$

in the tensor product of the differential algebra and \mathcal{B} .

Field strengths:

 $F = e^{-A} de^A$

Gauge transformations:

 $e^{-A}\delta e^A = \mathrm{d}\Lambda + [F,\Lambda]$

Bianchi identities:

 $\mathrm{d}F = -F^2$

Equations of motion:

*F = S(F)

[Cremmer, Julia, Lü, Pope: 9806106]

 $(S: \mathscr{U}_p \leftrightarrow \mathscr{U}_{D-2-p})$

This can be generalized to gauged supergravity.

[Greitz, Howe, Palmkvist: 1308.4972]

For D < 11 the Borcherds superalgebras \mathscr{B} are infinite-dimensional and suggest that (D-1)-and D-form potentials corresponding to R_{D-1} and R_D can be added to the theory.

These additional (D-1)- and D-form potentials are precisely those allowed by supersymmetry.

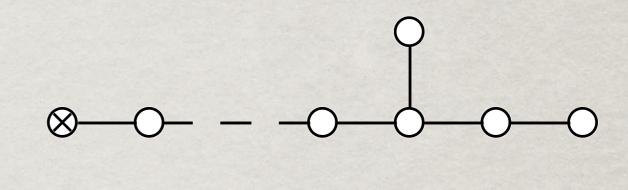
Although non-dynamical, they play an important role in gauged supergravity.

[Bergshoeff, de Roo, Kerstan, Riccioni: hep-th/0506013]

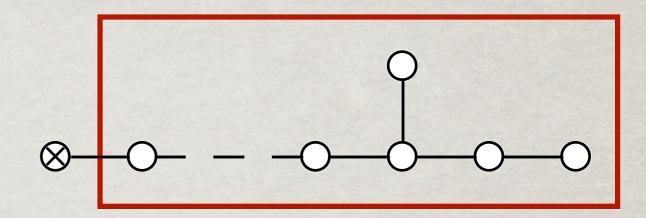
[Bergshoeff, Hartong, Howe, Ortin, Riccioni: 1004.1348]

[Greitz, Howe: 1103.2730, 1103.5053, 1203.5585]

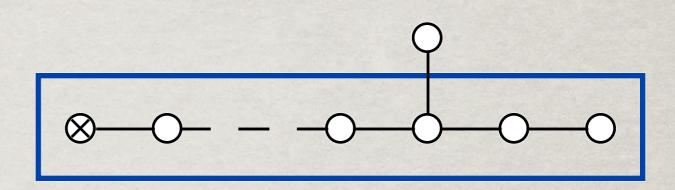
[Howe, Palmkvist: 1503.00015]



$E_{\mathcal{M}\mathcal{N}}$					E^m	E^{mnpq}	
$E_{\mathfrak{M}}$				$E_{\mathfrak{m}}$	E^{mn}	E^{mnpqr}	
t_{lpha}	• • •	F_{mnpqrs}	F_{mnp}	K^m_n	E^{mnp}	E^{mnpqrs}	• • •
$F^{\mathcal{M}}$	• • •	F_{mnpqr}	F_{mn}	F^m			
F^{MN}	• • •	F_{mnpq}	F_{m}				
	•••						



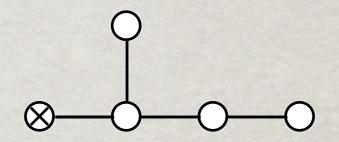
$E_{\mathcal{M}\mathcal{N}}$					E^m	E^{mnpq}	• • •
$E_{\mathfrak{M}}$				$E_{\it m}$	E^{mn}	E^{mnpqr}	• • •
t_{lpha}	• • •	F_{mnpqrs}	F_{mnp}	K^m_n	E^{mnp}	E^{mnpqrs}	• • •
$F^{\mathcal{M}}$		F_{mnpqr}	F_{mn}	F^m			
F^{MN}		F_{mnpq}	F_{m}				



$E_{\mathcal{M}\mathcal{N}}$					E^m	E^{mnpq}	
$E_{\mathfrak{M}}$				$E_{\it m}$	E^{mn}	E^{mnpqr}	
t_{lpha}	• • •	F_{mnpqrs}	F_{mnp}	K^m_n	E^{mnp}	E^{mnpqrs}	• • •
$F^{\mathcal{M}}$		F_{mnpqr}	F_{mn}	F^m			
F^{MN}		F_{mnpq}	F_{m}				
•							

Example: n = 4

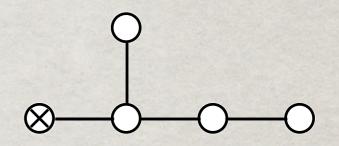
 $\mathscr{B}\supset\mathfrak{sl}(5)\supset\mathfrak{sl}(4)$



					•	•
5				4	1	
10			4	6		
24		4	(15 + 1)	4		
10		6	4			
<u>5</u>	1	$\overline{4}$				

Example:
$$n = 4$$

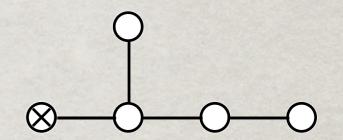
$$\mathscr{B}\supset\mathfrak{sl}(5)\supset\mathfrak{sl}(4)$$



5		4	1	
10		$\overline{4}$ 6		
24	4 (${f 15} + {f 1}) {f \overline 4}$		
10	6	4		
<u>5</u>	1 $\overline{4}$			

