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1. Introduction

“Double”: x −→ (x, x̃)

• The fields in SFT on a toroidal background have dependance on pi and wi,

pi ←→ xi wi ←→ x̃i

so have natural dependance on both x and x̃.: Φ(xi, x̃i).

T-duality freely exchanges the xi and x̃i.

“String field theory is a double field theory”. [Kugo, Zwiebach]

• Our focus is on the "massless sectors" of the SFT.



1. Introduction

• In general, supergravities are well known to be as the string effective theories.

• However, the supergravity is based on particle description and its description
is based on Riemannian geometry where the fundamental object is only metric
gµν .

• So, some stringy effect might be missing in the supergravity description, and it
may not be the best description of the string low energy effective theory.



1. Introduction

• String theory requires that gµν , Bµν and φ should be treated on an equal footing
, because they form a multiplet of T-duality.

• This suggests that there should be an unifying description of them, beyond the
Riemannian geometry.

• Double Field Theory(DFT) has been suggested as an unifying description of
string effective theory by manifesting the T-duality structure [Siegel, Tseytlin, Duff,

Hull, Zwiebach, Hohm]



1. Introduction

• The goal of this talk is to explain about the underlying geometric description
for this DFT, called "Semi-covariant formulation"

• It is completely covariant approach for DFT as it manifests

• O(D,D) T-duality
• DFT-diffeomorphisms (generalized Lie derivative)
• A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

• cf. Alternatives:[Siegel, Gwak, Hohm, Zwiebach;

Waldram, Coimbra, Strickland-Constable (Generalized Geometry a la Hitchin).]

cf. U-duality extension: [Hohm, Samtleben, Berman, Cederwall, Thompson, Park, Suh, Malek,

Blair, Grana, Marques, Perry...]



1. Introduction

• The goal of this talk is to explain about the underlying geometric description
for this DFT, called "Semi-covariant formulation"

• It is completely covariant approach for DFT as it manifests

• O(D,D) T-duality
• DFT-diffeomorphisms (generalized Lie derivative)
• A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

• cf. Alternatives:[Siegel, Gwak, Hohm, Zwiebach;

Waldram, Coimbra, Strickland-Constable (Generalized Geometry a la Hitchin).]

cf. U-duality extension: [Hohm, Samtleben, Berman, Cederwall, Thompson, Park, Suh, Malek,

Blair, Grana, Marques, Perry...]



1. Introduction

• The goal of this talk is to explain about the underlying geometric description
for this DFT, called "Semi-covariant formulation"

• It is completely covariant approach for DFT as it manifests

• O(D,D) T-duality
• DFT-diffeomorphisms (generalized Lie derivative)
• A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

• cf. Alternatives:[Siegel, Gwak, Hohm, Zwiebach;

Waldram, Coimbra, Strickland-Constable (Generalized Geometry a la Hitchin).]

cf. U-duality extension: [Hohm, Samtleben, Berman, Cederwall, Thompson, Park, Suh, Malek,

Blair, Grana, Marques, Perry...]



Contents

• 1. Introduction

• 2. (Bosonic) Double Field Theory

• 3. Semi-covariant formulation

• 4. Supersymmetric extension of Double field theory



Bosonic Double Field Theory
• DFT manifests the T-duality by using O(D,D) tensors as its dynamical

variables.
e.g. NS-NS fields in DFT :

dilaton , ‘generalized metric’
(scalar density) (symmetric O(D,D) element )

e−2d =
√
−ge−2φ , HAB =

(
g−1 −g−1B

Bg−1 g− Bg−1B

)
cf . Non-geometric parametrization [Ko-Melby-Thompson-Meyer-Park

2015](Melby-Thompson’s talk)

• The Busher’s rule is realized as an subgroup of O(D,D) rotation, [Giveon,

Rabinovici, Veneziano, Tseytlin, Siegel] :
d is scalar andHAB is rank 2 tensor.

• Metric in DFT : O(D,D) metric,

JAB :=

(
0 1
1 0

)
freely raises or lowers the (D + D)-dimensional vector indices, A,B.



2. Bosonic Double Field Theory

• DFT action for NS-NS sector: [Hull and Zwiebach , later with Hohm ]

SDFT =

∫
dy2D e−2dLDFT(H, d) ,

where

LDFT(H, d) = HAB (4∂A∂Bd − 4∂Ad∂Bd + 1
8∂AHCD∂BHCD − 1

2∂AHCD∂CHBD
)

+4∂AHAB∂Bd − ∂A∂BHAB .

• O(D,D) structure is manifest and background independent.

• All spacetime dimension is ‘formally doubled’, yA = (x̃µ, xν),
A = 1, 2, · · · ,D+D.



Section condition

• DFT is a D-dimensional theory written in terms of (D + D)-dimensional
language, i.e. tensors.

