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T-Duality

T-duality is an old subject in string theory. It is a discrete
symmetry implying that in many cases two different geometries
for the extra-dimensions are physically equivalent: string physics
at a very small scale cannot be distinguished from the one at a
large scale. It is also a clear indication that ordinary geometric
concepts can break down in string theory at the string scale.

In the simplest case of circular compactification, T-duality is
encoded, for bosonic closed strings, in the simultaneous
transformations R ↔ α′/R and pa ↔ w a/α′ under which
X a = X a

L + X a
R ↔ X̃a ≡ X a

L − X a
R , with w a playing the role of

momentum mode for X̃a. These transformations leave the mass
spectrum invariant.

In toroidal compactifications (with constant backgrounds Gµν
and Bµν) T-duality is described by O(D,D;Z) transformations.
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O(D,D) Duality in String Theory

Already at the classical level the indefinite orthogonal group
O(D,D;R) appears naturally in the Hamiltonian description of
the usual bosonic string model.

With ∗ the Hodge operator with respect to h = diag(−1, 1), the
action is:

S [X ; G ,B] =
T

2

∫ [
Gab(X )dX a ∧ ∗dX b + Bab(X )dX a ∧ dX b

]

Varying S with respect to X a yields the equation of motion:

d ∗ dX a + Γa
bcdX b ∧ ∗dX c =

1

2
G amHmbcdX b ∧ dX c

with H = dB and Γa
bc = 1

2G am(∂bGmc + ∂cGmb − ∂mGbc) the
coefficients of the Levi Civita connection.

5 / 53



Double Sigma
Model for
Strings in

Constant and
Non-Constant
Backgrounds

Franco
Pezzella

Introduction
and Motivation

Hodge-Dual
Symmetric
Free Scalar
Fields in 2D

Double Sigma
Model (Closed
Strings)

Constant
Backgrounds

Non-Constant
Backgrounds

Quantization
of the Double
String Model

Conclusion and
Perspectives

O(D,D) Duality in String Theory

Already at the classical level the indefinite orthogonal group
O(D,D;R) appears naturally in the Hamiltonian description of
the usual bosonic string model.

With ∗ the Hodge operator with respect to h = diag(−1, 1), the
action is:

S [X ; G ,B] =
T

2

∫ [
Gab(X )dX a ∧ ∗dX b + Bab(X )dX a ∧ dX b

]

Varying S with respect to X a yields the equation of motion:

d ∗ dX a + Γa
bcdX b ∧ ∗dX c =

1

2
G amHmbcdX b ∧ dX c

with H = dB and Γa
bc = 1

2G am(∂bGmc + ∂cGmb − ∂mGbc) the
coefficients of the Levi Civita connection.

5 / 53



Double Sigma
Model for
Strings in

Constant and
Non-Constant
Backgrounds

Franco
Pezzella

Introduction
and Motivation

Hodge-Dual
Symmetric
Free Scalar
Fields in 2D

Double Sigma
Model (Closed
Strings)

Constant
Backgrounds

Non-Constant
Backgrounds

Quantization
of the Double
String Model

Conclusion and
Perspectives

O(D,D) Duality in String Theory

The dynamics of the theory is determined by the equations of
motion for the coordinates X a accompanied with the constraints
(in the conformal gauge):

Gab(Ẋ aẊ b + X ′aX ′b) = 0 GabẊ aX ′b = 0.

These come from the vanishing of the energy-momentum tensor
Tαβ = 0, i.e. from the equation of motion for a general
world-sheet metric h.

The Hamiltonian density H = T
2 Gab(Ẋ aẊ b + X ′aX ′b) is

computed from the Lagrangian density by performing a Legendre
transformation with respect to the canonical momentum

Pa = ∂L
∂Ẋ a

= 1
2πα′

(
GabẊ b + BabX ′b

)
and

Ẋ a = 2πα′G abPb − G abBbcX ′c but also from a Legendre
transformation with respect to the canonical winding

Wa = ∂L
∂X ′a = − 1

2πα′

(
GabX ′b + BabẊ b

)
and X ′a.

6 / 53



Double Sigma
Model for
Strings in

Constant and
Non-Constant
Backgrounds

Franco
Pezzella

Introduction
and Motivation

Hodge-Dual
Symmetric
Free Scalar
Fields in 2D

Double Sigma
Model (Closed
Strings)

Constant
Backgrounds

Non-Constant
Backgrounds

Quantization
of the Double
String Model

Conclusion and
Perspectives

O(D,D) Duality in String Theory

The dynamics of the theory is determined by the equations of
motion for the coordinates X a accompanied with the constraints
(in the conformal gauge):
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∂Ẋ a

= 1
2πα′

(
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O(D,D) Invariance of the String
Hamiltonian Density

The Hamiltonian density can be written equivalently as:

H =
1

4πα′

(
∂σX

2πα′P

)t

M(G ,B)

