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These representations can be derived by extending ¢,
to an infinite-dimensional Borcherds superalgebra 4.
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The Kac-Moody algebra ¢,, is constructed from
its Dynkin diagram

as the Lie algebra generated by 3n elements
e, fi, h; modulo the Chevalley-Serre relations

hi,ej] = aije; €, fi] = dijh;

hi, f3] = —ai; f; i, hij] = 0

(ad €;)' 7% (e5) = (ad fi)' 7% (f;) =0



The Borcherds superalgebra %, is constructed tfrom
its Dynkin diagram

X—O O O—O
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as the Lie superalgebra generated by 3(n + 1) elements
er, fr, hy modulo the Chevalley-Serre relations

:h_r, GJ: — arjjeéyg [617 fJ: = 077hy
i — e —0

(ad er)' =% (es) = (ad f1)' 7" (f5) =0

odd: €0, f() I:O,Z_,...,n

even: e;, fi, hy =l i)
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The Z-grading |%,, %) = %,+4 leads to representations
R, of the subalgebra ¢,, C %) acting on the subspace %,.

Basis of the subspace %, of &% at level p > 1:

Eatyoor, = | Ears | Bty - - - | B, 1, Ea -]

EMQ\[ == [EM, EN] RQ e (Rl X Rl)_|_

E.‘MQ\[Q’ = [EM> [Eﬂ\[» ET]] R3 © (Rz X Rl) B (Rl)?)Jr
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The p-form potentials can be combined into an element
4 TR, A e dr @ e

in the tensor product of the differential algebra and #.

Field strengths: F = e “de”
Gauge transformations: e~ de? = dA + [F, A]
Bianchi identities: dF = —F?
Equations of motion: Hd— i
[Cremmer, Julia, Lii, Pope: 9806106] (Sl )

This can be generalized to gauged supergravity.

[Greitz, Howe, Palmkvist: 1308.4972]



For D < 11 the Borcherds superalgebras % are
infinite-dimensional and suggest that (D — 1)-
and D-form potentials corresponding to Rp_1
and Rp can be added to the theory.

These additional (D — 1)- and D-form potentials
are precisely those allowed by supersymmetry.

Although non-dynamical, they play an important
role in gauged supergravity.

Bergshoeff, de Roo, Kerstan, Riccioni: hep-th/050601 3]
Bergshoeff, Hartong, Howe, Ortin, Riccioni: 1004.1348]
Greitz, Howe: 1103.2730, 1103.5053, 1203.5585]
‘Howe, Palmkvist: 1503.00015]
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To get back eleven-dimensional supergravity, we demand
that the fields only depend on coordinates corresponding
to a subspace of % that can be mapped to (%)° by an
Ey, ) transtormation.

Thus we demand that for any pair of fields A, B, and any

pair of elements U,V € %4 such that UM V™0, A0y B # 0,
there is an x € ¢, such that e=*Ue*, e ?*Ve® € (24)°.

Since [(24)°, (241)°] = 0, this implies [U, V] = 0, so that
UMVN(IP)2)MN?Q = (0 and then (IP’Q)MNTQ@)A 8QB =)

This, together with (IP2)gm 20,00 A = 0, is the section
condition, which also has solutions corresponding to ten-
dimensional type 1IB supergravity.
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The transformation of a vector field V' under a
generalized diffeomorphism generated by a vector
field U is given by the generalized Lie derivative

TV UV Vo, U + Y o
= RO VY 4 ZMX 5O UV

where YMNTQ and ZMN?Q — YMNTQ R 51)M6QN

are ¢,-invariant tensors, uniquely determined by
the requirement that the transtormations close
under the commutator, |2y, Zv| = Z1 (4, v_ 2, v)-

[Coimbra, Strickland-Constable, Waldram: 1112.3989]
[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]



The transformations close if the tensor Y satisfies
the following identities, up to the section condition,

YHX o O G O o
(Y qV T g5 — Y g 567 0)0(ac ® Oy = 0,
(YY" [sq) + 2Y ™01V 510
—Y" (256" — 2V 510" 1) 0o ® ) = 0,
(Y rqY "% (52) + 2Y " g1V 5
—Y" (2507 — 2Y™X (510107 x) ) O ® O = 0.