• Section condition (strong constraint) :
The O(D,D) d’Alembert operator is trivial, acting on arbitrary fields or gauge
parameters as well as their products:

∂A∂
A = J AB∂A∂B = 2

∂2

∂x̃µ∂xµ
∼ 0

• In DFT, the solution is unique. Up to O(D,D) rotation, we can choose a frame
to set

∂

∂x̃µ
∼ 0 .

• DFT action in Riemannian parametrization gives the effective action:

SDFT =⇒ Seff. =

∫
dxD√−ge−2φ

(
Rg + 4(∂φ)2 − 1

12 H2
)
.



Section condition

• Level matching condition for the massless sector,

p · w = N − N̄ ≡ 0 ⇐⇒ ∂A∂
A = 2

∂2

∂x̃µ∂xµ
≡ 0 ,

for all fields. (weak constraint)

So,
∂A∂

AΦ = 0 , but ∂AΦ1∂
AΦ2 6= 0

• Section condition(strong constraint) seems necessary to write a complete
theory, because of action invariance and closedness of symmetry algebra .



Gauge symmetry: ‘DFT-diffeomorphism’

Unification of diffeomorphism and B-field gauge symmetry , expressed via

• ‘generalized Lie derivative’ [Siegel, Courant, Grana ...]

L̂XTωA := XB∂BTωA + ω∂BXBTωA + ∂AXBTωB−∂BXATωB.

• XA is an unifying gauge parameter (B-field gauge symmetry+diffeomorphism ),

XA = (Λµ, δxν)

• HAB is a rank 2 DFT tensor, and e−2d is a weight 1 DFT scalar,



Algebra of the gauge symmetry

• Commutator of the generalized Lie derivatives is closed, up to the section
condition, by using c-bracket,

[L̂X, L̂Y ] ∼ L̂[X,Y]C ,

where [X, Y]C denotes C-bracket

[X, Y]A
C := XB∂BYA − YB∂BXA + 1

2 YB∂AXB − 1
2 XB∂AYB ,



Remarks 1 : section condition

• Understanding the level matching condition (weak constraint) in DFT is crucial
but very subtle. (Kanghoon’s talk )

• However, "relaxing" the section condition to some extent in case of
dimensional reduction has been understood. [Aldazabal, Baron, Nunez, Grana, Marqués,

Geissbühler Berman, Lee]

The section condition is sufficient but not necessary condition for the algebra
closure and action invariance. (next week’s talk )

• This talk will be restricted on the section condition(strong constraint)



Remarks 1 : section condition

• Understanding the level matching condition (weak constraint) in DFT is crucial
but very subtle. (Kanghoon’s talk )

• However, "relaxing" the section condition to some extent in case of
dimensional reduction has been understood. [Aldazabal, Baron, Nunez, Grana, Marqués,

Geissbühler Berman, Lee]

The section condition is sufficient but not necessary condition for the algebra
closure and action invariance. (next week’s talk )

• This talk will be restricted on the section condition(strong constraint)



Remarks 1 : section condition

• Understanding the level matching condition (weak constraint) in DFT is crucial
but very subtle. (Kanghoon’s talk )

• However, "relaxing" the section condition to some extent in case of
dimensional reduction has been understood. [Aldazabal, Baron, Nunez, Grana, Marqués,

Geissbühler Berman, Lee]

The section condition is sufficient but not necessary condition for the algebra
closure and action invariance. (next week’s talk )

• This talk will be restricted on the section condition(strong constraint)



Remarks 2 : doubled-yet-gauged coordinates

• Doubled-yet-gauged coordinates [Park]

The D-dimensional section is better understood in terms of doubled-yet-gauged
(D+D)-dimensional coordinates.
: We start with D + D coordinates, and impose an equivalence relation,

xA ∼ xA + φ∂Aϕ ,

where φ and ϕ are arbitrary functions in DFT.

Each gauge orbit parametrized by this shift functions represents a single
physical point.

which we call ‘Coordinate Gauge Symmetry’.



Remarks 2 : doubled-yet-gauged coordinates

• Realization of the coordinate gauge symmetry.

We enforcing that arbitrary functions and their arbitrary derivatives, denoted
here collectively by Φ, are invariant under the coordinate gauge symmetry shift,

Φ(x + ∆) = Φ(x) , ∆A = φ∂Aϕ .

• Section condition.

The invariance under the coordinate gauge symmetry can be shown to be
equivalent to the section condition:

Coordinate Gauge Symmetry ⇐⇒ ∂A∂
A ≡ 0 .

Park, Lee-Park 2013
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Remarks 3: Double sigma model

• The coordinate gauge symmetry can be naturally realized on the worldsheet as
a conventional gauge symmetry of a string action.

