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1. Introduction

“Double”: x — (x,X)

e The fields in SFT on a toroidal background have dependance on p; and w',
pi x I pa—)
so have natural dependance on both x and %.: ®(x', ;).
T-duality freely exchanges the x' and ;.

“String field theory is a double field theory”. [Kugo, Zwiebach]

e QOur focus is on the "massless sectors" of the SFT.



1. Introduction

o In general, supergravities are well known to be as the string effective theories.

e However, the supergravity is based on particle description and its description
is based on Riemannian geometry where the fundamental object is only metric

8uv-

e So, some stringy effect might be missing in the supergravity description, and it
may not be the best description of the string low energy effective theory.



1. Introduction

e String theory requires that g,,,., B, and ¢ should be treated on an equal footing
, because they form a multiplet of T-duality.

o This suggests that there should be an unifying description of them, beyond the
Riemannian geometry.

e Double Field Theory(DFT) has been suggested as an unifying description of
string effective theory by manifesting the T-duality structure [Siegel, Tseytlin, Duff,
Hull, Zwiebach, Hohm]
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1. Introduction

e The goal of this talk is to explain about the underlying geometric description
for this DFT, called "Semi-covariant formulation"

e It is completely covariant approach for DFT as it manifests

e O(D, D) T-duality
o DFT-diffeomorphisms (generalized Lie derivative)
e A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1, 1)

L] Cf Alternatives:[Siegel, Gwak, Hohm, Zwiebach;
Waldram, Coimbra, Strickland-Constable (Generalized Geometry a la Hitchin).]
L_‘f. U-duality extension: [Hohm, Samtleben, Berman, Cederwall, Thompson, Park, Suh, Malek,
Blair, Grana, Marques, Perry...]
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Bosonic Double Field Theory

e DFT manifests the T-duality by using O(D, D) tensors as its dynamical
variables.
e.g. NS-NS fields in DFT :

dilaton , ‘generalized metric’
(scalar density) (symmetric O(D, D) element )
—1 -1
-2d _ = —2¢ _ 8 —& B
e =V —8e ) HAB—( Bg—l g—Bg_]B )

cf. Non-geometric parametrization [Ko-Melby-Thompson-Meyer-Park
2015](Melby-Thompson’s talk)
o The Busher’s rule is realized as an subgroup of O(D, D) rotation, [Giveon,
Rabinovici, Veneziano, Tseytlin, Siegel] :
d is scalar and H4p is rank 2 tensor.

e Metric in DFT : O(D, D) metric,

0 1
‘7“":(1 0)

freely raises or lowers the (D + D)-dimensional vector indices, A, B.



2. Bosonic Double Field Theory

e DFT action for NS-NS sector: [Hull and Zwiebach , later with Hohm ]
Sprr = /dyZD eizdLDFT(rHa d),

where

Lorr(H,d) = H*® (4&13307 — 40,d0pd + éaAHCDaBHCD - %8AHCD8CHBD)

+48AHA383d — 8A83HAB .

e O(D, D) structure is manifest and background independent.

e All spacetime dimension is ‘formally doubled’, y* = (%, x"),
A=1,2,--- ,D+D.



Section condition

DFT is a D-dimensional theory written in terms of (D + D)-dimensional
language, i.e. tensors.

Section condition (strong constraint) :
The O(D, D) d’ Alembert operator is trivial, acting on arbitrary fields or gauge
parameters as well as their products:

2

0
00 = TY040 =2—~— ~0
W= T =205
In DFT, the solution is unique. Up to O(D, D) rotation, we can choose a frame
to set

)
%,

DFT action in Riemannian parametrization gives the effective action:

0.

Sprr = Sefr. = /de\/ —ge (Rg + 4(0¢)* — 11721_12) .



Section condition

e Level matching condition for the massless sector,

_ 52
p-w=N 0 «— 8,0 0%, 0 0,

for all fields. (weak constraint)
So,
' ® =0,  butdy® 8, £0

e Section condition(strong constraint) seems necessary to write a complete
theory, because of action invariance and closedness of symmetry algebra .