(
∂σX

2πα′P

)
=

1

4πα′

(
∂τX

−2πα′W

)t

M(G ,B)

(
∂τX

−2πα′W

)
where the generalized metric is introduced:

M(G ,B) =

(
G − BG−1B BG−1

−G−1B G−1

)
Defining the 2D-dimensional O(D,D) generalized vectors in
TM

⊕
T ∗M:

AP(X ) ≡ ∂σX a∂a + 2πα′PadX a

AW (X ) ≡ ∂τX a∂a − 2πα′WadX a

one can see that the Hamiltonian density is proportional to the
squared length of AP and AW as measured by the generalized
metric M.
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Constraints and Generalized Vectors

In terms of the generalized vector AP the constraints, i.e. the
components of the energy-momentum tensor can be rewritten
as:

At
PMAP = 0 At

PΩAP = 0.

The first constraint sets the Hamiltonian density to zero, hence
the second constraint completely determines the dynamics and it

is rewritten in terms of the matrix Ω =

(
0 1
1 0

)
, i.e. the

invariant metric of the group O(D,D) defined by the D × D
matrices T satisfying the condition T tΩT = Ω. In particular the
generalized metric is an element of O(D,D).
All the admissible generalized vectors satisfying the second
constraints are related by O(D,D) transformations via
A′P = T AP . For A′P to solve the first constraint as well, the
generalized metric has to be transformed according to a
compensating O(D,D) transformation T −1.
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O(D,D;R) in the presence of constant
backgrounds

In the presence of constant backgrounds (G ,B), the equations
of motion for the string coordinates are a set of conservation
laws on the world-sheet:

∂αJαa = 0→ Jαa = ηαβGab∂βX b + εαβBab∂βX b

Locally, one can express such currents as:

ηαβGab∂βX b + εαβBab∂βX b ≡ εαβ∂βX̃a → dual coordinates

in terms of which the action S can be rewritten as:

S [X ; G ,B] =
T

2

∫ [
G̃abdX̃ a ∧ ∗dX̃ b + B̃ab(X )dX̃ a ∧ dX̃ b

]
with G̃ = (G − BG−1B)−1 and B̃ = −G−1BG̃ .

The equations of motion for the coordinates χ = (X , X̃ ) can be
combined into a single equation O(D,D)-invariant:

M∂αχ = Ωεαβ∂
βχ

For B = 0, the equations of motion become the usual
Hodge-duality condition for X a, X̃a.
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O(D,D;R)→ O(D,D;Z)

If the closed string coordinates are defined on a compact target
manifold, the dual coordinates will satifisfy the same periodicity
conditions and then T-duality maps two theories of the same
type into one another → exact symmetry.

For closed strings, toroidal compactification means:

X a(σ, τ) ≡ X a(σ + π, τ) + 2πLa La =
d∑

i=1

wiRie
a
i

with wi being the winding numbers and ea
i vector basis on T d .

In the compact space O(D,D;R)→ O(D,D;Z). The latter
becomes the T-duality group of the toroidal compactification.
For closed strings on compactified dimensions, this group
becomes a symmetry not only of the mass spectrum and the
vacuum partition function but also of the scattering amplitudes.
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T-dual invariant bosonic string
formulation

The presence of the O(D,D) symmetry suggests to extend the
standard formulation of String Theory, based on the Polyakov
action, by introducing this symmetry at the level of the
world-sheet sigma-model. It would be interesting, therefore,
looking for a manifestly O(D,D)-dual invariant formulation of
the string theory.

The introduction of both the coordinates X a and the dual ones
X̃a is required. Such formulation is based on a doubling of the
string coordinates in the target space.
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Doubling Coordinates: Motivation

The main goal of this new action would be to explore more
closely aspects of stringy geometry and, hence, of string gravity.
In fact, if interested in writing down the complete effective field
theory of such generalized sigma-model, one should consider,
correspondingly to the introduction of X a and X̃a, a dependence
of the fields associated with string states on such coordinates. In
this way, double string effective field theory becomes a double
field theory.

What the well-known effective gravitational action of a closed
string

S =
∫

dX
√

G e−2φ
[
R + 4(∂φ)2 − 1

12HµνρHµνρ
]

becomes when G , B and φ are dependent on X a and X̃a? Which
symmetries and what properties would it have? This could shed
light on aspects of string gravity unexplored thus far.

How the string theory would look like when the T-duality is
manifested in the sigma-model Lagrangian density?
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Hodge-Duality Symmetry for 2D Scalar
Fields

The usual Lagrangian of a 2D scalar field φ

L = − 1
2∂αφ∂

αφ = 1
2η
αβ∂αφ∂βφ = 1

2 φ̇
2 − 1

2φ
′2

can be rewritten in a manifestly invariant form under φ↔ φ̃, its
Hodge dual defined by ∂αφ̃ = −εαβ∂βφ (ε01 = 1).

