Finite Transformations in Doubled and Exceptional Space

Yuho Sakatani

Seoul National University (SNU), Institute for Basic Sciences (IBS)

"Duality and Novel Geometry in M-theory" 4 Feb. 2016.

Based on <u>arXiv:1510.06735v2</u>, in collaboration with <u>Soo-Jong Rey</u>

From the coming April, I will transfer to Kyoto Prefectural University of Medicine

Kyoto city

Finite coordinate transformation

In General Relativity

Under a finite coordinate transformation, $x^m
ightarrow x'^m(x)$,

a vector field $w^m(x)$ transforms as u

$$w'^m(x') = rac{\partial x'^m}{\partial x^n} \, w^n(x) \, .$$

Finite transformation law is important, in order to investigate properties of spacetimes :

Finite coordinate transformation in DFT

In DFT, there exists a larger gauge symmetry: (part of O(*d*,*d*) symmetry).

We can consider more general patching of doubled space.

In general, the transition function is given by a finite gauge transformation in DFT, and we need to find the finite transformation law of a (generalized) tensor field.

Plan

- 1. Double Field Theory (quick review, 2 pages)
- 2. Finite transformations in DFT (review)

O. Hohm and B. Zwiebach, JHEP 1302, 075 (2013), J-H. Park, JHEP 1306, 098 (2013), D. S. Berman, M. Cederwall, M. J. Perry, JHEP 1409, 066 (2014). C. M. Hull, JHEP 1504, 109 (2015).

3. Finite transformations in DFT (our approach) [S-J. Rey, YS, arXiv:1510.06735]

4. Exceptional Field Theory Review: SL(5) EFT Finite transformations in SL(5) EFT

Generalization is straightforward

Aim of this talk

and argue that there is no issue in our approach.

§1. Double Field Theory

(quick review)

Double Field Theory (DFT)

DFT ... manifestly T-duality covariant reformulation of supergravity.

To make the covariance manifest, Dims. of space are doubled. $x^M = (x^m, \tilde{x}_m)$

■ Gauge symmetry: generated by Generalized Lie derivative (⊃ d-diml diffeomorphism + B-field gauge symmetry)

$$\hat{\boldsymbol{\pounds}}_{\boldsymbol{V}} \boldsymbol{W}^{\boldsymbol{M}} \equiv \boldsymbol{V}^{\boldsymbol{N}} \, \partial_{\boldsymbol{N}} \boldsymbol{W}^{\boldsymbol{M}} - \left(\partial_{\boldsymbol{N}} \boldsymbol{V}^{\boldsymbol{M}} - \partial^{\boldsymbol{M}} \boldsymbol{V}_{\boldsymbol{N}}
ight) \boldsymbol{W}^{\boldsymbol{N}} \, .$$

Consistency ($\delta_V W^M$ behaves as a generalized vector !) We require [the strong constraint] \Rightarrow field can depend only on the half of the doubled coords.

$$\frac{\partial}{\partial \tilde{x}_m} * = 0. \quad \Longrightarrow \quad \left\{ \begin{aligned} S_{\mathrm{DFT}} &\to \frac{1}{2\kappa^2} \int \mathrm{d}^d x \sqrt{-G} \, \mathrm{e}^{-2\phi} \left(R + 4 \, |\partial \phi|^2 - \frac{1}{2} \, |H|^2 \right). \\ & \text{gauge sym.} = \mathrm{Diff}_d \ \ltimes \text{ (B-field gauge sym.)} \end{aligned} \right.$$

Our Convention

§2. Finite transformations in DFT (review)

F.T. in DFT O. Hohm and B. Zwiebach, JHEP 1302, 075 (2013), J-H. Park, JHEP 1306, 098 (2013), D. S. Berman, M. Cederwall, M. J. Perry, JHEP 1409, 066 (2014).

(S-J. Rey, YS, arXiv:1510.06735.) GG -like $\int C.$ M. Hull, JHEP 1504, 109 (2015). $\tilde{\partial}^m = 0$

Notations

Review: Finite transf. in DFT (1/4)

In DFT, infinitesimal transf. is generated by the gen. Lie deriv.;

$$\delta_{\mathbf{V}} W^M(x) = \hat{\mathcal{L}}_{\mathbf{V}} W^M(x)$$
.

finite

$$W_{sM}(x) \equiv \mathrm{e}^{s\,\hat{\pounds}_V}\,W^M(x) \equiv \underline{G^M}_N W^N(x_s)\,.$$

complicated funct. of V^M and s

 $\begin{array}{l} \underline{A \ proposal} \ [\text{Hohm, Zwiebach (2012)]}: \\ \text{``Gauge transf.'' = ``Generalized diffeo. in the doubled space'' ;} \\ \delta_{V} W^{M}(x) & \delta x^{M}(x) = V^{M}(x) \\ \hline \\ W_{sM}(x) = \mathcal{F}_{M}{}^{N} W_{N}(x_{s}), \quad \mathcal{F}_{M}{}^{N}(x, x_{s}) \equiv \frac{1}{2} \left(\frac{\partial x_{s}^{K}}{\partial x^{M}} \frac{\partial x_{K}}{\partial x_{sN}} + \frac{\partial x_{M}}{\partial x_{sK}} \frac{\partial x_{s}^{N}}{\partial x^{K}} \right). \\ w_{sm}(x) \stackrel{\diamond}{=} \frac{\partial x_{s}^{n}}{\partial x^{m}} w_{n}(x_{s}) & x_{s}^{M} \stackrel{\diamond}{=} e^{sV} x^{M} \end{array}$