• Introducing the gauge field for the coordinate gauge symmetry and defining the
covariant derivative, DiXM = ∂iXM −AM

i , DFT sigma model action is written
Park-Lee 2013 ,

1
4πα′

∫
d2σ Lstring , Lstring = − 1

2

√
−h hijDiXMDjXNHMN(X)− εijDiXMAjM ,

• Under the Riemaniann parametrization, the DFT sigma model reduces to the
standard string action,

1
4πα′Lstring ≡ 1

2πα′
[
− 1

2

√
−hhij∂iXµ∂jXνGµν(X) + 1

2 ε
ij∂iXµ∂jXνBµν(X) + 1

2 ε
ij∂iX̃µ∂jXµ

]
,

with the topological term introduced by Giveon-Rocek; Hull .
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Remarks 4: finite transformation

• Diffeomorphisms.

• Hohm-Zwiebach ansatz for finite transformations:

F := 1
2

(
LL̄−1 + L̄−1L

)
, F̄ := J FtJ−1 = 1

2

(
L−1L̄ + L̄L−1) = F−1 ,

where
LM

N := ∂Mx′N , L̄ := J LtJ−1 .

• Though nice and compact, F does not precisely coincide with exp(L̂X).

• Yet, up to coordinate gauge symmetry it is possible to show Park 2013

F ≡ exp(L̂X)

c.f. Berman-Cederwall-Perry, Hull, Papadopoulos, Sakatani, Rey
(Sakatani’s talk)
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Semi-covariant formulation

3. Semi-covariant formlation

Connection

Γ0
CAB = 2 (P∂CPP̄)[AB] + 2

(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂EPP̄)[ED]

)
,

Curvature
(PABPCD − P̄ABP̄CD)SACBD



Semi-covariant formulation

• Basic geometric objects are

JAB , HAB , d .

• Note that
HA

CHC
B = δA

B , HAB = HBA ,

• We can define ‘projection’ which is related toH by

PAB = 1
2 (JAB +HAB) , P̄AB = 1

2 (JAB −HAB)

which satisfy the property of the projections,

PA
BPB

C = PA
C , PAB = PBA , P̄A

BP̄B
C = P̄A

C , P̄AB = P̄BA

• Projection will the characteristic property of DFT geometry.

• The basic geometric objects, which should be treated equally, are

(d ,PAB , P̄AB) .
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• We further define a pair of six-index projectors,

PCAB
DEF := PC

DP[A
[EPB]

F] + 2
D−1 PC[APB]

[EPF]D , PCAB
DEFPDEF

GHI = PCAB
GHI ,

P̄CAB
DEF := P̄C

DP̄[A
[EP̄B]

F] + 2
D−1 P̄C[AP̄B]

[EP̄F]D , P̄CAB
DEFP̄DEF

GHI = P̄CAB
GHI ,

which satisfy the following properties, symmetric and traceless,

PCABDEF = PDEFCAB = PC[AB]D[EF] , P̄CABDEF = P̄DEFCAB = P̄C[AB]D[EF] ,
PA

ABDEF = 0 , PABPABCDEF = 0 , P̄A
ABDEF = 0 , P̄ABP̄ABCDEF = 0 .

• These projectors will govern the DFT-diffeomorphic anomaly in the
semi-covariant formalism, which can be easily projected out.



Semi-covariant formulation

• Postulate a “semi-covariant" derivative,∇A on DFT tensor TA with weight ω,

∇CTA= ∂CTA−ωΓB
BCTA + ΓCA

BTB ,

• We demand the following compatibility conditions,

∇AP̄BC = 0 , ∇APBC = 0 , ∇Ad = 0 ,

(cf. ∇λgµν = 0 in Riemannian geometry )
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• Torsion free conection is uniquely determined in terms of basic geometrical
variables, [IJ, Lee, Park ’11]

Γ0
CAB = 2 (P∂CPP̄)[AB] + 2

(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂EPP̄)[ED]

)
,

satisfying the torsion free condition,

Γ0
[ABC] = 0 , (⇔ L̂∂X = L̂∇X )

and further satisfying

PCAB
DEFΓ0

DEF = 0 , P̄CAB
DEFΓ0

DEF = 0 .



Stringy differential geometry 1105.6294 (1011.1324 )

• Under δXPAB = L̂XPAB δXd = L̂Xd (DFT-diffeomorphism) , the variation of
∇CTA contains an anomalous non-covariant part,

(δX−L̂X)∇CTA∼ 2(P+P̄)CA
BFDE∂F∂[DXE]TB .