Two steps are necessary.

The first consists in rewriting L in a first order form, after
introducing an auxiliary field p whose equation of motion
reproduces p = φ̇.

The second consists in trading p for the new field φ̃ defined
through p ≡ φ̃′. It is easy to see that this procedure leads to the
following symmetric Lagrangian:

Lsym =
1

2

[
φ̇φ̃′ + φ′ ˙̃φ− φ′2 − φ̃′2

]
The manifest Lorentz invariance has disappeared, but it holds
on-shell.
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The first consists in rewriting L in a first order form, after
introducing an auxiliary field p whose equation of motion
reproduces p = φ̇.

The second consists in trading p for the new field φ̃ defined
through p ≡ φ̃′. It is easy to see that this procedure leads to the
following symmetric Lagrangian:

Lsym =
1

2

[
φ̇φ̃′ + φ′ ˙̃φ− φ′2 − φ̃′2

]
The manifest Lorentz invariance has disappeared, but it holds
on-shell.
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Free scalars fields in 2D - Equations of
motion

The equations of motion for φ and φ̃ result to be respectively:

∂σ

[
∂σφ− ∂τ φ̃

]
= 0 ; ∂σ

[
∂σφ̃− ∂τφ

]
= 0

∂σφ− ∂τ φ̃ = f (τ) ; ∂σφ̃− ∂τφ = f̃ (τ)

Hence, they can be rewritten as first-order equations:

∂σφ− ∂τ φ̃ = 0

∂σφ̃− ∂τφ = 0

by invoking another symmetry of Lsym, i.e. the one under a shift:

φ→ φ+ g(τ)

φ̃→ φ̃+ g̃(τ)

The equations of motion reproduce on-shell the duality
conditions, after gauging away f (τ) and f̃ (τ).
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Floreanini-Jackiw Lagrangians for
chiral fields

The symmetric Lagrangian Lsym can be diagonalized by
introducing a pair of scalar fields φ+ and φ− defined by:

φ ≡ 1√
2

(φ+ + φ−) ; φ̃ ≡ 1√
2

(φ+ − φ−)

in terms of which it becomes the sum of two Floreanini-Jackiw
Lagrangians, the one associate with φ+ and the other with φ−:

Lsym = L+(φ+) + L−(φ−)

with

L±(φ±) = ±1

2
φ̇±φ

′

± −
1

2
φ

′2
±

It is only on-shell that φ± become functions of σ ± τ :

φ̇+ = φ′+ φ̇− = −φ′−
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Symmetries

Lsym is invariant under space-time translations acting as (the
constant parameters of the transformations are omitted):

δτφ = φ̇ ; δσφ = φ
′

and under modified global Lorentz transformations:

δLφ = τφ′ + σφ̃′ ; δLφ̃ = τ φ̃′ + σφ′

that on-shell become the usual two-dimensional Lorentz
rotations:

δLφ = τφ′ + σφ̇ ; δLφ̃ = τ φ̃′ + σ ˙̃φ

The Lorentz invariance is recovered on-shell.
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Chiral and Non-chiral Basis

The free Lagrangians considered here can be rewritten, in both
cases, as:

L0 =
1

2

(
Cij∂0Φi∂1Φj + Mij∂1Φi∂1Φj

)
.

In the chiral basis Φi = (φ+, φ−) (i = 1, 2)

C =

(
1 0
0 −1

)
and M =

(
−1 0
0 −1

)
;

in the non-chiral basis Φi = (φ, φ̃)

C ≡ Ω =

(
0 1
1 0

)
and M =

(
−1 0
0 −1

)
.

In the string case, C and M will become, respectively, the
O(D,D) invariant metric and the generalized metric.
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Two-dimensional scalar fields on
curved space

In order to couple Lsym (or the two FJ Lagrangians for chiral
scalar fields) to an external 2-bein ea

α one has to replace
∂a → eαa ∂α and to multiply by e ≡ detea

α:

Lsym =
1

2
e
[
eα0 eβ1 ∂nφ∂mφ̃+ eα1 eβ0 ∂αφ∂βφ̃

−eα1 eβ1 ∂αφ∂βφ− eα1 eβ1 ∂αφ̃∂βφ̃
]

After eliminating φ̃ through its equation of motion, one returns
to the usual scalar Lagrangian:

L =
1

2
eηabe α

a eβb ∂αφ∂βφ
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General String Sigma-Model

General string “sigma model”:

S = −T

2

∫
d2σe

[
Cij∇0χ

i∇1χ
j + Mij∇1χ

i∇1χ
j
]

ea
α → zweibein defined on the string world-sheet.

Cij = Cji and Mij = Mji ; ∇aχ
i = eαa ∂αχ

i , the functions χi the
string coordinates in an N-dimensional target space.