Example: n = 4

$$\mathscr{B}\supset\mathfrak{sl}(5)\supset\mathfrak{sl}(4)$$



 $\begin{matrix}0\\1&0&0&0\end{matrix}$

 $\begin{matrix}0\\1&1&0&0\end{matrix}$

 $\begin{matrix}0\\1&1&1&0\end{matrix}$

 $\begin{array}{c} 0 \\ 1 \ 1 \ 1 \ 1 \end{array}$

 $\begin{array}{c} 1 \\ 1 \ 1 \ 0 \ 0 \end{array}$

 $\begin{array}{c} 1 \\ 1 \ 1 \ 1 \ 0 \end{array}$

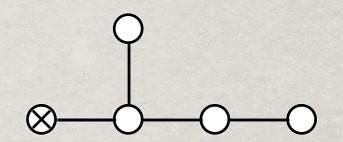
1 2 1 0

1 1 1 1 1

 $\begin{array}{c} 1 \\ 1 \ 2 \ 1 \ 1 \end{array}$

Example:
$$n = 4$$

$$\mathscr{B} \supset \mathfrak{sl}(5) \supset \mathfrak{sl}(4)$$



$$\begin{matrix}0\\1&0&0&0\end{matrix}$$

$$\mathscr{U}_1 = (\mathscr{U}_1)^0 \oplus (\mathscr{U}_1)^1 \oplus \cdots$$

$$\begin{matrix}0\\1\ 1\ 0\ 0\end{matrix}$$

$$\begin{array}{c|c} & 1 \\ 1 & 1 & 0 & 0 \end{array}$$

$$\begin{matrix}0\\1\ 1\ 1\ 0\end{matrix}$$

$$\begin{array}{c} 0 \\ 1 \ 1 \ 1 \ 1 \end{array}$$

$$\begin{matrix}1\\1&2&2&1\end{matrix}$$

Thus we demand that for any pair of fields A, B, and any pair of elements $U, V \in \mathcal{U}_1$ such that $U^{\mathcal{M}}V^{\mathcal{N}}\partial_{\mathcal{M}}A \partial_{\mathcal{N}}B \neq 0$, there is an $x \in \mathfrak{e}_n$ such that $e^{-x}Ue^x$, $e^{-x}Ve^x \in (\mathcal{U}_1)^0$.

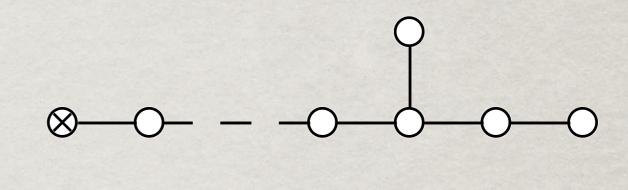
Thus we demand that for any pair of fields A, B, and any pair of elements $U, V \in \mathcal{U}_1$ such that $U^{\mathcal{M}}V^{\mathcal{N}}\partial_{\mathcal{M}}A\partial_{\mathcal{N}}B \neq 0$, there is an $x \in \mathfrak{e}_n$ such that $e^{-x}Ue^x$, $e^{-x}Ve^x \in (\mathcal{U}_1)^0$.

Since $[(\mathcal{U}_1)^0, (\mathcal{U}_1)^0] = 0$, this implies [U, V] = 0, so that $U^{\mathcal{M}}V^{\mathcal{N}}(\mathbb{P}_2)_{\mathcal{M}\mathcal{N}}^{\mathcal{P}Q} = 0$ and then $(\mathbb{P}_2)_{\mathcal{M}\mathcal{N}}^{\mathcal{P}Q}\partial_{\mathcal{P}}A \partial_{\mathcal{Q}}B = 0$.

Thus we demand that for any pair of fields A, B, and any pair of elements $U, V \in \mathcal{U}_1$ such that $U^{\mathcal{M}}V^{\mathcal{N}}\partial_{\mathcal{M}}A \partial_{\mathcal{N}}B \neq 0$, there is an $x \in \mathfrak{e}_n$ such that $e^{-x}Ue^x$, $e^{-x}Ve^x \in (\mathcal{U}_1)^0$.

Since $[(\mathcal{U}_1)^0, (\mathcal{U}_1)^0] = 0$, this implies [U, V] = 0, so that $U^{\mathcal{M}}V^{\mathcal{N}}(\mathbb{P}_2)_{\mathcal{M}\mathcal{N}}^{\mathcal{P}Q} = 0$ and then $(\mathbb{P}_2)_{\mathcal{M}\mathcal{N}}^{\mathcal{P}Q}\partial_{\mathcal{P}}A \partial_{\mathcal{Q}}B = 0$.

This, together with $(\mathbb{P}_2)_{\mathcal{M}\mathcal{N}}{}^{\mathcal{P}\mathcal{Q}}\partial_{\mathcal{P}}\partial_{\mathcal{Q}}A = 0$, is the section condition, which also has solutions corresponding to tendimensional type IIB supergravity.



$E_{\mathcal{M}\mathcal{N}}$					E^m	E^{mnpq}	
$E_{\mathfrak{M}}$				$E_{\mathfrak{m}}$	E^{mn}	E^{mnpqr}	
t_{lpha}	• • •	F_{mnpqrs}	F_{mnp}	K^m_n	E^{mnp}	E^{mnpqrs}	• • •
$F^{\mathcal{M}}$	• • •	F_{mnpqr}	F_{mn}	F^m			
F^{MN}	• • •	F_{mnpq}	F_{m}				
	•••						

