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Intruduction

• A characteristic of Double Field Theory is the section condition :

The O(D,D) d’Alembert operator is trivial, acting on arbitrary fields or gauge
parameters as well as their products:

@A@
A = J AB@A@B = 2

@2

@x̃µ@xµ
⇠ 0

i.e.
@A@

A� ⇠ 0 , and @A�1@
A�2 ⇠ 0

• DFT action is (locally) equivalent to the effective action:

SDFT =) Seff. =

Z
dxDp�ge�2�

⇣
Rg + 4(@�)2 � 1

12 H2
⌘
.

• Section condition(strong constraint) seems necessary to write a complete
theory, because of action invariance and closedness of symmetry algebra .
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Introduction

• ‘generalized Lie derivative’ [Siegel, Courant, Grana ...]

L̂XT!A := XB@BT!A + !@BXBT!A + @AXBT!B�@BXAT!B.

• Commutator of the generalized Lie derivatives is closed, up to the section
condition , by using c-bracket,

[L̂X, L̂Y ]⇠ L̂[X,Y]C ,

where [X, Y]C denotes C-bracket

[X, Y]AC := XB@BYA � YB@BXA + 1
2 YB@AXB � 1

2 XB@AYB ,



• Understanding the level matching condition(weak constraint) in DFT is still
on-going [K. Lee’s talk] .

• However, "relaxing" the section condition to some extent has been understood.
[ Geissbühler; Aldazabal, Baron, Marqués, Nunez; Grana, Marqués]
The section condition is sufficient but not the necessary condition for the
algebra closure and action invariance.

• The relaxation of the section condition is allowed when doing Sherk-Schwarz
reduction in DFT and it gets low dimensional gauged DFT

• A variety of the known gauged supergravities in lower dimensions can be
reproduced, i.e. DFT provides the higher dimensional origin of a various
gauged supereravities. (Electric gauging. cf . Magnetic gauging is from EFT
[Berman, Musaev, C. Thompson;...] )
- A systematic classification of all possible deformations as for gaugings is
allowed by embedding tensor method [de Wit, Samtleben]
- Only some of them can be obtained by a Sherk-Schwarz dimensional
reduction of 11 or 10-dimensional supergravities.
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• This is an indication that DFT goes beyond the ordinary supergravity or
generalized geometry .

• Particularly, one needs explicitly section-condition-breaking terms, which
depend on both of x and x̃. Geissbühler realized necessity of introducing such
term,

�L = �1
6

F̂ÂB̂D̂F̂ÂB̂Ĉ ,

to reproduce the complete classification of N = 4 ,D = 4 gauged SUGRAs.



• ‘Geometric’ understanding of DFT
- Flux formulatin [Hohm, Kwak]
- Semi-covariant formulation [IJ, Lee, Park]
- Direct analogy of the Riemann geometry using Christofel connection,
- Fully covariant with respect to all the symmetries in DFT,
- Maximal and half maximal supersymmetric DFT is realized in full order of

fermions, where Maximal supersymmetric DFT unifies the type II
supergravities [IJ, Lee, Park, Suh]

• ‘Geometric’ understanding of gauged DFT
- in flux formulation (for bosonic DFT) [Geissbuhler; Marques, Aldazabal, Nunez;

Berman, Bair, Malek, Perry]
- in semi-covariant formulation, understood by torsionful deformation of

gauged DFT, where half-maximal supersymmetry was realized.[Berman, Lee]
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Goal

• To have systematic understanding of the low dimensional gauged SDFT in
the semi-covariant formulation

• We twist the semi-covariant formulation of the ungaged SDFT without
any ambiguity.

- By the formulation, all the symmetries in DFT are fully covariant.

- Torsionful deformation of the gauged DFT is derived from twisting.

- Definition of curvature includes the section condition breaking term

• To realize the maximal as well as half maximal supersymmetric gauged DFT
in full order of fermions

• Constraint on the structure constant for the maximal SDFT.

• Two half maximal gauged SDFTs.
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2. Semi-covariant formulation of DFT/SDFT

[1011.1324, 1105.6294, 1109.2035, 1112.0069, 1206.3478, 1210.5078]



Symmetries of SDFT

Semi covariant formulation manifests all the bosonic symmetries.

• O(D,D) T-duality:

• DFT-diffeomorphism (generalized Lie derivative)
• Diffeomorphism
• B-field gauge symmetry

• A pair of local Lorentz symmetries, Spin(1,D�1)L ⇥ Spin(D�1, 1)R

• D = 10 Local SUSY



Field contents of D = 10 Maximal SDFT

• Bosons

• NS-NS sector
⇢

DFT-dilaton: d
Double-vielbeins: VAp , V̄Ap̄

• R-R potential: C↵
↵̄

• Fermions
• DFT-dilatinos: ⇢↵ , ⇢0↵̄

• Gravitinos:  ↵
p̄ ,  0↵̄

p

Index Representation Metric (raising/lowering indices)
A, B, · · · O(D, D) vector JAB
p, q, · · · Spin(1, D�1)L vector ⌘pq = diag(� + + · · ·+)
↵, �, · · · Spin(1, D�1)L spinor C+↵� , (�p)T = C+�pC�1

+
p̄, q̄, · · · Spin(D�1, 1)R vector ⌘̄p̄̄q = diag(+ � � · · ·�)
↵̄, �̄, · · · Spin(D�1, 1)R spinor C̄+↵̄�̄ , (�̄ p̄)T = C̄+�̄ p̄C̄�1

+



Semi-covariant formulation
• The DFT-vielbeins satisfy the four defining properties:

VApVA
q = ⌘pq , V̄Ap̄V̄A

q̄ = ⌘̄p̄q̄ , VApV̄A
q̄ = 0 , VApVB

p + V̄Ap̄V̄B
p̄ = JAB .