Symmetries

1 Invariance under diffeomorphisms:

σα → σ′α(σ)
2 Invariance under Weyl transformations:

eaα → λ(σ)eaα

3 Request of invariance under local Lorentz transformations:
eaα → e′aα = Λa

b(σ)ebα where Λa
b is an arbitrary Lorentz matrix

SO(1, 1).
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Requiring local Lorentz invariance

The action S is not manifestly invariant under the group
SO(1, 1) of local Lorentz transformations:

δea
α = α(σ)εab(σ)eb

α

but such invariance has to hold since physical observables are
independent on the choice of the vielbein. Hence, the theory is
required to be locally Lorentz invariant on shell.

Since the variation of S under an infinitesimal local Lorentz
transformation results to be:

δS

δea
α

δea
α = α(σ)

e

2
εabt b

a

the above requirement implies:

εabtab = 0 t b
a ≡ −

2

T

1

e

δS

δea
α

eb
α
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Flat gauge

The Weyl invariance implies:

ηabtab = 0 .

The equations of motion for ea
α give tab = 0 providing

constraints that have to imposed at classical and quantum
levels, analogously to what happens in the ordinary formulation
with Tαβ = − 2

T
√
g

δS
δgαβ = 0. Hence, on the solutions of these

equations the local Lorentz invariance holds.

Local symmetries (Reparametrization + Weyl + Modified
Lorentz inv.) allow to fix the flat gauge

e a
α = δ a

α .
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Constraints and Equations of Motion

The constraint εabtab = 0 can be rewritten in the following way:[
Cij∂0χ

j + Mij∂1χ
j
]

(C−1)ik
[
Ckl∂0χ

l + Mkl∂1χ
l)
]

+
[
C −MC−1M

]
ij
∂1χ

i ∂1χ
j = 0.

Equations of motion for χi :

∂1
[
Cij∂0χ

j + Mij∂1χ
j
]
− Γl

ikClj∂0χ
j∂1χ

k

− 1
2 (∂iMjk)∂1χ

j∂1χ
k = 0

Boundary conditions:[(
1
2Cij∂0χ

j + Mij∂1χ
j
)]σ=π
σ=0

= 0
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Constant Backgrounds

When C and M are constant, the equations of motion for χi

drastically simplifies into:

∂1
[
Cij∂0χ

j + Mij∂1χ
j
]

= 0 .

The further local gauge invariance of the action under shifts as:

δχi = f i (τ, σ) with ∇1f i = 0

allows to rewrite the equation of motion for χi as:

Cij∂0χ
j + Mij∂1χ

j = 0

with boundary conditions dictated by the vanishing of the
surface integral:

1

2

∫
dτCij

[
∂0χ

jδχi
]
|σ=τσ=0 = 0

describing both open strings with Dirichlet boundary conditions
and closed strings.
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Emerging out of O(D,D)

This causes the constraint on the ε-trace to become:[
C −MC−1M

]
ij
∂1χ

i ∂1χ
j = 0

implying the restriction on C and M: C = MCM.

After rotating and rescaling χi , C can always be put in the
diagonal form:

C = (1, · · · , 1,−1, · · · ,−1)

with N+ eigenvalues 1 and N− eigenvalues −1 and
N = N+ + N−. So the action can be interpreted as describing
N+ chiral and N− antichiral scalars interacting via the bilinear
term (Mij + δij)∇1χ

i∇1χ
j and the absence of a quantum

Lorentz anomaly requires N+ = N− = D = N
2 . Hence, N = 2D.

C becomes the O(D,D) invariant metric while C = MCM
implies that M is an O(D,D) element.
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Non-chiral coordinates

It is possible to make a change of coordinates in the
2D-dimensional target space according to the definition:

Xµ ≡ 1√
2

(
Xµ
+ + Xµ

−
)

; X̃µ ≡ δµν 1√
2

(
X ν
+ − X ν

−
)

It makes the matrix C become off-diagonal:

Cij = −Ωij ; Ωij =

(
0µν I νµ
Iµν 0µν

)
with (Ω)ij = (Ω−1)ij .

The expression for M results to be:

Mij =

(
(G − B G−1B)µν (B G−1) νµ

(−G−1 B)µν (G−1)µν

)
being M parametrized by D2.
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O(D,D) INVARIANCE

The sigma-model action can be expressed, in the non-chiral
basis, as:

S = −T

2

∫
d2σ

[
Ωij∂0χ

i∂1χ
j −Mij∂1χ

i∂1χ
j
]
.

It is invariant under the combined O(D,D) transformations of
χi and the matrix of the couplings parameters in M:

χ′ = Rχ ; M ′ = R−tMR−1 ; RtΩR = Ω ; R ∈ O(D,D).

.

The O(D,D) invariant metric Ω is itself an element of O(D,D).