The transformation of a vector field V under a generalized diffeomorphism generated by a vector field U is given by the generalized Lie derivative

$$\mathcal{L}_{U}V^{\mathcal{M}} = U^{\mathcal{N}}\partial_{\mathcal{N}}V^{\mathcal{M}} - V^{\mathcal{N}}\partial_{\mathcal{N}}U^{\mathcal{M}} + Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{P}\mathcal{Q}}\partial_{\mathcal{N}}U^{\mathcal{P}}V^{\mathcal{Q}}$$
$$= U^{\mathcal{N}}\partial_{\mathcal{N}}V^{\mathcal{M}} + Z^{\mathcal{M}\mathcal{N}}{}_{\mathcal{P}\mathcal{Q}}\partial_{\mathcal{N}}U^{\mathcal{P}}V^{\mathcal{Q}}$$

where $Y^{\mathcal{M}\mathcal{N}}_{\mathcal{P}\mathcal{Q}}$ and $Z^{\mathcal{M}\mathcal{N}}_{\mathcal{P}\mathcal{Q}} = Y^{\mathcal{M}\mathcal{N}}_{\mathcal{P}\mathcal{Q}} - \delta_{\mathcal{P}}^{\mathcal{M}}\delta_{\mathcal{Q}}^{\mathcal{N}}$ are \mathfrak{e}_n -invariant tensors, uniquely determined by the requirement that the transformations close under the commutator, $[\mathcal{L}_U, \mathcal{L}_V] = \mathcal{L}_{\frac{1}{2}(\mathcal{L}_UV - \mathcal{L}_VU)}$.

[Coimbra, Strickland-Constable, Waldram: 1112.3989]

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]

The transformations close if the tensor Y satisfies the following identities, up to the section condition,

$$Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{P}Q} \,\partial_{\mathcal{M}} \otimes \partial_{\mathcal{N}} = 0,$$

$$(Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{T}Q}Y^{\mathcal{T}\mathcal{P}}{}_{\mathcal{R}S} - Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{R}S}\delta^{\mathcal{P}}{}_{Q})\partial_{(\mathcal{N}} \otimes \partial_{\mathcal{P})} = 0,$$

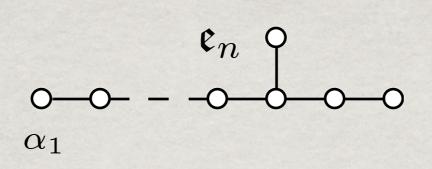
$$(Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{T}Q}Y^{\mathcal{T}\mathcal{P}}{}_{[\mathcal{S}\mathcal{R}]} + 2Y^{\mathcal{M}\mathcal{N}}{}_{[\mathcal{R}|\mathcal{T}|}Y^{\mathcal{T}\mathcal{P}}{}_{\mathcal{S}]Q}$$

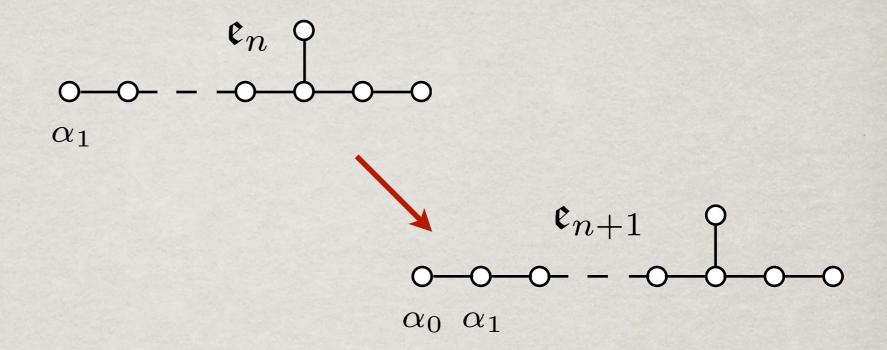
$$-Y^{\mathcal{M}\mathcal{N}}{}_{[\mathcal{R}\mathcal{S}]}\delta^{\mathcal{P}}{}_{Q} - 2Y^{\mathcal{M}\mathcal{N}}{}_{[\mathcal{S}|Q|}\delta^{\mathcal{P}}{}_{\mathcal{R}]})\partial_{(\mathcal{N}} \otimes \partial_{\mathcal{P})} = 0,$$

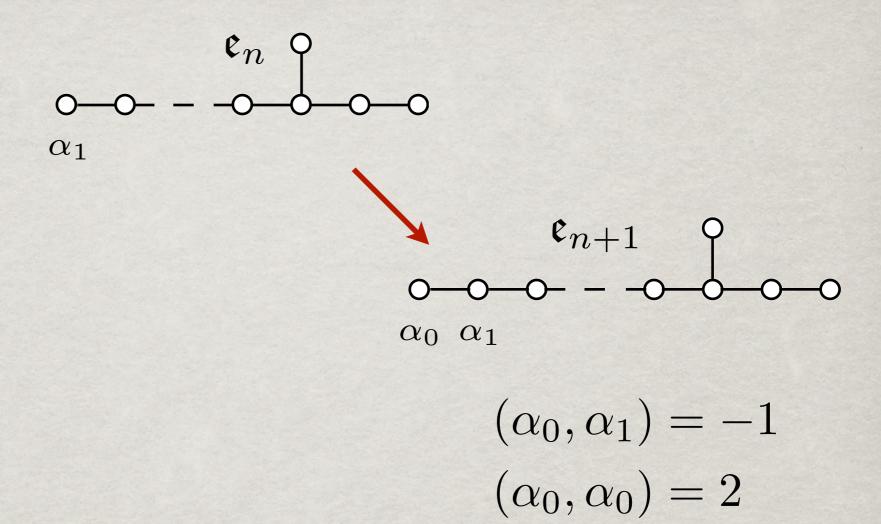
$$(Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{T}Q}Y^{\mathcal{T}\mathcal{P}}{}_{(\mathcal{S}\mathcal{R})} + 2Y^{\mathcal{M}\mathcal{N}}{}_{(\mathcal{R}|\mathcal{T}|}Y^{\mathcal{T}\mathcal{P}}{}_{\mathcal{S})Q}$$