• They generate a pair of two-index projectors,

PAB := VA
pVBp , P̄AB := V̄A

p̄V̄Bp̄ ,

PAB, P̄AB are projection matrices(‘left and right’),

PA
BPB

C = PA
C , P̄A

BP̄B
C = P̄A

C , PA
BP̄B

C = 0

which are related to H and J ,

PAB + P̄AB = JAB , PAB � P̄AB = HAB

• We further define a pair of six-index projectors,

PCAB
DEF := PC

DP[A
[EPB]

F] + 2
D�1 PC[APB]

[EPF]D , PCAB
DEFPDEF

GHI = PCAB
GHI ,

P̄CAB
DEF := P̄C

DP̄[A
[EP̄B]

F] + 2
D�1 P̄C[AP̄B]

[EP̄F]D , P̄CAB
DEFP̄DEF

GHI = P̄CAB
GHI ,

which satisfy the following properties, symmetric and traceless,

PCABDEF = PDEFCAB = PC[AB]D[EF] , P̄CABDEF = P̄DEFCAB = P̄C[AB]D[EF] ,
PA

ABDEF = 0 , PABPABCDEF = 0 , P̄A
ABDEF = 0 , P̄ABP̄ABCDEF = 0 .
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Semi-covariant derivatives

• We introduce master ‘semi-covariant’ derivative

DA = @A + �A + �A + �̄A .

• It is also useful to set
rA = @A + �A ,

• The ‘semi-covariant’ derivative for the DFT-diffeomorphism is

rCT!A1A2···An := @CT!A1A2···An�!�B
BCT!A1A2···An+

nX

i=1

�CAi
BT!A1···Ai�1BAi+1···An .

• Spin connections

�Apq = VB
prAVBq , �̄Ap̄q̄ = V̄B

p̄rAV̄Bq̄ ,

from
DAVBp = 0 , DAV̄Bp̄ = 0 . (cf . Dµe⌫ a = 0)
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• compatibility for the whole NS-NS sector

DAd = 0 , DAVBp = 0 , DAV̄Bp̄ = 0 . (cf . Dµe⌫ a = 0)

together with

DA⌘pq = DA⌘̄p̄q̄ = DA(�
p)↵� = DA(�̄

p̄)↵̄�̄ = DAC+↵� = DAC̄+↵̄�̄ = 0 .

It follows that

rAd = 0 , rAPBC = 0 , rAP̄BC = 0 , (cf .rµg⌫� = 0)

• Spin connections

�Apq = VB
prAVBq , �̄Ap̄q̄ = V̄B

p̄rAV̄Bq̄ ,



• Torsion free conection is uniquely determined in terms of basic geometrical
variables, [IJ, Lee, Park ’11]

�0
CAB = 2 (P@CPP̄)[AB] + 2

�
P̄[A

DP̄B]
E � P[A

DPB]
E� @DPEC

� 4
D�1

�
P̄C[AP̄B]

D + PC[APB]
D��@Dd + (P@EPP̄)[ED]

�
,

from

rAd = 0 , rAPBC = 0 , rAP̄BC = 0 , (cf .rµg⌫� = 0)

�0
[ABC] = 0 , (, L̂@

X = L̂r
X )

PCAB
DEF�0

DEF = 0 , P̄CAB
DEF�0

DEF = 0 .



Semi-covariant formulation

• Under �XHAB = L̂XHAB , �Xd = L̂Xd, namely DFT-difeomorphism
(= diffeomorphism + B-field gauge symmetry), the variation of rCTA contains
an anomalous non-covariant part,

(�X�L̂X)rCTA ⇠ 2(P+P̄)CA
BFDE@F@[DXE]TB .

• However, the anomalous term are controlled by the rank six projectors , so they
can be projected out by combining the projection matrices PAB and P̄AB.
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Projection-aided covariant derivatives

“semi-covariant derivative” :

combined with the projections , we can get various covariant quantities:

Examples:

• For O(D,D) tensors:

PC
DP̄A

BrDTB , P̄C
DPA

BrDTB ,

PABrATB , P̄ABrATB , Divergences ,

PABP̄C
DrArBTD , P̄ABPC

DrArBTD . Laplacians

• Rule: need opposite chirality or contraction



Projection-aided covariant derivatives

• For Spin(1,D�1)L ⇥ Spin(D�1, 1)R tensors:

DpTq̄ , Dp̄Tq ,

DpTp , Dp̄Tp̄ ,

DpDpTq̄ , Dp̄Dp̄Tq ,

where we set
Dp := VA

pDA , Dp̄ := V̄A
p̄DA .