Gauge symmetry: ‘DFT-diffeomorphism’

Unification of diffeomorphism and B-field gauge symmetry , expressed via

e ‘generalized Lie derivative’ [Siegel, Courant, Grana ...]
LxTos = XP0pToup + wIpXPToup + 04X Tog—0"XaToup.
e X" is an unifying gauge parameter (B-field gauge symmetry-+diffeomorphism ),
X' = (A, 0x")

® Hyup is arank 2 DFT tensor, and e~ is a weight 1 DFT scalar,



Algebra of the gauge symmetry

e Commutator of the generalized Lie derivatives is closed, up to the section
condition, by using c-bracket,

[ﬁ)ﬁ ‘éY] ~ ﬁ[X,Y]C )
where [X, Y]c denotes C-bracket

(X, Y] = XP0pY" — YP0px" + 1Y 0" X5 — 1X°0' Y5,



Remarks 1 : section condition

e Understanding the level matching condition (weak constraint) in DFT is crucial
but very subtle. (Kanghoon’s talk )



Remarks 1 : section condition

e Understanding the level matching condition (weak constraint) in DFT is crucial
but very subtle. (Kanghoon’s talk )
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closure and action invariance. (next week’s talk )



Remarks 1 : section condition

e Understanding the level matching condition (weak constraint) in DFT is crucial
but very subtle. (Kanghoon’s talk )

e However, "relaxing" the section condition to some extent in case of
dimensional reduction has been understood. [Aldazabal, Baron, Nunez, Grana, Marqués,
Geissbiihler Berman, Lee]

The section condition is sufficient but not necessary condition for the algebra
closure and action invariance. (next week’s talk )

e This talk will be restricted on the section condition(strong constraint)



Remarks 2 : doubled-yet-gauged coordinates

® Doubled-yet-gauged coordinates [Park]

The D-dimensional section is better understood in terms of doubled-yet-gauged
(D+D)-dimensional coordinates.
: We start with D + D coordinates, and impose an equivalence relation,

o~ <Z>8A v,
where ¢ and ¢ are arbitrary functions in DFT.

Each gauge orbit parametrized by this shift functions represents a single
physical point.

which we call ‘Coordinate Gauge Symmetry’.



Remarks 2 : doubled-yet-gauged coordinates

® Realization of the coordinate gauge symmetry.

We enforcing that arbitrary functions and their arbitrary derivatives, denoted
here collectively by ®, are invariant under the coordinate gauge symmetry shift,

O(x+ A) = P(x), A* = ¢dp.



Remarks 2 : doubled-yet-gauged coordinates

Realization of the coordinate gauge symmetry.

We enforcing that arbitrary functions and their arbitrary derivatives, denoted
here collectively by ®, are invariant under the coordinate gauge symmetry shift,

O(x+ A) = P(x), A* = ¢dp.

Section condition.

The invariance under the coordinate gauge symmetry can be shown to be
equivalent to the section condition:

Coordinate Gauge Symmetry <= 9" =0.

Park, Lee-Park 2013
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Remarks 3: Double sigma model

e The coordinate gauge symmetry can be naturally realized on the worldsheet as
a conventional gauge symmetry of a string action.

e Introducing the gauge field for the coordinate gauge symmetry and defining the
covariant derivative, D,X” = 9,X" — AY , DFT sigma model action is written

i}

! /dzU »Cslring 5 Acslring - _% V —h h’:iDiXMDjXNHMN(X) - EUDiXMA/'M 5

4mal

e Under the Riemaniann parametrization, the DFT sigma model reduces to the
standard string action,

o7 Latting = 5o [— 3V =hH 0. X ;X" G (X) + €7 0.X" 0, X" B (X) + €7 0:X,,0))

with the topological term introduced by
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o Diffeomorphisms.

e Hohm-Zwiebach ansatz for finite transformations:
F:=3(L"'"+L7'L), F=gFg'=3(L'L+LL™")=F",

where
L™ = oux’V | L:=JL'Jg".
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Remarks 4: finite transformation

e Diffeomorphisms.

e Hohm-Zwiebach ansatz for finite transformations:
Fi=1@L"+L7'L), F=gFg ' =3 (L7'"L+LL™")=F",
where
Ly = aMx/N, L:=JL'Jg".
e Though nice and compact, F' does not precisely coincide with exp(ﬁx).