• Hence, these are not DFT-diffeomorphism covariant,

• However, the anomalous term are controlled by the rank six projectors , so they
can be projected out by combining the projection matrices PAB and P̄AB.
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Projection-aided covariant derivatives

“semi-covariant derivative” :

combined with the projections , we can generate various covariant quantities:

Examples:

• For O(D,D) tensors:

PC
DP̄A

B∇DTB , P̄C
DPA

B∇DTB ,

PAB∇ATB , P̄AB∇ATB , Divergences ,

PABP̄C
D∇A∇BTD , P̄ABPC

D∇A∇BTD . Laplacians

• Patern: need opposite chirality or contraction



Curvatures 1105.6294
• The usual diffeomorhphism field strength defined by

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED ,

is NOT covariant.
• Instead, we define semi-covariant four-index curvature , as for a key quantity

in our formalism, cf . [Siegel; Waldram; Hohm, Zwiebach]

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD
)
.

• It satisfies
• just like the Riemann curvature,

SABCD = 1
2 (S[AB][CD] + S[CD][AB]) ,

SA[BCD] = 0 : Bianchi identity ,

• and with projectors,

(PABPCD + P̄ABP̄CD)SACBD ∼ 0 ,

P A
I P B

J P̄ C
K P̄ D

L SABCD ∼ 0 ,

P A
I P̄ B

J P C
K P̄ D

L SABCD ∼ 0 , etc.
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Curvatures I [1105.6294]

• This is still Not covariant tensor, but contracting with projection operators, we
can obtain covariant quatities.

• Rank two-tensor:

PI
AP̄J

BSAB , where SAB := SC
ACB

• Scalar curvature: defines the Lagrangian for NS-NS sector

(PABPCD − P̄ABP̄CD)SACBD

• The above scalar curvature exactly reproduces the bosonic Lagrangian by Hull,
Zwiebach,Hohm.

• There is no covariant rank 4 tensor.



Further completely covariant example

• Yang-Mills field strength in DFT is given by two opposite projections,

PA
MP̄B

NFMN ,

where FMN is the semi-covariant field strength of a YM potential, VM ,

FMN := ∇MVN −∇NVM − i [VM,VN ] .

Unlike the Riemannian case, the Γ connections are not canceled out.
IJ-Lee-Park 2011, Choi-Park 2015

Choi’s talk

• Completely covariant Killing equations of DFT:

L̂XHMN = 0 ⇐⇒ (P∇)M(P̄X)N − (P̄∇)N(PX)M = 0 ,
L̂Xd = 0 ⇐⇒ ∇MXM = 0 .
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Further completely covariant example
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L̂Xd = 0 ⇐⇒ ∇MXM = 0 .
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Reproduction of DFT

• Natural DFT action for NS-NS sector is

SDFT =

∫
ΣD

e−2d
[
(PABPCD − P̄ABP̄CD)SACBD − 2Λ

]
,

where the integral is taken over a section, ΣD, and the DFT-cosmological
constant term has been inserted.

• The curvature term agrees with Hull, Zwiebach and Hohm ,

HAB (4∂A∂Bd − 4∂Ad∂Bd + 1
8∂AHCD∂BHCD − 1

2∂AHCD∂CHBD
)

+4∂AHAB∂Bd − ∂A∂BHAB .

• The DFT-cosmological constant term becomes an exponential potential, e−2φ,
in term Riemannian geometry. The cosmological constant problem is clearly
reformulated in DFT
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)

+4∂AHAB∂Bd − ∂A∂BHAB .

• The DFT-cosmological constant term becomes an exponential potential, e−2φ,
in term Riemannian geometry. The cosmological constant problem is clearly
reformulated in DFT



4. Supersymmetric extension of double field theory



Symmetries of SDFT

Semi-covariant formulation manifest all the bosonic symmetries

• O(D,D) T-duality:

• DFT-diffeomorphism (generalized Lie derivative)
• Diffeomorphism
• B-field gauge symmetry

• A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

• D = 10 maximal Local SUSY



Field contents of D = 10 Maximal SDFT

• Bosons

• NS-NS sector
{

DFT-dilaton: d
Double-vielbeins: VAp , V̄Ap̄

• R-R potential: Cαᾱ

• Fermions (NS-R, R-NS)
• DFT-dilatinos: ρα , ρ′ᾱ

• Gravitinos: ψαp̄ , ψ′ᾱp
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• Bosons

• NS-NS sector
{

DFT-dilaton: d
Double-vielbeins: VAp , V̄Ap̄

• R-R potential: Cαᾱ

• Fermions (NS-R, R-NS)
• DFT-dilatinos: ρα , ρ′ᾱ

• Gravitinos: ψαp̄ , ψ′ᾱp

Index Representation Metric (raising/lowering indices)
A, B, · · · O(D,D) vector JAB
p, q, · · · Spin(1,D−1)L vector ηpq = diag(−+ + · · ·+)

α, β, · · · Spin(1,D−1)L spinor C+αβ , (γp)T = C+γ
pC−1

+

p̄, q̄, · · · Spin(D−1, 1)R vector η̄p̄̄q = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin(D−1, 1)R spinor C̄+ᾱβ̄ , (γ̄ p̄)T = C̄+γ̄
p̄C̄−1