These are the pull-back of the previous results using the double-vielbeins.



Projection-aided covariant derivatives

• Dirac operators for fermions, ⇢↵,  ↵
p̄ , ⇢0↵̄,  0↵̄

p : [IJ, Lee, Park ’11]

�pDp⇢ = �ADA⇢ , �pDp p̄ = �ADA p̄ ,

Dp̄⇢ , Dp̄ 
p̄ = DA 

A ,

�̄ p̄Dp̄⇢
0 = �̄ADA⇢

0 , �̄ p̄Dp̄ 
0
p = �̄ADA 

0
p ,

Dp⇢
0 , Dp 

0p = DA 
0A ,



Projection-aided covariant derivatives
• For Spin(1,D�1)L ⇥ Spin(D�1, 1)R bi-fundamental spinors, C↵

�̄ :
[IJ, Lee, Park ’12]

�ADAC , DAC�̄A .

• Further define
D+C := �ADAC + �(D+1)DAC�̄A ,

D�C := �ADAC � �(D+1)DAC�̄A .

• Especially for the torsionless case, the corresponding operators are nilpotent
up to the section condition

(D0
+)

2C⇠ 0 , (D0
�)

2C⇠ 0 ,

• The field strength of the R-R potential, C↵
↵̄, is then defined by

F := D0
+C .
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Curvatures I [1105.6294]

• From the usual DFT-diffeomorhphism field strength, we define semi-covariant
four-index curvature

SABCD := 1
2

�
RABCD + RCDAB � �E

AB�ECD
�
.

• It satisfies

• just like the Riemann curvature,

SABCD = 1
2 (S[AB][CD] + S[CD][AB]) ,

SA[BCD] = 0 : Bianchi identity ,

• and with projectors,

(PABPCD + P̄ABP̄CD)SACBD ⇠ 0 ,

P A
I P B

J P̄ C
K P̄ D

L SABCD ⇠ 0 ,

P A
I P̄ B

J P C
K P̄ D

L SABCD ⇠ 0 , etc.
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Curvatures I [1105.6294]

• This is still Not covariant tensor, but contracting with projection operators, we
can obtain covariant quatities.

• Rank two-tensor:

PI
AP̄J

BSAB , where SAB := SC
ACB

• Scalar curvature: defines the Lagrangian for NS-NS sector

(PABPCD � P̄ABP̄CD)SACBD



Curvatures II

• Alternative way to define the curvature is using the field strength for the local
Lorentz group, c.f. YM-gauge field strength

FABpq := rA�Bpq �rB�Apq + �Ap
r�Brq � �Bp

r�Arq ,

F̄ABp̄q̄ := rA�̄Bp̄q̄ �rB�̄Ap̄q̄ + �̄Ap̄
r̄�̄B̄rq̄ � �̄Bp̄

r̄�̄Ārq̄ ,

We define Semi-covariant four-index curvature of the spin connections ,

GABCD := 1
2

⇥
(F + F̄)ABCD + (F + F̄)CDAB + (�+ �̄)E

AB(�+ �̄)ECD
⇤
,

where

FABCD = FABpqVC
pVD

q , F̄ABCD = F̄ABp̄q̄V̄C
p̄V̄D

q̄ .



Curvatures II

• These two four-index curvatures are closely related to each other,

GABCD = SABCD + 1
2 (VA

p@EVBp + V̄A
p̄@EV̄Bp̄)(VC

q@EVDq + V̄C
q̄@EV̄Dq̄) ,

such that upon the section condition they are equivalent.

• Later, GABCD will be the proper curvature when we relax the section condition.

• The later terms will correspond to what Geissbuler introduced in order to
reproduce the the low dimensional gauged SUGRA.

• The curvature cannot be written in terms of generalized metric only, but should
be written in terms of vielbein.



3. Twisting the semi-covariant formulation

• Twisting ansatz (Scherk-Schwarz reduction ansatz)

• Twistability conidition ("relaxing" the section condition) by closure of the
algebra.

• Obtain low dimensional gauged SDFT with maximal and half maximal
supersymmetry



U-twisting ansatz
• For the twisting we use the two twisting datas:

a scalar �(x) and U(x)A
Ȧ 2 O(D,D),

UJ̇Ut = J , J̇ṀṄ =

✓
0 1
1 0

◆
,

using which we set the ansatz for U-twist

TA1···An = e�2!�UA1
Ȧ1 · · ·UAn

Ȧn ṪȦ1···Ȧn
.

• The �(x) and U(x)A
Ȧ do not satisfy the section condition, but shall be require to

satisfy the consistency conditions, i.e. twistability condition .
• The twisted field is denoted by dot with dotted indices,

• and U(x)A
Ȧ carries one undotted index and other dotted index, such that the

additional O(D,D) metric, J̇ṀṄ is introduced.
• While the twisted metric J̇ṀṄ may coincide numerically with the untwisted

metric JMN , we deliberately distinguish them as the two different kinds of
indices will never be contracted.
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.