26 / 53



Double Sigma
Model for
Strings in

Constant and
Non-Constant
Backgrounds

Franco
Pezzella

Introduction
and Motivation

Hodge-Dual
Symmetric
Free Scalar
Fields in 2D

Double Sigma
Model (Closed
Strings)

Constant
Backgrounds

Non-Constant
Backgrounds

Quantization
of the Double
String Model

Conclusion and
Perspectives

Recovering the familiar T-duality
invariance

Define the duality transformation R = Ω under which Xµ →
X̃µ. The action, expressed in terms of Xµ and X̃µ, after this
transformation, becomes:

S = −T

2

∫
d2σ

[
∂0Xµ∂1X̃µ + ∂0X̃µ∂1Xµ

−(G − B G−1B)µν∂1Xµ∂1X ν − (B G−1) νµ ∂1Xµ∂1X̃ν

+ (G−1 B)µν∂1X̃µ∂1X ν − (G−1)µν∂1X̃µ∂1X̃ν
]

and exhibits what in string theory is the familiar T-duality
invariance, in presence of backgrounds, i.e. X ↔ X̃ together
with a transformation of the generalized metric given by
M ′ = M−1, i.e.

G ↔ (G − BG−1B)−1

BG−1 ↔ −G−1B
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Correspondence with the Standard
Formulation in Constant Backgrounds

In order to understand the relation to the standard formulation,
one can integrate over X̃µ by eliminating it through the use of
the equations of motion. In the case of G ,B constant one gets
the standard sigma-model action:

S [X ] = −T

2

∫
d2σ(

√
G Gmm + εmn)(G + B)µν∂mXµ∂nX ν

which describes the toroidal compactification under proper
periodicity conditions on X . If, instead, one eliminates X from
its equation of motion one obtains the dual model for X̃ :

S [X̃ ] = −T

2

∫
d2σ(

√
G Gmn + εmn)(G + B)−1µν∂mX̃µ∂nX̃ ν

The action S [X , X̃ ] is therefore a first-order action which
interpolates between S [X ] and S [X̃ ] and is manifestly duality
symmetric.
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Duality Symmetric Free Closed Strings

From the above formulation it is easy to derive the action for
free strings. This corresponds to the case in which:

C = −
(

0 1
1 0

)
and M =

(
G 0
0 G−1

)
with Gµν being the flat metric in the target space. One gets:

S0 = S [Xµ, e] + S [X̃µ, e]

= − 1

4πα′

∫
d2σe

[
∇0Xµ∇1X̃µ +∇0X̃µ∇1Xµ

−Gµν∇1Xµ∇1X ν − G̃µν∇1X̃µ∇1X̃ν
]

= S [Xµ
+ , e] + S [Xµ

−, e]

with G̃µν = G−1µν , ∇a = e α
a ∂α and µ = 1, · · · ,D. This is

invariant under Xµ ↔ X̃µ together with Gµν ↔ G̃µν .
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Inserting Vertex Operators

The free action S0 still describes D and not 2D scalar degrees of
freedom (only the zero mode of X and X̃ are independent
on-shell).

S0 can be perturbated by Sint [X , X̃ ] with the insertion of vertex
operators involving both X and X̃ . If Sint does not depend on X̃
one can integrate X̃ out in the path integral of the theory and
reproduce the usual results of the standard formulation.

Assuming that strings are compactified on a circle of radius R,
one should expect that: at large scales R >>

√
α′ the relevant

interactions are Sint(X ) ; at intermediate scales R ∼
√
α′ the

relevant interactions involve both X and X̃ while at R <<
√
α′

the relevant interactions are Sint(X̃ ).

The duality symmetric formulation may be considered as a
natural generalization of the standard one at the string scale.
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Equivalence between non-covariant and
covariant actions

The action

S = −T

2

∫
d2σ

[
Cij∂0χ

i ∂1χ
j + Mij∂1χ

i∂1χ
j
]

is candidate to provide a T-duality invariant sigma model. In
particular, with C and M constant, describes bosonic closed
strings on a toroidally compactified target space. It exhibits a
manifest T -duality invariance O(D,D) with the fields χi

interpreted as string coordinates on the double torus T 2D .

It can be shown to be equivalent to the following covariant
action (Hull, 2005):

S = −T

2

∫
d2σ∂αχiMij∂αχ

j

with the self-duality relation imposed in order to halve the
degrees of freedom from 2D to D (also Duff, 1987):

∂αχ
i = ΩijMjk(∂βχk)

including both the eqs. of motion and the condition εabtab = 0.
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Other covariant formulations

Covariant action for a string in doubled yet gauged spacetime:

S = − 1

4πα′

∫
d2σ

[
−1

2

√
−hhijDiχ

MDjχ
NMMN(χ)− εijDiχ

MAjM

]
where hij is the world-sheet metric, the covariant derivative is
given by

Diχ
M = ∂iχ

M − AM
i

and MMN is the O(D,D) generalized metric subject to the
section condition:

∂A∂
A = 0

[K. Lee and J.H. Park, 2014]

The Tseytlin model can be made covariant also through the
Pasti-Sorokin-Tonin procedure [1995, 1996]
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C constant and M only X or
X̃ -dependent

Aim: to introduce interactions and understand if the local
Lorentz constraint still holds under the form C = MCM in case
of non-constant backgrounds.