+



Field contents of D = 10 Maximal SDFT

• Bosons

• NS-NS sector
{

DFT-dilaton: d
Double-vielbeins: VAp , V̄Ap̄

• R-R potential: Cαᾱ

• Fermions (NS-R, R-NS)
• DFT-dilatinos: ρα , ρ′ᾱ

• Gravitinos: ψαp̄ , ψ′ᾱp

All NS-NS fields, d,VAp, V̄Ap̄, will be equally treated as basic geometric objects.
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• Bosons

• NS-NS sector
{

DFT-dilaton: d
Double-vielbeins: VAp , V̄Ap̄

• R-R potential: Cαᾱ

• Fermions (NS-R, R-NS)
• DFT-dilatinos: ρα , ρ′ᾱ

• Gravitinos: ψαp̄ , ψ′ᾱp

R-R potential is bi-fundamental spinor representation
as a democratic description.

cf . O(D,D) spinor representation Fukuma, Oota Tanaka; Hohm, Kwak, Zwiebach
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Field contents of D = 10 Maximal SDFT

• Bosons

• NS-NS sector
{

DFT-dilaton: d
Double-vielbeins: VAp , V̄Ap̄

• R-R potential: Cαᾱ

• Fermions (NS-R, R-NS)
• DFT-dilatinos: ρα , ρ′ᾱ

• Gravitinos: ψαp̄ , ψ′ᾱp

cf . Relation to the fields in the ordinary supergravity

ρ ∼ λ− γaψa

d = φ− 1
2 ln
√
−g

cf . Hassan 99’



Field contents of D = 10 Maximal SDFT

• Bosons

• NS-NS sector
{

DFT-dilaton: d
Double-vielbeins: VAp , V̄Ap̄

• R-R potential: Cαᾱ

• Fermions (NS-R, R-NS)
• DFT-dilatinos: ρα , ρ′ᾱ

• Gravitinos: ψαp̄ , ψ′ᾱp

A priori, O(D,D) rotates only the O(D,D) vector indices (capital Roman), and
the R-R sector and all the fermions are O(D,D) T-duality singlet.

The usual IIA⇔ IIB exchange will be realized only after fixing a gauge.



Field contents of D = 10 Maximal SDFT

• Bosons

• NS-NS sector
{

DFT-dilaton: d
DFT-vielbeins: VAp , V̄Ap̄

• R-R potential: Cαᾱ

• Fermions (NS-R, R-NS)
• DFT-dilatinos: ρα , ρ′ᾱ

• Gravitinos: ψαp̄ , ψ′ᾱp

• Set the chiralities

γ(D+1)Cγ̄(D+1) = cc′C . γ(D+1)ψp̄ = cψp̄ , γ(D+1)ρ = −cρ ,
γ̄(D+1)ψ′p = c′ψ′p , γ̄(D+1)ρ′ = −c′ρ′ .

c and c′ are sign factors, and equivalent up to a Pin(1, 9)× Pin(9, 1).
So we may fix c = c′ = +1 without loss of generality.
However, the theory contains two ‘types’ of solutions, i.e. IIA and IIB.



Double-vielbein 1105.6294, 1109.2035
• Double-vielbein simultaneously diagonalizes JAB andHAB,

J =
(

V V̄
)( η−1 0

0 η̄

)(
V V̄

)T
, H =

(
V V̄

)( η−1 0

0 −η̄

)(
V V̄

)T
.

• It follows the defining properties

VApVA
q = ηpq , VApV̄A

p̄ = 0 VA
pVBp = PAB ,

V̄Ap̄V̄A
q̄ = η̄p̄q̄ , V̄A

p̄V̄Bp̄ = P̄AB ,

PAB, P̄AB are projection matrices(‘left and right’),

PA
BPB

C = PA
C , P̄A

BP̄B
C = P̄A

C , PA
BP̄B

C = 0

which are related toH and J ,

PAB + P̄AB = JAB , PAB − P̄AB = HAB

• The basic geometric objects, which should be treated equally, are

(d ,VAp , V̄Ap̄) , or (d ,PAB , P̄AB) .



Semi-covariant derivatives

• We introduce master ‘semi-covariant’ derivative

DA = ∂A + ΓA + ΦA + Φ̄A .

• It is also useful to set
∇A = ∂A + ΓA ,

• The ‘semi-covariant’ derivative for the DFT-diffeomorphism is

∇CTωA1A2···An := ∂CTωA1A2···An−ωΓB
BCTωA1A2···An +

n∑
i=1

ΓCAi
BTωA1···Ai−1BAi+1···An .
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• compatibility for the whole NS-NS sector

DAd = 0 , DAVBp = 0 , DAV̄Bp̄ = 0 . (cf . Dµeν a = 0)

together with

DAηpq = DAη̄p̄q̄ = DA(γp)αβ = DA(γ̄ p̄)ᾱβ̄ = DAC+αβ = DAC̄+ᾱβ̄ = 0 .