e Yet, up to coordinate gauge symmetry it is possible to show Park 2013

F = exp(Ly)

c.f. Berman-Cederwall-Perry, Hull, Papadopoulos, Sakatani, Rey
(Sakatani’s talk)



Semi-covariant formulation

3. Semi-covariant formlation
Connection
Teap = 2(POcPP)yy +2 (Pu"Py* — Pu"Py*) OpPec
Di (Pc APB + PciaPp )(6Dd+ (PO" PP)[ED]) )

Curvature
(PABPCD o PABPCD)SACBD



Semi-covariant formulation

e Basic geometric objects are

JaB , Has , d.



Semi-covariant formulation

e Basic geometric objects are
JaB , Has , d.

e Note that
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e We can define ‘projection’ which is related to H by
Pap = %(jAB + Hag), Pap= %(J‘\B — Hag)
which satisfy the property of the projections,

PA"Pp¢ = Pi€, Pag=Pps, Pi°Ps¢ =Pi°, Pap=Pm



Semi-covariant formulation

Basic geometric objects are
JaB , Has , d.

Note that
HAHE = 6,5, Hap = Hpa,

We can define ‘projection’ which is related to H by
Pap = %(;7/&8 + Hag), Pap= %(jAB — Hag)
which satisfy the property of the projections,
PA"PyC = Ps©, Pag=Pps, Ps"Pp" =P\", Pap=Pp
Projection will the characteristic property of DFT geometry.

The basic geometric objects, which should be treated equally, are

(d y PAB , 13,41;) .



o We further define a pair of six-index projectors,
Peas”™ = PP Py + 5255 Pep Py “P7 . Peas” Poer™ = Peas™™
Peas”" := PP A Ep B]F] + %P C[AI3 B] [eprip ) Peas” " Poer®™ = Peas™ )
which satisfy the following properties, symmetric and traceless,

‘Pcasper = Ppercas = Pciasip(er] » Peasper = Poercas = Pejas)pler »
Pagper =0,  P*¥Pagcper = 0, Pasper =0,  P*Puapcoer = 0.

e These projectors will govern the DFT-diffeomorphic anomaly in the
semi-covariant formalism, which can be easily projected out.



Semi-covariant formulation

e Postulate a “‘semi-covariant" derivative, V4 on DFT tensor 74 with weight w,

VeTa= dcTa—wlpeTa + Tea T,



Semi-covariant formulation

e Postulate a “‘semi-covariant" derivative, V4 on DFT tensor 74 with weight w,
VeTa= 0cTa—wI’scTa + TeaTs
e We demand the following compatibility conditions,
VaPpc =0, VaPpc =0, Vad =0,

(c¢f. Vagur = 0in Riemannian geometry )



e Torsion free conection is uniquely determined in terms of basic geometrical
variables, [IJ, Lee, Park *11]

Tipg = 2 (P(?CPP)[AB] +2 (PuPPy” — PuPPy") dpPrc
—5=1 (PcuPn)” + PepaPy”) (Opd + (PO"PP) sy
satisfying the torsion free condition,
Thse) =0, (&  L¥=LY)
and further satisfying

DEFT0 5 DEFT0
Pea™ Tpgr =0, Peag™ " T'per = 0.



Stringy differential geOMeEtry 11056294 (1011.1324)

o Under 6xPap = LxPas Sxd = Lxd (DFT-diffeomorphism) , the variation of
VT4 contains an anomalous non-covariant part,

(0x—Lx)VeTa ~2(P+P) i OrdipXe Ts .



Stringy differential geOMeEtry 11056294 (1011.1324)

o Under 6xPap = LxPas Sxd = Lxd (DFT-diffeomorphism) , the variation of
VT4 contains an anomalous non-covariant part,

(0x—Lx)VeTa ~2(P+P) i OrdipXe Ts .
e Hence, these are not DFT-diffeomorphism covariant,

e However, the anomalous term are controlled by the rank six projectors , so they
can be projected out by combining the projection matrices P4p and Pag.