First case:

C constant and M only X -dependent (or only X̄ -dependent).

In the case in which C = Ω and M only X -dependent, in
deriving the equations of motion for Xµ and X̃µ one has to keep
in consideration the contribution coming from the term

1
2 (∂iMjk)∂1χ

j∂1χ
k .
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C and M only X [or X̃ ]-dependent

The equations of motion for Xµ and X̃µ respectively become:

∂1

[
−∂0X̃µ + (G − BG−1B)µν∂1X ν + (BG−1) νµ ∂1X̃ν

]
=

1

2
∂1X ν

[
∂µ(G − BG−1B)νρ∂1X ρ + ∂µ(BG−1)νρ∂1X̃ρ

]
and

∂1

[
−∂0Xµ + (−G−1B)µν∂1X ν + (G−1)µν∂1X̃ν

]
=

1

2
∂1X̃ν

[
∂̄µ(−G−1B)νρ∂1X ρ + ∂̄µ(G−1)νρ∂1X̃ρ

]
= 0

where ∂̄µ denotes the derivative with respect to X̃µ.
Also in this case, one can use the invariance of the equation of
motion for X̃µ under shifts for putting:

−∂0Xµ + (−G−1B)µν∂1X ν + (G−1)µν∂1X̃ν = 0.
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O(D,D) INVARIANCE STILL HOLDS

When this expression is substituted in the condition εabtab = 0,
that is valid for any kind of backgrounds:[

Cij∂0χ
j + Mij∂1χ

j
]

(C−1)ik
[
Ckl∂0χ

l + Mkl∂1χ
l)
]

+
[
C −MC−1M

]
ij
∂1χ

i ∂1χ
j = 0.

one can easily see that the off-diagonal structure of C makes the
first term vanish and so one gets again the condition C = MCM
characterizing the O(D,D) invariance.

The same result is obtained if one considers C = Ω and M only
X̄ -dependent.

In the case of C = Ω,M = M(X ) the constraint C = MCM is
still valid and the expression for M keeps on being:

Mij =

(
(G − B G−1B)µν (B G−1) νµ

(−G−1 B)µν (G−1)µν

)
but now with X -dependent G and B.
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Further Observation on C = Ω and
M = M(X )

Starting from S(Xµ, X̃µ) and eliminating X̃µ through the
equation of motion, one can get the sigma model action for Xµ:

S [X ] = −T

2

∫
d2σ

(√
gg ab + εab

)
(G + B)µν∂aXµ∂bX ν

that corresponds to the usual formulation of the world sheet of
the string in an arbitrary background (G ,B).

If Xµ is eliminated, then one gets the dual sigma model for X̃µ:

S [X̃ ] = −T

2

∫
d2σ

(√
gg ab + εab

)
(G + B)−1µν∂aX̃µ∂bX̃ ν

This is the case that should reproduce the α′-corrections found
in double field theory (Hohm and Zwiebach, 2014) with C = Ω
and by suitably expanding M around flat background.

Non-abelian T-duality? [Daniel’s talk]
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C and M dependent only on X or X̃

Second Case:

C and M both dependent only on X (or X̄ ).

In this case one has to consider, in the equation of motion for
X̃µ, also the contribution coming from

−Γl
ikClj∂0χ

j∂1χ
k

When rewritten explicitly, this quantity vanishes when the index
i runs over the one of the X̃µ and therefore it does not give any
contribution to the equation of motion of this coordinate.

One can conclude that the condition C = MCM still holds under
the hypothesis that C and/or M are dependent only on X (or
only on X̃ ).
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C and M dependent only on X or X̃

Second Case:

C and M both dependent only on X (or X̄ ).

In this case one has to consider, in the equation of motion for
X̃µ, also the contribution coming from

−Γl
ikClj∂0χ

j∂1χ
k

When rewritten explicitly, this quantity vanishes when the index
i runs over the one of the X̃µ and therefore it does not give any
contribution to the equation of motion of this coordinate.

One can conclude that the condition C = MCM still holds under
the hypothesis that C and/or M are dependent only on X (or
only on X̃ ).

37 / 53



Double Sigma
Model for
Strings in

Constant and
Non-Constant
Backgrounds

Franco
Pezzella

Introduction
and Motivation

Hodge-Dual
Symmetric
Free Scalar
Fields in 2D

Double Sigma
Model (Closed
Strings)

Constant
Backgrounds

Non-Constant
Backgrounds

Quantization
of the Double
String Model

Conclusion and
Perspectives

C and M (X , X̃ )-dependent

Third case:

both C and M dependent on the coordinates χi .