It follows that

∇Ad = 0 , ∇APBC = 0 , ∇AP̄BC = 0 , (cf .∇µgνλ = 0)

• Spin connections

ΦApq = VB
p∇AVBq , Φ̄Ap̄q̄ = V̄B

p̄∇AV̄Bq̄ ,



• Torsion free conection is uniquely determined in terms of basic geometrical
variables, [IJ, Lee, Park ’11]

Γ0
CAB = 2 (P∂CPP̄)[AB] + 2

(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂EPP̄)[ED]

)
,

satisfying the torsion free condition,

Γ0
[ABC] = 0 , (⇔ L̂∂X = L̂∇X )

and further satisfying

PCAB
DEFΓ0

DEF = 0 , P̄CAB
DEFΓ0

DEF = 0 .



Covariant derivatives

“semi-covariant derivative” :

combined with the projections , we can get various covariant quantities:

Examples:

• For O(D,D) tensors:

PC
DP̄A

B∇DTB , P̄C
DPA

B∇DTB ,

PAB∇ATB , P̄AB∇ATB , Divergences ,

PABP̄C
D∇A∇BTD , P̄ABPC

D∇A∇BTD . Laplacians

• Rule: need opposite chirality or contraction



Covariant derivatives

• For Spin(1,D−1)L × Spin(D−1, 1)R tensors:

DpTq̄ , Dp̄Tq ,

DpTp , Dp̄Tp̄ ,

DpDpTq̄ , Dp̄Dp̄Tq ,

where we set
Dp := VA

pDA , Dp̄ := V̄A
p̄DA .

These are the pull-back of the previous results using the double-vielbeins.



Covariant derivatives

• Dirac operators for fermions, ρα, ψαp̄ , ρ′ᾱ, ψ′ᾱp : [IJ, Lee, Park ’11]

γpDpρ = γADAρ , γpDpψp̄ = γADAψp̄ ,

Dp̄ρ , Dp̄ψ
p̄ = DAψ

A ,

γ̄ p̄Dp̄ρ
′ = γ̄ADAρ

′ , γ̄ p̄Dp̄ψ
′
p = γ̄ADAψ

′
p ,

Dpρ
′ , Dpψ

′p = DAψ
′A ,



Covariant derivatives
• For Spin(1,D−1)L × Spin(D−1, 1)R bi-fundamental spinors, Cαβ̄ :

[IJ, Lee, Park ’12]

γADAC , DACγ̄A .

• Further define
D+C := γADAC + γ(D+1)DACγ̄A ,

D−C := γADAC − γ(D+1)DACγ̄A .

• Especially for the torsionless case, the corresponding operators are nilpotent
up to the section condition

(D0
+)2C ∼ 0 , (D0

−)2C ∼ 0 ,

• The field strength of the R-R potential, Cαᾱ, is then defined by

F := D0
+C .
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• Further define
D+C := γADAC + γ(D+1)DACγ̄A ,

D−C := γADAC − γ(D+1)DACγ̄A .

• Especially for the torsionless case, the corresponding operators are nilpotent
up to the section condition

(D0
+)2C ∼ 0 , (D0

−)2C ∼ 0 ,

• The field strength of the R-R potential, Cαᾱ, is then defined by

F := D0
+C .



D = 10 Maximal SDFT

• Lagrangian (full order of fermions ):

LType II = e−2d
[

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2 Tr(FF̄)− iρ̄Fρ′ + iψ̄p̄γqF γ̄ p̄ψ′q

+ i 1
2 ρ̄γ

pD?p ρ− iψ̄p̄D?p̄ ρ− i 1
2 ψ̄

p̄γqD?qψp̄ − i 1
2 ρ̄
′γ̄ p̄D′?p̄ ρ′ + iψ̄′pD′?p ρ′ + i 1

2 ψ̄
′pγ̄ q̄D′?q̄ ψ′p

]
where F̄ ᾱα denotes the charge conjugation, F̄ := C̄−1

+ FT C+.

• DA in SACBD, D?A and D′?A are defined by their own torsionful connection ,

• The torsions are determined to satisfy usual 1.5 formalism ,

δLSDFT = δΓABC × 0 .

• The Lagrangian is pseudo : self-duality of the R-R field strength needs to be
imposed by hand, just like the ‘democratic’ type II SUGRA Bergshoeff, et al.(

1− γ(D+1)
) (
F − i 1

2ρρ̄
′ + i 1

2γ
pψq̄ψ̄

′
pγ̄

q̄) ∼ 0 .