• The �(x) and U(x)A
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• If we assume the U matrix to be in a block diagonal form,

U =

✓
1 0
0 u

◆
,

and split all the internal coordinate dependency into the U matrix, then this
twisting ansatz is nothing but the usual Sherk-Schwarz reduction ansatz.

• But all the forthcoming analyses do not necessarily demand this ansatz, so we
will use above general twisting ansatz.
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U-twisting ansatz
• For the twisting we use the two twisting datas:

a scalar �(x) and U(x)A
Ȧ 2 O(D,D),

UJ̇Ut = J , J̇ṀṄ =

✓
0 1
1 0

◆
,

using which we set the ansatz for U-twist

TA1···An = e�2!�UA1
Ȧ1 · · ·UAn

Ȧn ṪȦ1···Ȧn
.

• The only field variables to be twisted are

e�2d = e�2�e�2ḋ , VAp = UA
ȦV̇Ȧp , V̄Ap̄ = UA

Ȧ ˙̄VȦp̄ .

Other fields (fermions and the R-R potential) are weightless and O(D,D)
singlet.

• The twist of the N = 1 or the N = 2, D = 10 SDFT simply amounts to
inserting the above expressions for the dilaton and the vielbeins into the
untwisted Lagrangian.



U-twisting ansatz
• The derivatives of the untwisted fields then assume a generic form,

@CTA1···An = e�2!�UC
ĊUA1

Ȧ1 · · ·UAn
Ȧn ḊĊṪȦ1···Ȧn

,

• U-derivative, ḊĊ , is defined to act on a twisted field by

ḊĊṪȦ1···Ȧn
:= @̇ĊṪȦ1···Ȧn

� 2!@̇Ċ� ṪȦ1···Ȧn
+

nX

i=1

⌦ĊȦi

ḂṪȦ1···Ḃ···Ȧn
.

With the pull-back of the naked derivative,

@̇Ċ = U�1
Ċ

C@C ,

and a pure gauge “connection",

⌦ĊȦ
Ḃ :=

⇣
U�1@̇ĊU

⌘

Ȧ

Ḃ ,

• The U-derivatives are all commutative,

[DA ,DB] = 0 , [DA , ḊḂ] = 0 , [ḊȦ , ḊḂ] = 0 .
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• U-derivative, ḊĊ , is defined to act on a twisted field by

ḊĊṪȦ1···Ȧn
:= @̇ĊṪȦ1···Ȧn

� 2!@̇Ċ� ṪȦ1···Ȧn
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U-twisting ansatz

• Those replacement leads to twisted SDFT Lagrangian,

LN=1
D=10(JAB, @A, d,VAp, V̄Ap̄, ⇢, p̄) = e�2�L̇Half�maximal

Twisted SDFT (J̇ȦḂ, ḊȦ, ḋ, V̇Ȧp,
˙̄VȦp̄, ⇢, p̄) ,

LN=2
D=10(JAB, @A, d,VAp, V̄Ap̄, C, ⇢, p̄, ⇢

0, 0
p)

= e�2�L̇Maximal
Twisted SDFT(J̇ȦḂ, ḊȦ, ḋ, V̇Ȧp,

˙̄VȦp̄, C, ⇢, p̄, ⇢
0, 0

p) .

• The section condition
ḊȦḊȦ ⇠ 0 .

• If we impose this, it is nothing but the field redefinition of the untwisted SDFT.

We want to find an alternative conditions i.e. Twistability condition by
imposing the closure of the algebra.
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Twistability condition

• Define key quantities out of the twisting data are c.f. [Grana, Marques]

fȦ := ⌦Ḃ
ḂȦ � 2@̇Ȧ� = @CUC

Ȧ � 2@̇Ȧ� ,

and the ‘structure constant’,

fȦḂĊ := ⌦ȦḂĊ + ⌦ḂĊȦ + ⌦ĊȦḂ = f[ȦḂĊ] .



Twistability condition

• Consider the diffeomorphism, which also be twisted and generated by the
U-twisted generalized Lie derivative,

L̇Ẋ ṪȦ1···Ȧn
:= ẊḂḊḂṪȦ1···Ȧn

+!ḊḂẊḂṪȦ1···Ȧn
+

nX

i=1

(ḊȦi
ẊḂ�ḊḂẊȦi

)ṪȦ1···Ȧi�1

Ḃ
Ȧi+1···Ȧn

.

• Closure of the diffeomorphism
⇣
[L̇Ẋ, L̇Ẏ ]� L̇[Ẋ,Ẏ]Ċ

⌘
ṪȦ1···Ȧn

= 1
2 (Ẋ

Ṅ ḊṀẎṄ � Ẏ Ṅ ḊṀẊṄ)ḊṀṪȦ1···Ȧn
+ 1

2!(Ẋ
Ṅ ḊṀḊṀẎṄ � Ẏ Ṅ ḊṀḊṀẊṄ)ṪȦ1···Ȧn

+
Pn

i=1(ḊṀẎȦi
ḊṀẊḂ � ḊṀẊȦi

ḊṀẎḂ)ṪȦ1···Ȧi�1
Ḃ

Ȧi+1···Ȧn
,

where [Ẋ, Ẏ]Ċ denotes the U-twisted C-bracket,

[Ẋ, Ẏ]ȦĊ := ẊḂḊḂẎ Ȧ � Ẏ ḂḊḂẊȦ + 1
2 Ẏ ḂḊȦẊḂ � 1

2 ẊḂḊȦẎḂ .