One can think to introduce a parameter ε ∼ α′ and to expand C
and M up to the second order according to:

C = C0 + εC1 + ε2C2

M = M0 + εM1 + ε2M2

with C0= M0C−10 M0.
By linearizing the condition εabtab = 0 and the equations of
motion for the coordinates, one gets, at the order ε:

(εabtab)on-shell = −1

2
Qij∂1χ

i∂1χ
j = 0

Q = C1 − (C−10 M0)tM1 −M1(C−10 M0)

+(C−10 M0)tC1(C−10 M0)

Hence, the linearized condition on C1 and M1 is Q = 0.
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Beyond O(D,D)?

This condition can be actually derived by linearizing the
condition C = MCM. So at this order the O(D,D) condition
keeps on holding, being the first term in the expression of the
ε-trace order ε2:[

Cij∂0χ
j + Mij∂1χ

j
]

(C−1)ik
[
Ckl∂0χ

l + Mkl∂1χ
l)
]

+
[
C −MC−1M

]
ij
∂1χ

i ∂1χ
j = 0.

This means that the latter plays a role going to the order ε2 and
the contribution coming from it adds to the one coming from
the term proportional to C −MCM. Starting from this order, it
seems that the O(D,D) invariance does not hold anymore or
one can ask if the deformation is compatible with O(D,D)
(discussions with Olaf Hohm and Hai Lin)

Poisson T-duality? [Daniel’s talk].
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Constraints of the FJ Lagrangians

The quantization of the double world-sheet action in the flat
gauge and for constant backgrounds corresponds to the
quantization of the Floreanini-Jackiw Lagrangians.

In the case of a discrete number of degrees of freedom qi with
i = 1, · · · ,N a FJ Lagrangian looks like:

L =
1

2
qicij q̇

j − V (q) with det(cij) 6= 0.

It is first-order and is characterized by N primary second-class
constraints:

Tj ≡ pj −
1

2
qicij

with

{Ti ,Tj} = cij 6= 0
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Quantization of the FJ Lagrangians

In order to quantize the theory, the Dirac quantization method
has to be applied with the corresponding brackets:

{f , g}DB ≡ {f ,Tj}DB c(−1)jk {Tk , g}PB

According to the usual transition rule i {f , g}DB → {f , g} from
the classical to the quantum theory, the following commutators
are obtained:

[qi , qj ] = ic−1ij ; [qi , pj ] =
1

2
iδij ; [pi , pj ] = −1

4
icij
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Quantization of the Double Sigma
Model

Let us consider again:

S = −T

2

∫
d2ξ e

[
Cij∇0χ

i ∇1χ
j + Mij∇1χ

i∇1χ
j
]
.

with the coordinates χi on a double torus T 2D defined by the
identification X ≡ X + 2πlL, (l =

√
α′) being L = (w , lp) a

vector spanning a Lorentzian lattice ΛD,D . In components, the
identification becomes:

Xµ(τ, σ + π) = Xµ(τ, σ) + 2π l wµ

X̃µ(τ, σ + π) = X̃µ(τ, σ) + 2π l2 pµ.

On the torus the O(D,D;R) symmetry becomes an O(D,D;Z)
symmetry.
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Diagonalization of C and M

In order to reconduce the double action to a sum of
Floreanini-Jackiw Lagrangians, it is necessary to put the
matrices C and M simultaneously in a block-diagonal form. This
is performed by the matrix

(T −1)ij =
1√
2

(
(G−1)µν (G−1)µν

(−E t G−1) νµ (E G−1) νµ

)
,

where E ≡ G + B. In fact, the matrix T −1 transforms C and
M respectively into

T −tCT −1 =

(
G−1 0

0 −G−1

)
≡ C−1

T −tMT −1 =

(
G−1 0

0 G−1

)
≡ G−1

and introduces new coordinates Φi = TijX j ≡ (XR µ,XLµ), in
terms of which the R and L sectors are completely decoupled
also in the presence of the B-field. The matrix G−1 is the
generalized metric in the chiral coordinates system.
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Note on the matrix T

The matrix T is not an element of the group O(D,D) because
it changes the metric C in C−1. It has to be seen as leading to a
field redefinition that makes the explicit dependence on the
B-field disappear in the action.

An O(D,D) transformation leaves invariant the metric C but, in
general, transforms G−1 in a non-diagonal matrix. Hence after
an O(D,D) transformation, such matrix will exhibit all the
dependence on the fields G and B as any general symmetric
O(D,D) matrix.

The transformations which leave invariant the two metrics G and
C, and hence the action, belong to the subgroup O(D)× O(D)
of the original orthogonal group O(D,D).
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The double world-sheet action in
chiral coordinates

In the flat gauge the action becomes

S ≡
∫

d2ξ[LR + LL] ,

with

1

T
LL;R ≡ ±

1

2
∂0X t

L;RG−1∂1XL;R −
1

2
∂1X t

L;RG−1∂1XL;R

which is just the realization in the double string theory of the
Floreanini-Jackiw Lagrangians with a non-vanishing
Kalb-Ramond field as background.