Projection-aided covariant derivatives

“semi-covariant derivative” :
combined with the projections , we can generate various covariant quantities:

Examples:

e For O(D, D) tensors:

PcPPABVpTy, PcPPABVpTs,
PB4 Ts R P, Ts R Divergences ,
PABPCDVAVBTD N PABPCDVA VBTD . Laplacians

e Patern: need opposite chirality or contraction



Curvatures 1105.6294
e The usual diffeomorhphism field strength defined by
Repas = 0aTsep — 98Taco + Cac™ Taep — Tsct Taep

is NOT covariant.
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Curvatures 1105.6294
The usual diffeomorhphism field strength defined by
Repas = 0aTsep — 98Taco + Cac™ Taep — Tsct Taep

is NOT covariant.

Instead, we define semi-covariant four-index curvature , as for a key quantity
in our formalism, cf. [Siegel; Waldram: Hohm, Zwiebach]

Sascp := 3 (Rascp + Repas — FEABFECD) .

It satisfies
e just like the Riemann curvature,

Sasco = % (Sumjcp) + Sicpjas)) »

Sapep) = 0 : Bianchi identity ,
e and with projectors,
(PABPP |- PABPCPYS, iy ~ 0,

P PPPEPPSapep ~ 0,

P[APJBPKCPLDSABCD ~ 0, etc.



Curvatures I (11056201

e This is still Not covariant tensor, but contracting with projection operators, we
can obtain covariant quatities.

e Rank two-tensor:

P]AP]BSAB 5 where SAB = SCACB

e Scalar curvature: defines the Lagrangian for NS-NS sector

( pABpCD _ pAB PCD) Sacap

e The above scalar curvature exactly reproduces the bosonic Lagrangian by Hull,
Zwiebach,Hohm.

e There is no covariant rank 4 tensor.



Further completely covariant example

e Yang-Mills field strength in DFT is given by two opposite projections,
PAMPg" Fav
where Fyy is the semi-covariant field strength of a YM potential, Vy,
Fun = VuVn — VaVu — i [V, W] .

Unlike the Riemannian case, the I" connections are not canceled out.
[J-Lee-Park 2011, Choi-Park 2015
Choi’s talk



Further completely covariant example

e Yang-Mills field strength in DFT is given by two opposite projections,
PAMPBN-FMN )
where Fyy is the semi-covariant field strength of a YM potential, Vy,
Fun = VuVn — VaVu — i [V, W] .

Unlike the Riemannian case, the I" connections are not canceled out.
1J-Lee-Park 2011, Choi-Park 2015
Choi’s talk

o Completely covariant Killing equations of DFT:
L/;,X:HMN =0 s (PV)M(PX)N — (PV)N(PX)M = 0,
Lxd=0 = VuX" =0.

Park-Rey-Rim-Sakatani 2015
Rim’s talk



Reproduction of DFT

e Natural DFT action for NS-NS sector is

SpEr = / e [(PABPCD — P*"P)Sucep — ZA} )
»D

where the integral is taken over a section, ¥°, and the DFT-cosmological
constant term has been inserted.
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SpEr = / e [(PABPCD — P*"P)Sucep — ZA} )
»D

where the integral is taken over a section, ¥°, and the DFT-cosmological
constant term has been inserted.

e The curvature term agrees with ,
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Reproduction of DFT

e Natural DFT action for NS-NS sector is

SpEr = / e [(PABPCD — P*"P)Sucep — ZA} )
»D

where the integral is taken over a section, ¥°, and the DFT-cosmological
constant term has been inserted.
e The curvature term agrees with ,

HAB (4&183(1 — 404d0pd + éaA’HCDaB'HCD — %&(HCDacHBD)

—|—48A7‘[A383d — 8A837-LAB .
o The DFT-cosmological constant term becomes an exponential potential, e,
in term Riemannian geometry. The cosmological constant problem is clearly
reformulated in DFT



4. Supersymmetric extension of double field theory



Symmetries of SDFT

Semi-covariant formulation manifest all the bosonic symmetries
e O(D, D) T-duality:
e DFT-diffeomorphism (generalized Lie derivative)
¢ Diffeomorphism
o B-field gauge symmetry

o A pair of local Lorentz symmetries, Spin(1, D—1), x Spin(D—1, 1)

e D = 10 maximal Local SUSY



Field contents of D — 10 Maximal SDFT

e Bosons

o NS-NS sector { DFT-dilaton:

¢ R-R potential:

o Fermions (NS-R, R-NS)

o DFT-dilatinos:
e Gravitinos:

Double-vielbeins:

VApa
C%

J
oy,

Vap

/&

1a
P



Field contents of D = 10 Maximal SDFT

e Bosons
DFT-dilaton: d
* NS-NS sector { Double-vielbeins: Viap,  Vap
¢ R-R potential: C%s

e Fermions (NS-R, R-NS)

¢ DFT-dilatinos: %, P
oy {17
e Gravitinos: Py, e
Index Representation Metric (raising/lowering indices)
A,B, .- O(D, D) vector Tas
p.g.- | Spin(1,D—1) veetor |  my, = diag(— + + - +)
a, B, Spin(1, D—1), spinor CiagB, ) = C+’y”CJ:]
D,q, - Spin(D—1, 1); vector Mg = diag(+ — —---—)
apB,--- | Spin(D—1, 1k spinor | C,s5,  (3")" =Cy5°CY'




Field contents of D = 10 Maximal SDFT

e Bosons
DFT-dilaton: d
* NS-NS sector { Double-vielbeins: Viap,  Vap
C%

¢ R-R potential:
o Fermions (NS-R, R-NS)

¢ DFT-dilatinos: %, P
o Gravitinos: ¥y, s

Al NS-NS fields, d, V., Va5, will be equally treated as basic geometric objects.



Field contents of D = 10 Maximal SDFT

e Bosons
DFT-dilaton: d
* NS-NS sector { Double-vielbeins: Vap,  Vap
¢ R-R potential: C%

o Fermions (NS-R, R-NS)

e DFT-dilatinos: %, i
e Gravitinos: P, 2

R-R potential is bi-fundamental spinor representation
as a democratic description.

¢f . O(D, D) spinor representation Fukuma, Oota Tanaka; Hohm, Kwak, Zwiebach



Field contents of D — 10 Maximal SDFT

e Bosons

o NS-NS sector { DFT-dilaton:

¢ R-R potential:

o Fermions (NS-R, R-NS)

o DFT-dilatinos:
e Gravitinos:

Double-vielbeins:

d
VAp ) VA;‘:
«@

C%

o /v
PP
pReY RZe1

) Wy



Field contents of D = 10 Maximal SDFT

e Bosons
DFT-dilaton: d
* NS-NS sector { Double-vielbeins: Vap s
¢ R-R potential: C%

e Fermions (NS-R, R-NS)

o DFT-dilatinos: %,
e Gravitinos: vy

cf . Relation to the fields in the ordinary supergravity
p~ A=

d=¢—1lny/—g

Vap

/a

e
Yy



Field contents of D = 10 Maximal SDFT

e Bosons

« NS-NS sector { DFT-dilaton:

¢ R-R potential:

e Fermions (NS-R, R-NS)

e DFT-dilatinos:
e Gravitinos:

Double-vielbeins:

d
VAp 5 VA[)
C%
s P
o5, Pl

A priori, O(D, D) rotates only the O(D, D) vector indices (capital Roman), and
the R-R sector and all the fermions are O(D, D) T-duality singlet.

The usual ITA < IIB exchange will be realized only after fixing a gauge.




Field contents of D — 10 Maximal SDFT

e Bosons
DFT-dilaton: d
* NS-NS sector { DFT-vielbeins: Vi,  Vap
¢ R-R potential: C%

e Fermions (NS-R, R-NS)

¢ DFT-dilatinos: e, p
e Gravitinos: e, 2

e Set the chiralities

A APy = e, P p = —cp,

,—Y(D+1),¢); _ C/d)]/77 ,—y(D+1)p/ _ —C/p,.

c and ¢’ are sign factors, and equivalent up to a Pin(1,9) x Pin(9, 1).
So we may fix ¢ = ¢’ = +1 without loss of generality.
However, the theory contains two ‘types’ of solutions, i.e. IIA and IIB.