D = 10 Maximal SDFT
• Local SUSY (full order of fermions ):

δεd = −i 1
2 (ε̄ρ+ ε̄′ρ′) ,

δεVAp = iV̄A
q̄(ε̄′γ̄q̄ψ

′
p − ε̄γpψq̄) ,

δεV̄Ap̄ = iVA
q(ε̄γqψp̄ − ε̄′γ̄p̄ψ

′
q) ,

δεC = i 1
2 (γpεψ̄′p − ερ̄′ − ψp̄ε̄

′γ̄ p̄ + ρε̄′) + Cδεd − 1
2 (V̄A

q̄ δεVAp)γ
(d+1)γpCγ̄ q̄ ,

δερ = −γpD̂pε+ i 1
2γ

pε ψ̄′pρ
′ − iγpψq̄ε̄′γ̄q̄ψ

′
p ,

δερ
′ = −γ̄ p̄D̂′p̄ε′ + i 1

2 γ̄
p̄ε′ ψ̄p̄ρ− iγ̄ q̄ψ′pε̄γ

pψq̄ ,

δεψp̄ = D̂p̄ε+ (F − i 1
2γ

qρ ψ̄′q + i 1
2ψ

q̄ ρ̄′γ̄q̄)γ̄p̄ε
′ + i 1

4εψ̄p̄ρ+ i 1
2ψp̄ε̄ρ ,

δεψ
′
p = D̂′pε′ + (F̄ − i 1

2 γ̄
q̄ρ′ψ̄q̄ + i 1

2ψ
′qρ̄γq)γpε+ i 1

4ε
′ψ̄′pρ

′ + i 1
2ψ
′
pε̄
′ρ′ .

D̂ is also defined by its own torsionful connection.

• The action is invariant up to the self-duality.



Relation to the ordinary supergravity,

how SDFT unifies the IIA and IIB,

mechanism to exchange IIA and IIB by O(D,D).



Parametrization: Reduction to Generalized Geometry

• We have used the DFT-variables. We may parametrize them in terms of
Riemannian variables.

• Assuming that the upper half blocks are non-degenerate, the double-vielbein
takes the most general form,

VAp = 1√
2

(
(e−1)p

µ

(B + e)νp

)
, V̄Ap̄ = 1√

2

(
(ē−1)p̄

µ

(B + ē)νp̄

)
.

Here eµp and ēν p̄ are two copies of the D-dimensional vielbein corresponding
to the same spacetime metric,

eµpeν qηpq = −ēµ p̄ēν q̄η̄p̄q̄ = gµν .

and Bµν corresponds to the Kalb-Ramond two-form gauge field, with
Bµp = Bµν(e−1)p

ν , Bµp̄ = Bµν(ē−1)p̄
ν .



Parametrization: Reduction to Generalized Geometry

• Take this parametrization and impose ∂
∂x̃µ
∼ 0.

• This reduces (S)DFT to generalized geometry
Hitchin; Grana, Minasian, Petrini, Waldram

• For example, the O(D,D) covariant Dirac operators become
√

2γADAρ ∼ γm (∂mρ+ 1
4ωmnpγ

npρ+ 1
24 Hmnpγ

npρ− ∂mφρ
)
,

√
2γADAψp̄ ∼ γm (∂mψp̄ + 1

4ωmnpγ
npψp̄ + ω̄mp̄q̄ψ

q̄ + 1
24 Hmnpγ

npψp̄ + 1
2 Hmp̄q̄ψ

q̄ − ∂mφψp̄
)
,

√
2V̄A

p̄DAρ ∼ ∂p̄ρ+ 1
4ωp̄qrγ

qrρ+ 1
8 Hp̄qrγ

qrρ ,

√
2DAψ

A ∼ ∂ p̄ψp̄ + 1
4ωp̄qrγ

qrψp̄ + ω̄p̄
p̄q̄ψ

q̄ + 1
8 Hp̄qrγ

qrψp̄ − 2∂p̄φψ
p̄ .

ωµ ± 1
2 Hµ and ωµ ± 1

6 Hµ naturally appear as spin connections. Liu, Minasian



Unification of type IIA and IIB SUGRAs

• In general, two zehnbeins eµp and ēµ p̄ are different, so there can be different
Riemaniann solution for each zehnbeins.

• To relate with the supergravity solution, we need to relate two zehnbeins equal
to each other

eµp ≡ ēµ p̄

by a Lorentz rotation,

(e−1ē)p
p̄(e−1ē)q

q̄η̄p̄q̄ = −ηpq .

• This rotation also rotates the RR field, and depending on the signature of
det(e−1ē) the chirality may or may not flipped.

• Depending on the resulting chirality of the RR filed, the solution is of IIA and
IIB.