The equations of motion become:

∗dXR = dXR ; ∗dXL = −dXL .
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Solution of the eqs. of motion

The solution of the duality equations of motion, with
identifications on the torus now rewritten as:

XR µ[τ − (σ + π)] = XR µ(τ − σ)− 2π l2 pR µ

XLµ[τ + (σ + π)] = XLµ(τ + σ) + 2π l2 pLµ

with (
−lpR

lpL

)
= T

(
w
lp

)
,

is given by the usual expansion of the right and left bosonic
string coordinates.

XR(τ − σ) = xR + 2 l2 pR(τ − σ) + il
∑
n 6=0

αn

n
e−2in(τ−σ)

XL(τ + σ) = xL + 2 l2 pL(τ + σ) + il
∑
n 6=0

α̃n

n
e−2in(τ+σ)
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Primary Constraints

The linearity of the Lagrangian density in the time derivatives of
the fields imply the presence of primary constraints:

ΨR(PR , XR) = PR +
T

2
G−1∂1XR ≈ 0

ΨL(PL, XL) = PL −
T

2
G−1∂1XL ≈ 0 .

satisfying the following equal ‘time’ algebra

{
ΨR;L(τ, σ), Ψt

R;L(τ, σ′)
}
PB

= ∓TG−1δ′(σ − σ′) ,

with δ′(x) = ∂xδ(x) and the upper [lower] sign on the right hand
side of the previous identity refers to the label R [L] on the left
of the same equation.

This algebra implies that the primary constraints are second
class.
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Dirac Brackets

These second class constraints have to be considered together
with the usual string constraints coming from tab = 0. By
analogy with the standard procedure followed in string theory,
the constraints are evaluated here on the solution of the
equation of motion for the fields XR; L.

The Dirac procedure yields no secondary constraints and leads
to the following Dirac brackets:

{XR;L(τ, σ), XR;L(τ, σ′)}DB = ∓G

T
ε(σ − σ′)

{PR;L(τ, σ), XR;L(τ, σ′)}DB =
1

2
I δ(σ − σ′)

{PR;L(τ, σ), PR;L(τ, σ′)}DB = ±T

4
G−1δ′(σ − σ′)

where ε(σ − σ′) is the step function.
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Oscillator algebra

The double world-sheet sigma-model is now quantized by
replacing the Dirac brackets with the corresponding commutator
according to the well-known substitution:

{· , ·}DB → −i [· , ·] .

The Dirac brackets of the constraints via the above usual
substitution determine the following commutators for the Fourier
modes:

[pR;L, xR;L] = iG ; [αm, αn] = mGδm,−n ; [α̃m, α̃n] = mGδm,−n .

One recovers, in the R,L-sectors, the Virasoro algebra with a
vanishing conformal anomaly in the usual critical dimension.

49 / 53



Double Sigma
Model for
Strings in

Constant and
Non-Constant
Backgrounds

Franco
Pezzella

Introduction
and Motivation

Hodge-Dual
Symmetric
Free Scalar
Fields in 2D

Double Sigma
Model (Closed
Strings)

Constant
Backgrounds

Non-Constant
Backgrounds

Quantization
of the Double
String Model

Conclusion and
Perspectives

Non-commutativity

In terms of the coordinates Xµ and X̃µ, the Dirac quantization
procedure leads, among the others, to a non-commutativity
relation: [

X (τ, σ), X̃ (τ, σ′)
]

=
i

T
Iε(σ − σ′)

with ε(σ) ≡ 1
2 [θ(σ)− θ(−σ)].

The Dirac quantization method implies that Xµ and X̃µ behave
like non-commuting phase space type coordinates, even if their
expressions in terms of Fourier modes generate the usual
oscillator algebra of the standard formulation (De Angelis,
Gionti, Marotta, FP - 2014).

From this perspective, this non-commutativity may lead to the
interpretation of high-energy scattering in the X -space as
effectively ”probing” the X̃ -space.
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Conclusion

An O(D,D) manifest formulation has been analyzed, providing
a generalization of the standard formulation at the string scale.
It is based on the Floreanini-Jackiw Lagrangians for chiral and
antichiral scalar fields.

The O(D,D;Z) T-duality invariance naturally emerges out in
the case of toroidal compactifications.

A doubling of the string coordinates is naturally required and the
quantization requires a non-commuting geometry.
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Perspectives

Vertex Operators and Scattering Amplitudes.

Effective Action through Beta Functions and relation with DFT
by using the expansion of the generalized metric in terms of
generalized Riemann normal coordinates.

Supersymmetric extension.

Extension to open strings.

Study of the underlying Generalized Geometry.
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The End

Thank you for your attention.
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