Double-vielbein 1105.6294, 1109.2035

e Double-vielbein simultaneously diagonalizes Jap and Has,

7=(v V><"1 0)” Py =y V)<° -

0 7
o [t follows the defining properties
VAPVAq = Tpq » VApVAp =0 VaP Vg, = Pag,
VapV'a = 7l , VaPVigp = Pag,
P, Pap are projection matrices(‘left and right’),
PPsC = P,C,  P"PC =P,C, PS"PS =0
which are related to H and 7,
Pap + Pag = Jas, Pap — Pap = Has
o The basic geometric objects, which should be treated equally, are

(d,Vap,Vap), or  (d,Pap,Pas).



Semi-covariant derivatives

o We introduce master ‘semi-covariant’ derivative

Dy =04 +Tu+®s+ Dy



Semi-covariant derivatives

o We introduce master ‘semi-covariant’ derivative

Dy =04 +Tu+®s+ Dy

e [t is also useful to set
VA = 8A + FA )

e The ‘semi-covariant’ derivative for the DFT-diffeomorphism is

n
B 2 : B
VCT“;AIAZ..AA" = acTwAIAZ...A"—wF BCTWA]AzmAn',_ PCA[ TWAI"'AzleAiJrI“‘An .

i=1



o compatibility for the whole NS-NS sector

DAd = 0., DA VB,, = 0., DA ‘73,7 = 0 . (Cf Due,,“ = 0)
together with

Datlpg = Dailpg = Da(7")* s = Da(¥)"5 = DaCyap = DaCraz =0.

It follows that
VAd = 07 VAPB(; = 07 VAPBC = O, (Cf,vugu)\ = 0)
e Spin connections

Papg = V2, VaViy, Papg = V5V Vg,



e Torsion free conection is uniquely determined in terms of basic geometrical
variables, [IJ, Lee, Park *11]

Tipg = 2 (P(?CPP)[AB] +2 (PuPPy” — PuPPy") dpPrc
—5=1 (PcuPn)” + PepaPy”) (Opd + (PO"PP) sy
satisfying the torsion free condition,
Thse) =0, (&  L¥=LY)
and further satisfying

DEFT0 5 DEFT0
Pea™ Tpgr =0, Peag™ " T'per = 0.



Covariant derivatives

“semi-covariant derivative” :
combined with the projections , we can get various covariant quantities:

Examples:

e For O(D, D) tensors:

PcPPABVpTy, PcPPABVpTs,
PB4 Ts R P, Ts R Divergences ,
PABPCDVAVBTD N PABPCDVA VBTD . Laplacians

e Rule: need opposite chirality or contraction



Covariant derivatives

e For Spin(1,D—1), x Spin(D—1, 1); tensors:

D15, DTy,
D'T,, D'T;,
D,D'Ty, D;D'T,,
where we set
D, := V*,Da, Dy := VA;Dy.

These are the pull-back of the previous results using the double-vielbeins.



Covariant derivatives

@

e Dirac operators for fermions, p®, 7, p'“, 1" : [II, Lee, Park "11]

Y'Dpp =¥'Dap, YDyt = ¥ Datly
Dpp, ’Dﬁwﬁ = DAwA )
Y Dpp' = 7"Dap’, Y Doy = 7" Datly

Dpp/ ) DP¢IP = DAwlA )



Covariant derivatives

e For Spin(1, D—1). x Spin(D—1, 1)k bi-fundamental spinors, C“j :
[1J, Lee, Park *12]

YADuC, DaCH* .
e Further define
DLC := ¥"DsC + PO DY,

D_C :=~+"DsC — 4 PID .



Covariant derivatives

For Spin(1, D—1). x Spin(D—1, 1) bi-fundamental spinors, C*5:
[1J, Lee, Park *12]

YADuC, DaCH* .

Further define
DLC := ¥"DsC + PO DY,

D_C :=+*"DaC — yPID,CHA .

Especially for the torsionless case, the corresponding operators are nilpotent
up to the section condition

(DY)*C ~0, (D)’C ~0,

The field strength of the R-R potential, C* 5, is then defined by
F:=D\C.



D = 10 Maximal SDFT

e Lagrangian (full order of fermions ):
Lopen = ¢~ [L(PUPP — PYPLYS ey + STH(FF) — ipFp + iy, F7Y
+LpYDip— D — Dyt — PP + VD + D)
where %, denotes the charge conjugation, F := C'F'Cy.