• In this way, a single chiral theory can contains two types of solution IIA and
IIB , i.e. the maximal SDFT unifies the IIA and IIB supereravities .
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• In general, two zehnbeins eµp and ēµ p̄ are different, so there can be different
Riemaniann solution for each zehnbeins.

• To relate with the supergravity solution, we need to relate two zehnbeins equal
to each other

eµp ≡ ēµ p̄
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Diagonal gauge fixing and Reduction to SUGRA

• Once Identifying two zhenbeins

eµp ≡ ēµ p̄

the local Lorentz symmetries are broken to the diagonal gauge symmetry

Spin(1,D−1)L × Spin(D−1, 1)R =⇒ Spin(1,D−1)D .

• ordinary SUGRA ≡ diagonal gauge-fixed SDFT,



Diagonal gauge fixing and Reduction to SUGRA

• After the diagonal gauge fixing, we may parameterize the R-R potential as

C ≡
( 1

2

) D+2
4
∑′

p
1
p! Ca1a2···apγ

a1a2···ap

and obtain the field strength,

F := D0
+C ≡

( 1
2

) D
4
∑′

p
1

(p+1)! Fa1a2···ap+1γ
a1a2···ap+1

where
∑′

p denotes the odd p sum for Type IIA and even p sum for Type IIB, and

Fa1a2···ap = p
(
D[a1Ca2···ap] − ∂[a1φ Ca2···ap]

)
+ p!

3!(p−3)! H[a1a2a3Ca4···ap]

• The pair of nilpotent differential operators, D0
+ and D0

−, reduce to an exterior
derivative and its dual,

D0
+ =⇒ d + (H − dφ)∧
D0
− =⇒ ∗ [ d + (H − dφ)∧ ] ∗
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Modified O(D,D) IIA↔ IIB

• In order to preserve the diagonal gauge, eµp ≡ ēµ p̄, the O(D,D) transformation
rule is modified.

• A compensating local Lorentz transformation, L̄q̄
p̄ , SL̄

ᾱ
β̄ ∈ Pin(D−1, 1)R ,

must be accompanied:

V̄A
p̄ −→ MA

BV̄B
q̄L̄q̄

p̄ , γ̄ q̄L̄q̄
p̄ = S−1

L̄ γ̄ p̄SL̄ ,

where
L̄ = ē−1 [at − (g + B)bt] [at + (g− B)bt]

−1 ē ,

in the parametrization of the generic O(D,D) group element,

MA
B =

(
aµν bµσ

cρν dρσ
)
.



Modified O(D,D) Transformation Rule After The Diagonal Gauge Fixing

d −→ d

VA
p −→ MA

B VB
p

V̄A
p̄ −→ MA

B V̄B
q̄ L̄q̄

p̄

Cαᾱ , Fαᾱ −→ Cᾱβ̄(S−1
L̄ )β̄ ᾱ , F ᾱβ̄(S−1

L̄ )β̄ ᾱ

ρα −→ ρα

ρ′ᾱ −→ (SL̄)ᾱβ̄ρ
′β̄

ψαp̄ −→ (L̄−1)p̄
q̄ψαq̄

ψ′ᾱp −→ (SL̄)ᾱβ̄ψ
′β̄
p

• All the barred indices are now to be rotated. Consistent with Hassan



Modified O(D,D): IIA⇔ IIB

• If and only if det(L̄) = −1, the modified O(D,D) rotation flips the chirality
of the theory, since

γ̄(D+1)SL̄ = det(L̄) SL̄γ̄
(D+1) .

• This is the mechanism of exchanging of type IIA and IIB supergravities under
O(D,D) T-duality.



Summary

• Having the DFT extension of the Christoffel connection,

ΓCAB= 2(P∂CPP̄)[AB]+2(P̄[A
DP̄B]

E−P[A
DPB]

E)∂DPEC− 4
D−1 (P̄C[AP̄B]

D+PC[APB]
D)(∂Dd+(P∂EPP̄)[ED]) ,

the semi-covariant formalism provides the geometrical description for Double
Field Theory

• It manifests all the bosonic symmetries and succesfully provides the
supersymmetric extention of DFT in full order of fermions

• It is the unifyng description of the type IIA and IIB: a single theory contains
two types of solutions.

• Parametrization and diagoal gauge fixed SDFT is ordinary supergravities.

• After diagonal gauge IIA and IIB exchange is realized.



Conclusion

Thank you.



Semi-covariant formulation of Double Field Theory

Remark: Failure of the Equivalence Principle

Unlike the Christoffel symbol, the DFT-diffeomorphisms cannot transform our
connection to vanish point-wise:

ΓCAB = 2 (P∂CPP̄)[AB] + 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂EPP̄)[ED]

)
6= 0 .

That is to say, there is no normal coordinate in DFT. This can be viewed as the failure
of the equivalence principle applied to an extended object, i.e. string.