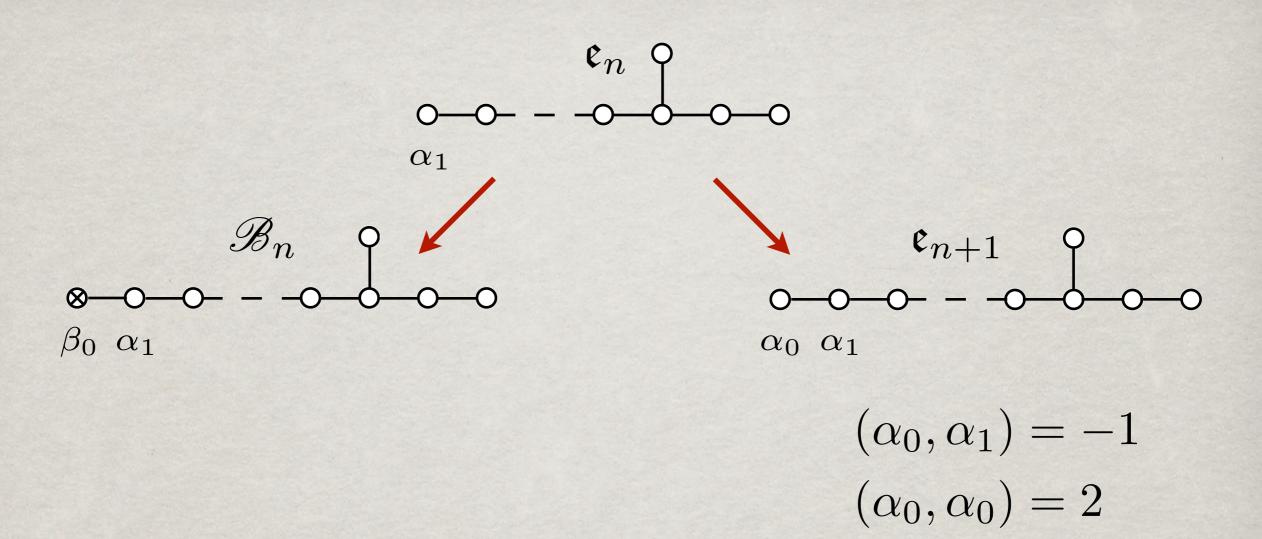
$$-Y^{\mathcal{M}\mathcal{N}}{}_{(\mathcal{R}\mathcal{S})}\delta^{\mathcal{P}}{}_{Q} - 2Y^{\mathcal{M}\mathcal{N}}{}_{(\mathcal{S}|Q|}\delta^{\mathcal{P}}{}_{\mathcal{R})})\partial_{[\mathcal{N}} \otimes \partial_{\mathcal{P}]} = 0.$$

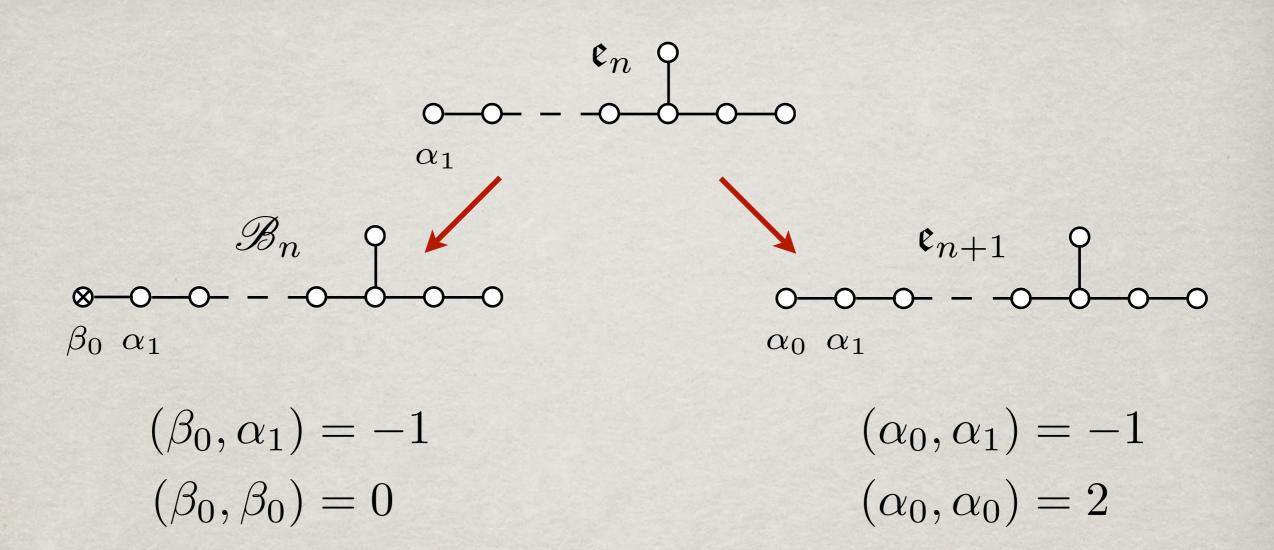
[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]