Twistability condition

• Closure of the diffeomorphism
⇣
[L̇Ẋ, L̇Ẏ ]� L̇[Ẋ,Ẏ]C

⌘
ṪȦ1···Ȧn

=
⇣

1
2 ẊṄ @̇ṀẎṄ � 1

2 Ẏ Ṅ @̇ṀẊṄ + ⌦Ṁ
ṄĠẊṄ Ẏ Ġ

⌘
@̇ṀṪȦ1···Ȧn

+ 1
2!

h
ẊṄ @̇Ṁ @̇

ṀẎṄ � Ẏ Ṅ @̇Ṁ @̇
ṀẊṄ + 2ẊṄ⌦Ṁ

ṄĠ@̇ṀẎĠ � 2Ẏ Ṅ⌦Ṁ
ṄĠ@̇ṀẊĠ

+2ẊṄ Ẏ Ġ
⇣
@̇ṀfṀṄĠ + f ṀfṀṄĠ + 2@̇[Ṅ fĠ]

⌘
+ fṀ

⇣
ẊṄ @̇ṀẎṄ � Ẏ Ṅ @̇ṀẊṄ

⌘ i
ṪȦ1···Ȧn

+
Pn

i=1

h
@̇ṀẎȦi

@̇ṀẊḂ � @̇ṀẊȦi
@̇ṀẎḂ � 1

2⌦ṀȦiḂ

⇣
ẊṄ @̇ṀẎṄ � Ẏ Ṅ @̇ṀẊṄ

⌘

+3⌦Ṁ[ȦiḂ
ẊṄ @̇ṀẎṄ] � 3⌦Ṁ[ȦiḂ

Ẏ Ṅ @̇ṀẊṄ]

+ẊṄ Ẏ Ġ
⇣
@̇Ȧi

fḂṄĠ � 3fṀ[ḂṄ f Ṁ
Ġ]Ȧi

� 3@̇[ḂfṄĠ]Ȧi

⌘ i
ṪȦ1···Ȧi�1

Ḃ
Ȧi+1···Ȧn

.



Twistability condition
Sufficient conditions for the closure

1. The section condition for all the dotted twisted fields,

@̇Ṁ @̇
Ṁ ⌘ 0 .

2. The orthogonality between the connection and the derivatives of the dotted
twisted fields,

⌦Ṁ
ḞĠ@̇Ṁ ⌘ 0 .

3. The Jacobi identity for fȦḂĊ = f[ȦḂĊ],

f[ȦḂ
ĖfĊ]ḊĖ ⌘ 0 .

4. The constancy of the structure constant, fȦḂĊ ,

@̇ĖfȦḂĊ ⌘ 0 .

5. The triviality of fȦ ,

fȦ = ⌦Ċ
ĊȦ � 2@̇Ȧ� = @CUC

Ȧ � 2@̇Ȧ� ⌘ 0 .

It might be interesting to investigate the general compatibility condition if any.
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fȦ = ⌦Ċ
ĊȦ � 2@̇Ȧ� = @CUC

Ȧ � 2@̇Ȧ� ⌘ 0 .

For the usual Sherk-Shwarz ansatz, 3-5th conditions are genuine consistency
conditions same as [Grana, Marques]



Twistability condition

• The U-twisted generalized Lie derivative reduces, upon the twistability
conditions, to

L̂Ẋ ṪȦ1···Ȧn
⌘ ẊḂ@̇ḂṪȦ1···Ȧn

+!@̇ḂẊḂṪȦ1···Ȧn
+

nX

i=1

⇣
2@̇[Ȧi

ẊḂ] + fȦiḂĊẊĊ
⌘

ṪȦ1···Ȧi�1

Ḃ
Ȧi+1···Ȧn

,

This is the gauge transformation of gauged DFT



Twisted semi-covariant formalism
• U-twisted master semi-covariant derivative is

ḊȦ = ṙȦ + �̇Ȧ + ˙̄�Ȧ ,

of which the twisted semi-covariant derivative and the twisted spin connections
are given by

ṙȦ = ḊȦ + �̇Ȧ = @̇Ȧ + ⌦Ȧ + �̇Ȧ , �̇Ȧpq = V̇ Ḃ
pṙȦV̇Ḃq ,

˙̄�Ȧp̄q̄ = ˙̄VḂ
p̄ṙȦ

˙̄VḂq̄ ,

• the twisted torsionless connection reads

�̇ĊȦḂ = 2(ṖḊĊṖ ˙̄P)[ȦḂ] + 2( ˙̄P[Ȧ
Ḋ ˙̄PḂ]