® Dy in Sacsp, D and D} are defined by their own torsionful connection ,

e The torsions are determined to satisfy usual 1.5 formalism ,

5LSDFT = 5FABC x 0.

e The Lagrangian is pseudo : self-duality of the R-R field strength needs to be
imposed by hand, just like the ‘democratic’ type I SUGRA Bergshoeft, er al.

(1=2") (F = 308 + i wgiga”) ~ 0.



D = 10 Maximal SDFT
e Local SUSY (full order of fermions ):
ded = —iz(Ep+E'p'),
b Vap = iVa"(E'3g¢), — Evpidy)
0 Vap = iVa®(Evgtp — E9505)
0-C = i (WPe), — e — &' A" + p&') + Ced — L (VA5 8.Vay)y I+ yPCHT
6ep = V" Dpe + ity"edpp’ — iV YIE T,
8:p = —V'Dse' + i3V Ppp — VYV by »
8etpp = Dpe + (F — iy p ¥y + ig0" 0/%)ipe’ + igetnp + i3tpep,
8oty = Dpe’ + (F — i3¥'p'dq + is 0" prg) e + ige'dpp’ +izue'p’.

D is also defined by its own torsionful connection.

o The action is invariant up to the self-duality.



Relation to the ordinary supergravity,
how SDFT unifies the IIA and IIB,

mechanism to exchange IIA and IIB by O(D, D).



Parametrization: Reduction to Generalized Geometry

e We have used the DFT-variables. We may parametrize them in terms of
Riemannian variables.

e Assuming that the upper half blocks are non-degenerate, the double-vielbein
takes the most general form,

w=( G s (S,

Here e,,” and ,” are two copies of the D-dimensional vielbein corresponding
to the same spacetime metric,

ey pg = 8uv -

and B,,,, corresponds to the Kalb-Ramond two-form gauge field, with
Bup = Buv (eil)pyv Bup = BW(Eil)ﬁu-



Parametrization: Reduction to Generalized Geometry

e Take this parametrization and impose 867 ~ 0.
"

e This reduces (S)DFT to generalized geometry
Hitchin; Grana, Minasian, Petrini, Waldram

e For example, the O(D, D) covariant Dirac operators become

V29 Dap ~ 4" (Onp + 190V P + 35HupY" P — Onhp) ,

V29 Dathp ~ 7" (Ot + 50mpy""p + @upgth? + 35 Hounp V" Pp + 3 Hupgh? — Onptlp)
V2V4Dap ~ 8pp + 5wpay” 0 + §Hpa "0,

V2D ~ Py + swpg YW + @) + FHpry " — 205407 .

l 1 . . . y s,
wy * 5H, and w, + ¢H), naturally appear as spin connections. Liu, Minasian



Unification of type IIA and I[IB SUGRAs

e In general, two zehnbeins ¢,,” and ¢,” are different, so there can be different
Riemaniann solution for each zehnbeins.

e To relate with the supergravity solution, we need to relate two zehnbeins equal
to each other

by a Lorentz rotation,



Unification of type IIA and I[IB SUGRAs

In general, two zehnbeins e,,” and &,,” are different, so there can be different
Riemaniann solution for each zehnbeins.

To relate with the supergravity solution, we need to relate two zehnbeins equal
to each other

by a Lorentz rotation,

This rotation also rotates the RR field, and depending on the signature of
det(e™'2) the chirality may or may not flipped.

Depending on the resulting chirality of the RR filed, the solution is of IIA and
1IB.



Unification of type IIA and I[IB SUGRAs

In general, two zehnbeins e,,” and &,,” are different, so there can be different
Riemaniann solution for each zehnbeins.

To relate with the supergravity solution, we need to relate two zehnbeins equal
to each other

by a Lorentz rotation,

This rotation also rotates the RR field, and depending on the signature of
det(e™'2) the chirality may or may not flipped.

Depending on the resulting chirality of the RR filed, the solution is of IIA and
1IB.