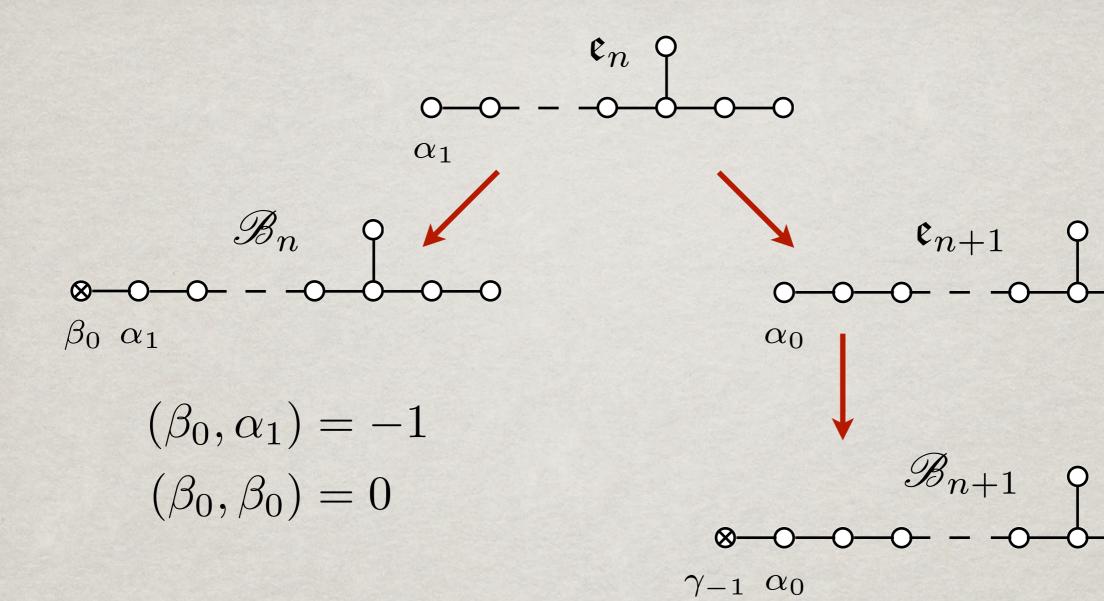


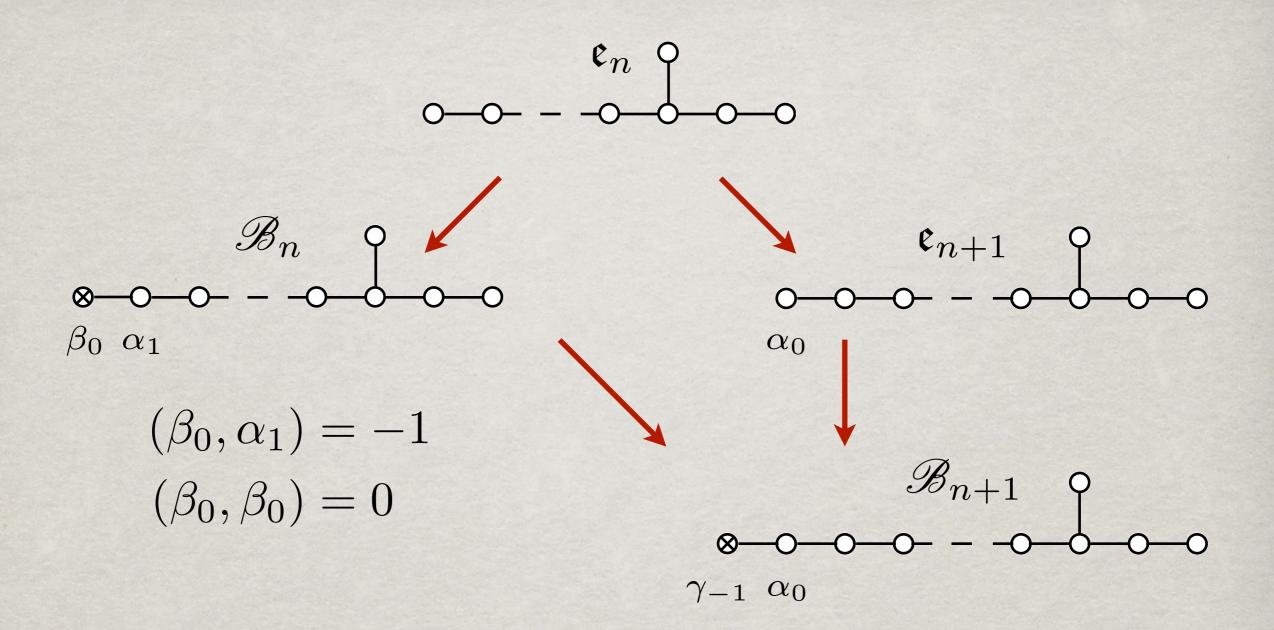




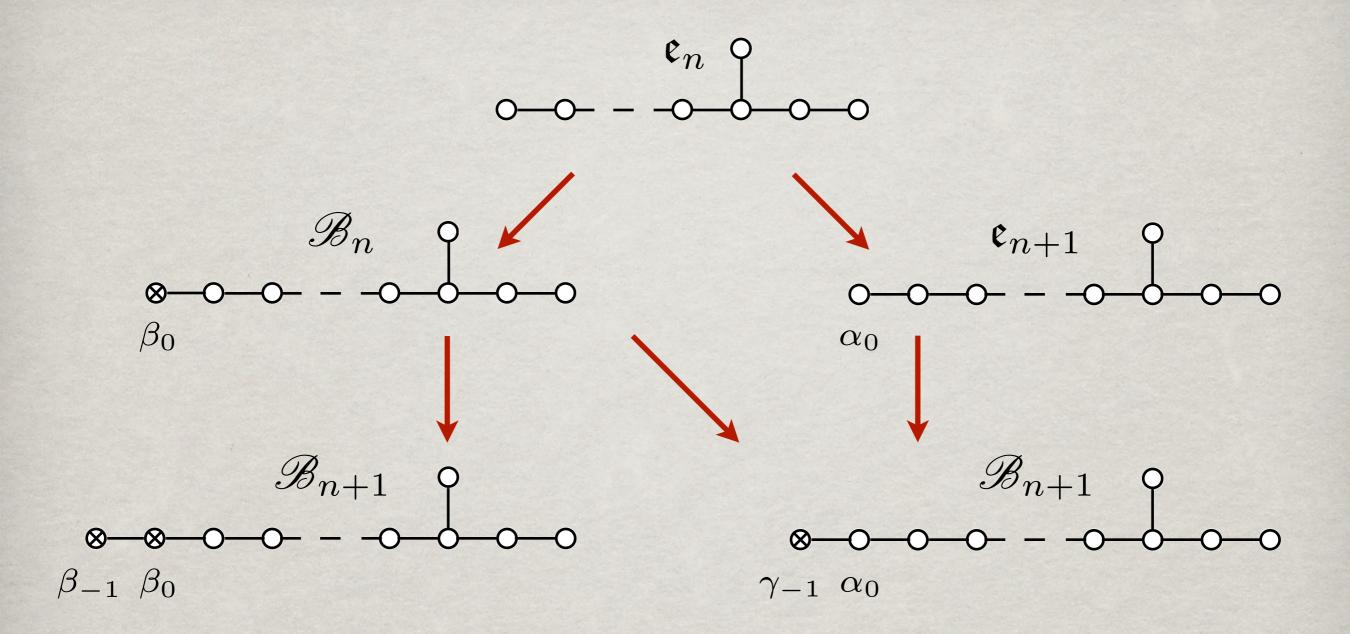




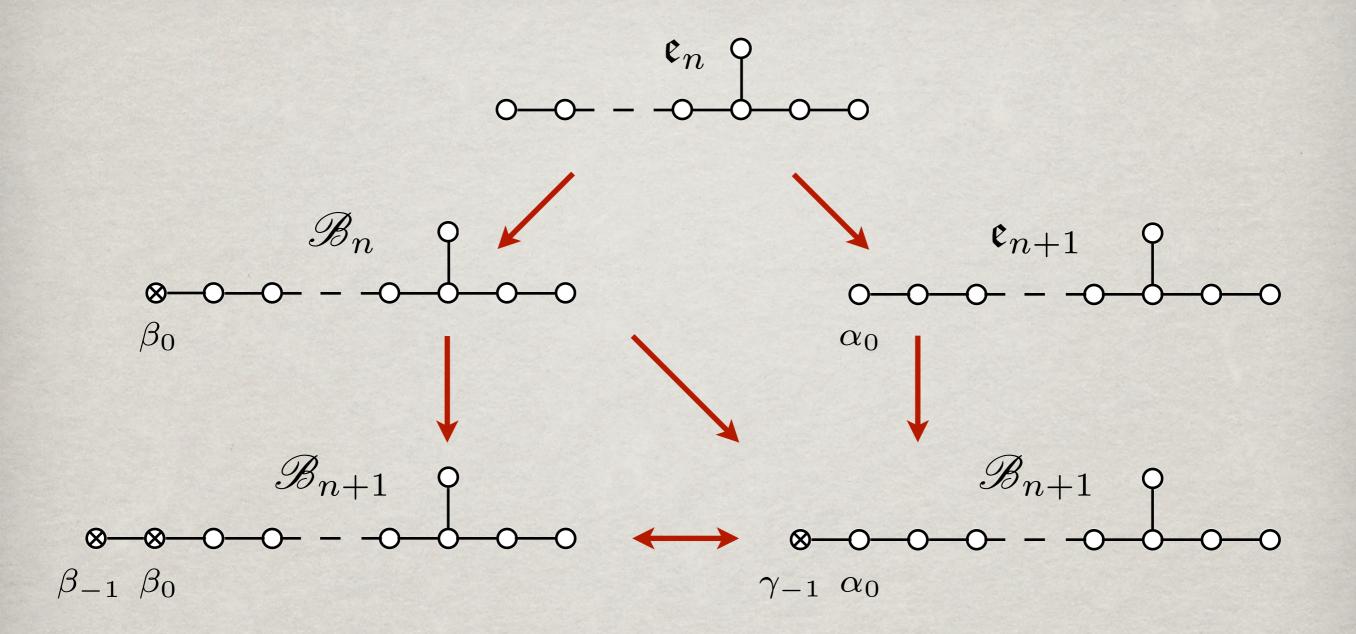




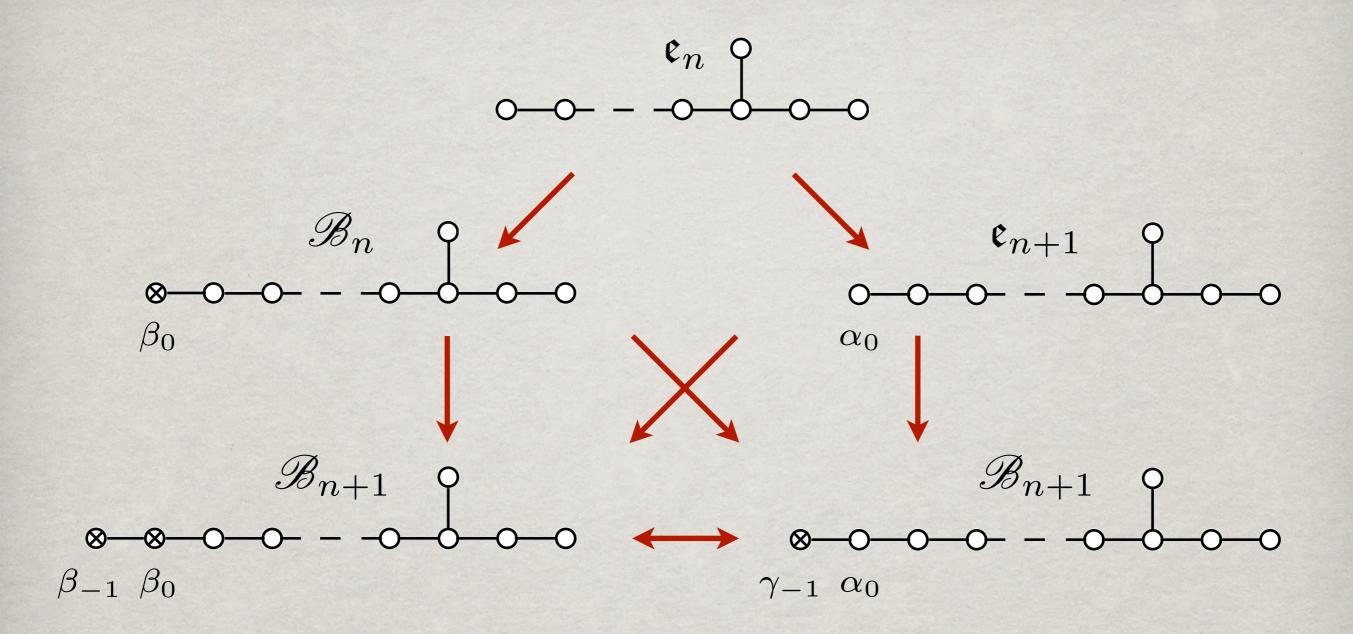
$$\beta_0 = \gamma_{-1} + \alpha_0$$



$$\beta_0 = \gamma_{-1} + \alpha_0$$



$$\beta_0 = \gamma_{-1} + \alpha_0 \qquad \beta_{-1} = -\gamma_{-1}$$



$$\beta_0 = \gamma_{-1} + \alpha_0$$
 $\beta_{-1} = -\gamma_{-1}$ $\alpha_0 = \beta_{-1} + \beta_0$

Consider a vector field V as an odd element

$$V = V^{\mathcal{M}} E_{\mathcal{M}} \in \mathcal{U}_1 \subset \mathcal{B}_n \subset \mathcal{B}_{n+1}$$

with a corresponding even element

$$\tilde{V} = [e_{-1}, V] = V^{\mathcal{M}} \tilde{E}_{\mathcal{M}} \in \tilde{\mathcal{U}}_1 \subset \mathfrak{e}_{n+1} \subset \mathcal{B}_{n+1}.$$

Consider a vector field V as an odd element