Ė � Ṗ[Ȧ
ḊṖḂ]

Ė)ḊḊṖĖĊ

� 4
D�1 (

˙̄PĊ[Ȧ
˙̄PḂ]

Ḋ + ṖĊ[ȦṖḂ]
Ḋ)

⇣
ḊḊḋ + (ṖḊĖṖ ˙̄P)[ĖḊ]

⌘
,

• “effective connection” reads explicitly,

⌦ĊȦḂ + �̇ĊȦḂ ⌘ 2(Ṗ@̇ĊṖ ˙̄P)[ȦḂ] + 2( ˙̄P[Ȧ
Ḋ ˙̄PḂ]

Ė � Ṗ[Ȧ
ḊṖḂ]

Ė)@̇ḊṖĖĊ

� 4
D�1 (

˙̄PĊ[Ȧ
˙̄PḂ]

Ḋ + ṖĊ[ȦṖḂ]
Ḋ)

⇣
@̇Ḋḋ + (Ṗ@̇ĖṖ ˙̄P)[ĖḊ]

⌘

+( ˙̄PĊ
ḊṖȦ

ĖṖḂ
Ḟ + ṖĊ

Ḋ ˙̄PȦ
Ė ˙̄PḂ

Ḟ)fḊĖḞ

+(Ṗ + ˙̄P)ĊȦḂ
ḊĖḞ⌦ḊĖḞ .

The torsionful deformation [Berman, Lee] is derived as the effective torsion.
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p̄ṙȦ

˙̄VḂq̄ ,
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ḊṖḂ]

Ė)ḊḊṖĖĊ
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Ḋ)
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Ḋ ˙̄PḂ]
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ḊṖȦ

ĖṖḂ
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+(Ṗ + ˙̄P)ĊȦḂ
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Twisted semi-covariant formalism

• The semi-covariant formulation also works for the twisted semi-covariant
derivative.
Upon all the twistability conditions, we obtain

(�Ẋ � L̂Ẋ)(ṙĊṪȦ1···Ȧn
) ⌘

nX

i=1

(P+P̄)ĊȦi

ḂṪȦ1···Ȧi�1ḂȦi+1···Ȧn
,

once again the anomalies are all controlled by the index-six projection
operators. Namely, they are still semi-covariant.

• We get various covariant derivatives in the same way,

ṖĊ
Ḋ ˙̄PȦ1

Ḃ1 · · · ˙̄PȦn
ḂnṙḊṪḂ1···Ḃn

, · · ·

ḊpTq̄1···q̄n , ḊpTp
q̄1···q̄n , · · ·

�pḊp⇢ , �pḊp p̄ , · · · , etc.



Curvature
• Compare the two possible semi-covariant curvatures upon the twistability

conditions,
ĠȦḂĊḊ ⌘ ṠȦḂĊḊ + 1

2⌦ĖȦḂ⌦
Ė

ĊḊ .

• GȦḂĊḊ differs from ṠȦḂĊḊ after the twist.

• In the twisted SDFT to be constructed below, we shall employ GȦḂĊḊ only.
It turns out to be semi-covariant, while the other is not.

• The completely covariant index-two (“Ricci") and index-zero (scalar) twisted
curvatures are as untwisted cases,

Ġprq̄
r , Ġp̄rq̄

r̄ , Ġpq
pq , Ġp̄q̄

p̄q̄ .

Their covariance is guarented as they are related to the completely twisted
covariant derivatives,

1
2 [Ḋp, Ḋq̄]Tp ⌘ Ġprq̄

rTp , 1
2 [Ḋp, Ḋq̄]Tq̄ ⌘ �Ġp̄rq̄

r̄Tq̄ ,
[�pḊp, Ḋq̄]" ⌘ Ġprq̄

r�p" , [Ḋp, �̄
q̄Ḋq̄]"

0 ⌘ �Ġp̄rq̄
r̄� q̄"0 ,

(�pḊp)
2"+ Ḋp̄Ḋp̄" ⌘ � 1

4 Ġpq
pq" , (�̄ p̄Ḋp̄)

2"0 + ḊpḊp"0 ⌘ � 1
4 Ġp̄q̄

p̄q̄"0 .

• Using GȦḂĊḊ, the supersymmetric completion will be possible.
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pq , Ġp̄q̄
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Condition for RR cohomology
• We replace ṠȦḂĊḊ by ĠȦḂĊḊ.
• Almost all the properties of the four-index curvature still hold after the twist,

up to the twistability conditions,

ĠȦ[ḂĊḊ] ⌘ 0 . etc.

The only exception is

Ġpq
pq + Ġp̄q̄

p̄q̄ ⌘ 1
6 fȦḂĊf ȦḂĊ .

• It follows the modification of the Ramond-Ramnond cohomology,

(Ḋ±)
2T ⌘ � 1

24 fȦḂĊf ȦḂĊT .

We should separately impose

fȦḂĊf ȦḂĊ ⌘ 0 .

• To incorporate RR field, we have to impose this extra consistency condition.
• This will also be necessary for the maximal supersymmetry .