In this way, a single chiral theory can contains two types of solution IIA and
[IB, i.e. the maximal SDFT unifies the IIA and IIB supereravities .



Diagonal gauge fixing and Reduction to SUGRA

e Once Identifying two zhenbeins

P —5 P
€y =€y

the local Lorentz symmetries are broken to the diagonal gauge symmetry

Spin(1,D—1), x Spin(D—1,1x = Spin(1,D—1)p.

e  ordinary SUGRA = diagonal gauge-fixed SDFT,



Diagonal gauge fixing and Reduction to SUGRA

o After the diagonal gauge fixing, we may parameterize the R-R potential as
— (1 % /1 ajay---a,
C= (E) ZPIT[CHIHZ"'up’Y !
and obtain the field strength,
. 0 — (1 L / 1 ayar---a
Fi=DiC= (3)" X, Gany Fanar g V0
where Z; denotes the odd p sum for Type IIA and even p sum for Type IIB, and

|
]:alaz"'ap =p (D[achZ"'ap] - a[lllgzacaz"'“p]) + ﬁH[”l“Z“SC‘M”'aP]



Diagonal gauge fixing and Reduction to SUGRA

o After the diagonal gauge fixing, we may parameterize the R-R potential as

1 % 71 ajay---a
C= (5) Zp Flcalﬂzmup'y 1
and obtain the field strength,
D ceea
F=DiC=(3)" X, grmy Fawgn 7@
where Z; denotes the odd p sum for Type IIA and even p sum for Type IIB, and

!
'7:“]“2""’V =p (D[alcllz"'ap] - a[lllgzacaz"'“p]) + ﬁH[”l“2“3ca4”'ap]

o The pair of nilpotent differential operators, D% and D° , reduce to an exterior
derivative and its dual,

D = d+ (H —dg)A
D = x[d+ (H —dg)A | *



Modified O(D, D) TIA < IIB

e In order to preserve the diagonal gauge, ¢, = e,”, the O(D, D) transformation
rule is modified.

e A compensating local Lorentz transformation, L;” , S° 5 € Pin(D—1, 1)z,
must be accompanied:

Vi — MALPVE'L AL =SS,
where
L=¢"[a'— (g+B)b][a' + (g—B)b]| 'e,

in the parametrization of the generic O(D, D) group element,

s [ a', b7
MA_(CW d)



Modified O(D, D) Transformation Rule After The Diagonal Gauge Fixing

d — d
Va? — MAB VP
V4P — MpB VL7
Co%, Foa —  C%(S;"a, Fo5(5.")4
p” — p*
P — (S2)% 30"
by — (L yg
i~ — (S2)* 54,

e All the barred indices are now to be rotated.



Modified O(D, D): 1IA < 1IB

o If and only if det(L) = —1, the modified O(D, D) rotation flips the chirality
of the theory, since
’7<D+1)SZ = det(z,) Sjﬁ/(DJrl) .

o This is the mechanism of exchanging of type IIA and IIB supergravities under
O(D, D) T-duality.



Summary

Having the DFT extension of the Christoffel connection,
Deap=2(POCPP) |y +2(Piy PPy Py PPy *) 0pPrc — 5t (PoaPy P +Peia Py )(Opd-+(POPPP) )
the semi-covariant formalism provides the geometrical description for Double

Field Theory

It manifests all the bosonic symmetries and succesfully provides the
supersymmetric extention of DFT in full order of fermions

It is the unifyng description of the type IIA and IIB: a single theory contains
two types of solutions.

Parametrization and diagoal gauge fixed SDFT is ordinary supergravities.

After diagonal gauge IIA and IIB exchange is realized.



Thank you.

«Or < Fr «=»

«E>

o



Semi-covariant formulation of Double Field Theory

Remark: Failure of the Equivalence Principle

Unlike the Christoffel symbol, the DFT-diffeomorphisms cannot transform our
connection to vanish point-wise:

Teas = 2(POcPP) yp + 2 (Pu”Py® — Pu”Py)") OpPrc
— 57 (PeuPs” + PeaPy”) (8pd + (PO"PP)(p))
#0.

That is to say, there is no normal coordinate in DFT. This can be viewed as the failure
of the equivalence principle applied to an extended object, i.e. string.