$$V = V^{\mathcal{M}} E_{\mathcal{M}} \in \mathcal{U}_1 \subset \mathcal{B}_n \subset \mathcal{B}_{n+1}$$

with a corresponding even element

$$\tilde{V} = [e_{-1}, V] = V^{\mathcal{M}} \tilde{E}_{\mathcal{M}} \in \tilde{\mathcal{U}}_1 \subset \mathfrak{e}_{n+1} \subset \mathcal{B}_{n+1}.$$

Then the generalized Lie derivative can be written

$$\mathcal{L}_U V = [[U, \tilde{F}^{\mathcal{N}}], \partial_{\mathcal{N}} \tilde{V}] - [[\partial_{\mathcal{N}} \tilde{U}, \tilde{F}^{\mathcal{N}}], V]$$

or equivalently

$$\mathscr{L}_U \tilde{V} = -[[\tilde{U}, F^{\mathcal{N}}], \partial_{\mathcal{N}} V] - [[\partial_{\mathcal{N}} U, F^{\mathcal{N}}], \tilde{V}].$$

In the subspace $\mathcal{U}_1 \oplus \tilde{\mathcal{U}}_1$ of \mathcal{B}_{n+1} , the triple product

$$(\hat{E}_{\mathcal{M}}\hat{E}_{\mathcal{N}}\hat{E}_{\mathcal{P}}) = [[\hat{E}_{\mathcal{M}}, \hat{F}^{\mathcal{N}}], \hat{E}_{\mathcal{P}}],$$