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]












Bo a1

Cn
O—O- — -O
a1
0—O










do === 1 2=l

[Kleinschmidt, Palmkvist: 1301.1346]
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[Kleinschmidt, Palmkvist: 1301.1346]
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[Kleinschmidt, Palmkvist: 1301.1346]
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[Kleinschmidt, Palmkvist: 1301.1346]
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Consider a vector field V as an odd element

Vi — VMEME %1 C ggn C fggn—kl

with a corresponding even element

~

e e V] = VP e Crtl & g

Then the generalized Lie derivative can be written

~ ~

ZLyV = [[Uv FN]? 59\[‘7] B [[5NU,FN], V]

or equivalently

~ ~S

LV = —[[U, F, 0,V — [[04U, F¥], V].



In the subspace %1 @ U, of HA,+1, the triple product
(EacExEe) = [[Ear, F], Eg),
where EM = Fqa + EM and FM = Far + ﬁM, satisfies

(uv(ryz)) — (2y(uvz)) = ((wwr)yz) — (z(vuy)2)

as a consequence of the Jacobi identity in %,,.1.



In the subspace %1 @ U, of PBn+1, the triple product
e Eo)— [[Bar, I Bl = 2279 5B

where EM = Fa + Eq and FM = Fyr + ﬁM, satisfies
(wo(zyz)) — (zy(uvz)) = ((uvr)yz) — (z(vuy)z)

as a consequence of the Jacobi identity in %, 1.

From this identity, and the Z-grading of ¢,, .1 with
respect to ¢,,, we can derive the closure identities for
the ¢,, invariant tensor YMN?Q = ZMN?Q + 599‘{5@‘7\5.



o 0

®—O O O
Eam T A B
Ear Bl T ey R
b I e IO TR
T ol
FH M




The same expression

~ ~S

ZLyV = _[[Uv FN]? &NV] = [[aNUv FN]? ‘7]

is also valid for ordinary geometry and doubled geometry
by restricting U and V to subalgebras of %4,



The same expression

~ ~S

ZLyV = _[[Uv FN]? &NV] = [[aNUv FN]? ‘7]

is also valid for ordinary geometry and doubled geometry
by restricting U and V to subalgebras of %4,

LB T



The same expression

~ ~S

ZLyV = _[[Uv FN]? &NV] = [[ﬁNUv FN]? ‘7]

is also valid for ordinary geometry and doubled geometry
by restricting U and V to subalgebras of %4,

ordinary geometry /

—0O0——C0— — O0—0—0—-—-0

A(n —1,0) = sl(n|1)



The same expression

~ ~S

ZLyV = _[[Uv FN]? &NV] = [[ﬁNUv FN]? ‘7]

is also valid for ordinary geometry and doubled geometry
by restricting U and V to subalgebras of %4,

LB T

ordinary geometry / \ doubled geometry

—0——0O— — O0—0O0—C—-—0O ®—O—O——{)—i—0

A(n —1,0) = sl(n|1) D(n—1,1) = osp(2n — 2|2)




It follows trom the expression

~
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that the infinite sequence of ¢,,-representations R, Rs, ...
describes the infinite reducibility of the transtormations.

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]
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It follows trom the expression

~

og/ﬂU‘? 7= _[[ﬁ7FN]759\CV] et [[aNUa FN],V],

that the infinite sequence of ¢,,-representations R, Rs, ...
describes the infinite reducibility of the transtormations.

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]
[Cederwall, Palmkvist: 1503.06215]

The same sequence appears in tensor hierarchies
considered in exceptional field theory, related to
those in gauged supergravity:.

Hohm, Samtleben: 1312.0614, 1312.4542, 1406.3348, 1410.8145]
[Aldazabal, Grana, Marques, Rosabal: 1302.5419, 1312.4549]
de Wit, Samtleben: 0501243] [de Wit, Nicolai, Samtleben: 0801.1294]




To do:

In the applications to (gauged) supergravity:

Include the gravitational degrees of freedom

In the applications to exceptional geometry:

Continue to eg, €19, ¢11 (infinity-dimensional!)