Supersymmetric gauged double field they

• The half-maximal supersymmetric gauged double field theory Lagrangian

L̇Half�maximal
Twisted SDFT = e�2ḋ

h
1
4 Ġpq

pq + i 1
2 ⇢̄�

pḊp⇢� i ̄p̄Ḋp̄⇢� i 1
2  ̄

p̄�qḊq p̄

i
.

The leading order half-maximal twisted supersymmetry transformation rules

�"ḋ = �i 1
2 "̄⇢ , �"V̇Ap = �i ˙̄VA

q̄"̄�p q̄ , �" ˙̄VAp̄ = +iV̇A
q"̄�q p̄ ,

�"⇢ = ��pḊp" , �" p̄ = Ḋp̄" .

• Higher order of fermionic terms are same as the terms in untwisted SDFT.



Supersymmetric gauged double field theory

• From the Z2 symmetry which exchanges the two spin groups,
Spin(1, 9) $ Spin(9, 1), there is a parallel formulation of the half-maximal
SDFT,

L̇Half�maximal
Twisted SDFT = e�2ḋ

h
� 1

4 Ġp̄q̄
p̄q̄ � i 1

2 ⇢̄
0�̄ p̄Ḋp̄⇢

0 + i ̄0pḊp⇢
0 + i 1

2  ̄
0p�̄ q̄Ḋq̄ 

0
p

i
.

The supersymmetry is realized by

�"ḋ = �i 1
2 "̄

0⇢0 , �"V̇Ȧp = +i"̄0�̄Ȧ 
0
p , �" ˙̄VȦp̄ = �i"̄0�̄p̄ 

0
Ȧ ,

�"⇢
0 = ��̄ p̄Ḋp̄"

0 , �" 
0
p = Ḋp"

0 .



Supersymmetric gauged double field theory

• Maximal supersymmetric gauged double field theory Lagrangian,

L̇Maximal
Twisted SDFT = e�2ḋ

h
1
8 (Ġpq

pq � Ġp̄q̄
p̄q̄) + 1

2 Tr(Ḟ ¯̇F)� i⇢̄Ḟ⇢0 + i ̄p̄�qḞ �̄ p̄ 0q

+i 1
2 ⇢̄�

pḊp⇢� i ̄p̄Ḋp̄⇢� i 1
2  ̄

p̄�qḊq p̄ � i 1
2 ⇢̄

0�̄ p̄Ḋp̄⇢
0 + i ̄0pḊp⇢

0 + i 1
2  ̄

0p�̄ q̄Ḋq̄ 
0
p

i
.

�"ḋ = �i 1
2 ("̄⇢+ "̄0⇢0) ,

�"V̇Ȧp = i ˙̄VȦ
q̄("̄0�̄q̄ 

0
p � "̄�p q̄) , �" ˙̄VȦp̄ = iV̇Ȧ

q("̄�q p̄ � "̄0�̄p̄ 
0
q) ,

�"C = i 1
2 (�

p" ̄0
p � "⇢̄0 �  p̄"̄

0�̄ p̄ + ⇢"̄0) + C�"ḋ � 1
2 (

˙̄VȦ
q̄ �"V̇Ȧp)�

(11)�pC�̄ q̄ ,

�"⇢ = ��pḊp" , �"⇢
0 = ��̄ p̄Ḋp̄"

0 ,

�" p̄ = Ḋp̄"+ Ḟ �̄p̄"
0 , �" 

0
p = Ḋp"

0 + ¯̇F�p" .



Supersymmetric gauged double field theory

Under the supersymmetry transformation

�"L̇Maximal
Twisted SDFT ⌘ i 1

48 e�2ḋ �⇢̄"� ⇢̄0"0 + "̄C⇢0 + "̄�pC 0
p + ⇢̄C"0 +  ̄p̄C�̄ p̄"0

�⇥ fȦḂĊf ȦḂĊ

+i 1
8 e�2d("̄�p q̄ � "̄0�̄q̄ 

0
p)Tr

⇣
�pḞ��̄

q̄Ḟ�

⌘
.

• Thus, requiring the extra condition

fȦḂĊf ȦḂĊ ⌘ 0 ,

the action is supersymmetric invariant modulo the self-duality.



Comparison with the untwisted case

• Look at the NS-NS sector of two half-maximal Lagrangian.