where $\hat{E}_{\mathcal{M}} = E_{\mathcal{M}} + \tilde{E}_{\mathcal{M}}$ and $\hat{F}_{\mathcal{M}} = F_{\mathcal{M}} + \tilde{F}_{\mathcal{M}}$, satisfies

$$(uv(xyz)) - (xy(uvz)) = ((uvx)yz) - (x(vuy)z)$$

as a consequence of the Jacobi identity in \mathcal{B}_{n+1} .

In the subspace $\mathcal{U}_1 \oplus \tilde{\mathcal{U}}_1$ of \mathcal{B}_{n+1} , the triple product

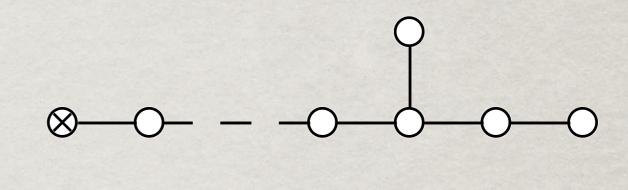
$$(\hat{E}_{\mathcal{M}}\hat{E}_{\mathcal{N}}\hat{E}_{\mathcal{P}}) = [[\hat{E}_{\mathcal{M}}, \hat{F}^{\mathcal{N}}], \hat{E}_{\mathcal{P}}] = -2Z^{\mathcal{N}_{\mathcal{Q}}} \hat{E}_{\mathcal{Q}},$$

where $\hat{E}_{\mathcal{M}} = E_{\mathcal{M}} + \tilde{E}_{\mathcal{M}}$ and $\hat{F}_{\mathcal{M}} = F_{\mathcal{M}} + \tilde{F}_{\mathcal{M}}$, satisfies

$$(uv(xyz)) - (xy(uvz)) = ((uvx)yz) - (x(vuy)z)$$

as a consequence of the Jacobi identity in \mathcal{B}_{n+1} .