+Ġpq
pq ⌘ 1

16 ḢȦḂ@̇ȦḢĊḊ@̇ḂḢĊḊ + 1
4 ḢȦḂ@̇ĊḢȦḊ@̇

ḊḢḂĊ � 1
2 @̇Ȧ@̇ḂḢȦḂ

�2ḢȦḂ@̇Ȧḋ@̇Ḃḋ + 2ḢȦḂ@̇Ȧ@̇Ḃḋ + 2@̇ȦḢȦḂ@̇Ḃḋ

+ 1
8 fȦḂĊf ȦḂ

ḊḢĊḊ � 1
24 fȦḂĊfḊĖḞḢȦḊḢḂĖḢĊḞ � 1

4 fȦḂĊḢḂḊḢĊĖ@̇ḊḢĖ
Ȧ

+ 1
12 fȦḂĊf ȦḂĊ ,

�Ġp̄q̄
p̄q̄ ⌘ 1

16 ḢȦḂ@̇ȦḢĊḊ@̇ḂḢĊḊ + 1
4 ḢȦḂ@̇ĊḢȦḊ@̇

ḊḢḂĊ � 1
2 @̇Ȧ@̇ḂḢȦḂ

�2ḢȦḂ@̇Ȧḋ@̇Ḃḋ + 2ḢȦḂ@̇Ȧ@̇Ḃḋ + 2@̇ȦḢȦḂ@̇Ḃḋ

+ 1
8 fȦḂĊf ȦḂ

ḊḢĊḊ � 1
24 fȦḂĊfḊĖḞḢȦḊḢḂĖḢĊḞ � 1

4 fȦḂĊḢḂḊḢĊĖ@̇ḊḢĖ
Ȧ

� 1
12 fȦḂĊf ȦḂĊ .

• It reproduces the previous result [Geissbuler,Aldazabal,Grana, Marques] , and it matches
with the N = 4 D = 4 gauged SUGRA [Schon, Weidner] .

• The fourth line is the cosmological constant. Each one has different sign of the
cosmological constant.
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4 ḢȦḂ@̇ĊḢȦḊ@̇
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4 fȦḂĊḢḂḊḢĊĖ@̇ḊḢĖ
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Comparison with the untwisted case

• NS-NS sector of maximal gauged SDFT.

+Ġpq
pq � Ġp̄q̄

p̄q̄

⌘ 1
8 ḢȦḂ@̇ȦḢĊḊ@̇ḂḢĊḊ + 1

2 ḢȦḂ@̇ĊḢȦḊ@̇
ḊḢḂĊ � @̇Ȧ@̇ḂḢȦḂ

� 4ḢȦḂ@̇Ȧḋ@̇Ḃḋ + 4ḢȦḂ@̇Ȧ@̇Ḃḋ + 4@̇ȦḢȦḂ@̇Ḃḋ

+ 1
4 fȦḂĊf ȦḂ

ḊḢĊḊ � 1
12 fȦḂĊfḊĖḞḢȦḊḢḂĖḢĊḞ � 1

2 fȦḂĊḢḂḊḢĊĖ@̇ḊḢĖ
Ȧ



Comparison with the untwisted case
• For fermions,

�pḊp⇢ ⌘ �pḊp⇢
���
@̇
+ 1

12 fpqr�
pqr⇢ ,

Ḋp̄⇢ ⌘ Ḋp̄⇢
���
@̇
+ 1

4 fp̄qr�
qr⇢ ,

�qḊq p̄ ⌘ �qḊq p̄

���
@̇
+ 1

12 fqrs�
qrs p̄ + frp̄q̄�

r q̄ ,

and
�̄ p̄Ḋp̄⇢

0 ⌘ �̄ p̄Ḋp̄⇢
0
���
@̇
+ 1

12 fp̄q̄̄r�̄
p̄q̄̄r⇢0 ,

Ḋp⇢
0 ⌘ Ḋp⇢

0
���
@̇
+ 1

4 fpq̄̄r�̄
q̄̄r⇢0 ,

�̄ q̄Ḋq̄ 
0
p ⌘ �̄ q̄Ḋq̄ 

0
p

���
@̇
+ 1

12 fq̄̄r̄s�̄
q̄̄r̄s 0

p + f̄rpq�̄
r̄ 0q .

agree with Berman and Lee.
• For R-R as our new result

Ḟ = Ḋ+C ⌘ Ḋ+C
���
@̇
+ 1

12 fpqr�
pqrC� 1

4 fpq̄̄r�
pC�̄ q̄̄r� 1

12 fp̄q̄̄r�
(11)C�̄ p̄q̄̄r+ 1

4 fpq̄r�
(11)�pqC�̄ r̄ ,

The nilpotency of this twisted R-R cohomology implies the Bianchi identity for
the twisted R-R flux, which is expected to produce the ‘tensor hierarchy’
[Bergshoeff, et. al; Fernandez-Melgarejo et. al]



Summary and comments

• We successfully twisted the semi-covariant formulations of the N = 2 and the
N = 1, D = 10 SDFT.

• The semi-covariant four index curvature is refined.

GABCD := 1
2

⇥
(F + F̄)ABCD + (F + F̄)CDAB + (�+ �̄)E

AB(�+ �̄)ECD
⇤
,

It cannot be written in terms of only generalized metric, but should be written
in terms of double vielbein.

• Imposing the twistablility conditions, it systematically derives the gauged
maximal and half-maximal supersymmetric double field theories,
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Summary and comments

• Half-maximal gauged SDFTs has two sectors , which have different signs of the
cosmological constant!

• For maximal gauged SDFT, we require

fȦḂĊf ȦḂĊ ⌘ 0 ,

• R-R potential C is not twisted. Only the field strength Ḟ = Ḋ+C is influenced
by twisting though the twisted nilpotent operator. We expect that this will
change when U-duality is twisted in M-theory setup.
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Thank you!



Conclusion

Thank you.