From this identity, and the \mathbb{Z} -grading of \mathfrak{e}_{n+1} with respect to \mathfrak{e}_n , we can derive the closure identities for the \mathfrak{e}_n invariant tensor $Y^{\mathcal{M}\mathcal{N}}_{\mathcal{P}\mathcal{Q}} = Z^{\mathcal{M}\mathcal{N}}_{\mathcal{P}\mathcal{Q}} + \delta_{\mathcal{P}}^{\mathcal{M}}\delta_{\mathcal{Q}}^{\mathcal{N}}$.



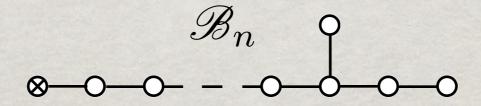
$E_{\mathcal{M}\mathcal{N}}$					E^m	E^{mnpq}	
$E_{\mathfrak{M}}$				$E_{\mathfrak{m}}$	E^{mn}	E^{mnpqr}	
t_{lpha}	• • •	F_{mnpqrs}	F_{mnp}	K^m_n	E^{mnp}	E^{mnpqrs}	• • •
$F^{\mathcal{M}}$	• • •	F_{mnpqr}	F_{mn}	F^m			
F^{MN}	• • •	F_{mnpq}	F_{m}				
	•••						

$$\mathcal{L}_U \tilde{V} = -[[\tilde{U}, F^{\mathcal{N}}], \partial_{\mathcal{N}} V] - [[\partial_{\mathcal{N}} U, F^{\mathcal{N}}], \tilde{V}]$$

is also valid for ordinary geometry and doubled geometry by restricting U and V to subalgebras of \mathcal{B}_n

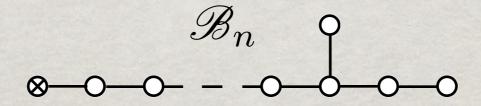
$$\mathcal{L}_U \tilde{V} = -[[\tilde{U}, F^{\mathcal{N}}], \partial_{\mathcal{N}} V] - [[\partial_{\mathcal{N}} U, F^{\mathcal{N}}], \tilde{V}]$$

is also valid for ordinary geometry and doubled geometry by restricting U and V to subalgebras of \mathcal{B}_n



$$\mathcal{L}_U \tilde{V} = -[[\tilde{U}, F^{\mathcal{N}}], \partial_{\mathcal{N}} V] - [[\partial_{\mathcal{N}} U, F^{\mathcal{N}}], \tilde{V}]$$

is also valid for ordinary geometry and doubled geometry by restricting U and V to subalgebras of \mathcal{B}_n

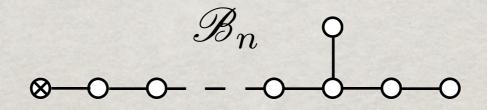


ordinary geometry

$$A(n-1,0) = \mathfrak{sl}(n|1)$$

$$\mathcal{L}_U \tilde{V} = -[[\tilde{U}, F^{\mathcal{N}}], \partial_{\mathcal{N}} V] - [[\partial_{\mathcal{N}} U, F^{\mathcal{N}}], \tilde{V}]$$

is also valid for ordinary geometry and doubled geometry by restricting U and V to subalgebras of \mathcal{B}_n



ordinary geometry

$$A(n-1,0) = \mathfrak{sl}(n|1)$$

doubled geometry

$$D(n-1,1) = \mathfrak{osp}(2n-2|2)$$

It follows from the expression

$$\mathscr{L}_U \tilde{V} = -[[\tilde{U}, F^{\mathcal{N}}], \partial_{\mathcal{N}} V] - [[\partial_{\mathcal{N}} U, F^{\mathcal{N}}], \tilde{V}],$$

that the infinite sequence of \mathfrak{e}_n -representations R_1, R_2, \ldots describes the infinite reducibility of the transformations.

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]

[Cederwall, Palmkvist: 1503.06215]

It follows from the expression

$$\mathscr{L}_U \tilde{V} = -[[\tilde{U}, F^{\mathcal{N}}], \partial_{\mathcal{N}} V] - [[\partial_{\mathcal{N}} U, F^{\mathcal{N}}], \tilde{V}],$$

that the infinite sequence of \mathfrak{e}_n -representations R_1, R_2, \ldots describes the infinite reducibility of the transformations.

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]

[Cederwall, Palmkvist: 1503.06215]

The same sequence appears in tensor hierarchies considered in exceptional field theory, related to those in gauged supergravity.

[Hohm, Samtleben: 1312.0614, 1312.4542, 1406.3348, 1410.8145]

[Aldazabal, Graña, Marqués, Rosabal: 1302.5419, 1312.4549]

[de Wit, Samtleben: 0501243] [de Wit, Nicolai, Samtleben: 0801.1294]

To do:

====

In the applications to (gauged) supergravity: Include the gravitational degrees of freedom

In the applications to exceptional geometry: Continue to \mathfrak{e}_9 , \mathfrak{e}_{10} , \mathfrak{e}_{11} (infinity-dimensional!)