Review: Finite transf. in DFT (2/4)

Hohm-Zwiebach's formula gives

$$egin{aligned} W^M_s(x) &= \mathcal{F}_M{}^N\,W_N(x_s) = W^M(x) + s\,\hat{\pounds}_V W^M(x) + \mathcal{O}(s^2)\,. \end{aligned}$$
 (at an infinitesimal level)

<u>However</u>, other than s = 0, $\frac{\mathrm{d}}{\mathrm{d}s}W_{sM}(x) \neq \hat{\pounds}_V W_{sM}(x)$.

$$W_{sM}(x) \equiv \mathcal{F}_M{}^N(x, x_s) W_N(x_s) \neq \mathrm{e}^{s\,\hat{\ell}_V} W^M(x) \,.$$

[Hohm, Zwiebach (2012)]

$$x_{(s=1)}^{M} \equiv e^{V} x^{M} \Longrightarrow x_{(s=1)}^{M} \equiv e^{V + \sum_{i} \rho_{i} \partial \chi_{i}} x^{M} = \begin{pmatrix} e^{v} x^{m} \\ e^{V + \sum_{i} \rho_{i} \partial \chi_{i}} \tilde{x}_{m} \end{pmatrix}$$
$$W_{(s=1)M}(x) \equiv \mathcal{F}_{M}^{N}(x, x_{(s=1)}) W_{N}(x_{(s=1)}) \stackrel{!}{=} e^{\hat{\mathcal{E}}_{V}} W^{M}(x) .$$
$$\sum_{i} \rho_{i} \partial^{M} \chi_{i} = \frac{1}{12} (V \cdot V^{N})(x) \partial^{M} V_{N}(x) + \cdots .$$
$$\Longrightarrow \text{ Full order correction [U. Naseer, JHEP 1506, 002 (2015)]}$$

Review: Finite transf. in DFT (3/4)

[J-H. Park, JHEP 1306, 098 (2013)]

$$\begin{split} W_{sM}(x) &= \mathcal{F}_{M}{}^{N}(x,x_{s}) \, W_{N}(x_{s}) \,, \qquad x_{s}^{M} \equiv \mathrm{e}^{sV} \, x^{M} \,. \\ &\frac{\mathrm{d}}{\mathrm{d}s} W_{sM}(x) = \hat{\mathcal{L}}_{\underline{\mathcal{V}}} W_{sM}(x) \quad (\text{for arbitrary } \underline{s}) \\ &\overline{\mathcal{V}^{M} \equiv V^{M} + \frac{1}{2} \, V_{N} \, \partial^{\widehat{M}} f_{s}^{N} \,, \quad f_{s}^{M} \equiv \sum_{n=1}^{s} \frac{s^{n}}{n!} \, (V^{N} \, \partial_{N})^{n-1} V^{M} \,, \\ &\phi^{i} \, \partial^{M} \varphi_{i} \implies [\text{does not generate a translation}] \\ &(\phi^{i} \, \partial^{M} \varphi_{i}) \, \partial_{M} \ast = 0 \quad (\partial^{M} \ast \partial_{M} \ast = 0) \\ &\text{generate a B-field gauge transf.} \\ ["coordinate gauge symmetry": & x^{M} \sim x^{M} + \phi^{i} \, \partial^{M} \varphi_{i} \,] \\ & \rightarrow \text{ Up to coord. gauge sym., } \frac{\mathrm{d}}{\mathrm{d}s} W_{sM} = \hat{\mathcal{L}}_{\mathcal{V}} W_{sM} \sim \hat{\mathcal{L}}_{V} W_{sM} , \\ &\text{Hohm-Zwiebach's proposition is correct } ! \\ &W_{sM}(x) \equiv \mathcal{F}_{M}{}^{N}(x,x_{s}) \, V_{N}(x_{s}) \sim \mathrm{e}^{s \, \hat{\mathcal{L}}_{V}} \, W_{M}(x) \,. \end{split}$$

Review: Finite transf. in DFT (4/4)

[D. Berman, M. Cederwall, M. Perry (2014)] showed

$$egin{aligned} W_M'(x) &\equiv \mathrm{e}^{\hat{\mathcal{E}}_V} W_M(x) = (\mathcal{F} \cdot \mathrm{e}^{\Delta})_M{}^N \, W_N(x) \, . \ &\mathbf{e}^{\Delta} \equiv \prod_{n=2}^\infty \prod_{k=0}^{n-1} \Bigl(1 + rac{1}{2} rac{(-1)^n (n-2k-1)}{(n+1)(k+1)!(n-k)!} \, M_{n,k}\Bigr) \, , \ &(M_{n,k})_M{}^N \equiv \partial_M ig(V^k \cdot V^L ig) \, \partial^N ig(V^{n-k-1} \cdot V_L ig) \, . \end{aligned}$$

$$\frac{\tilde{\partial}^m = 0}{e^{\Delta} = \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix}}$$
B-field transf.

Hohm-Zwiebach's $\mathcal{F}_M{}^N$ is equal to the exponential of the generalized Lie deriv., up to a B-field transformation.

[Hohm, Zwiebach (2012)] will be correct :

$$V_{sM}(x) = \mathcal{F}_M{}^N V_N(x_s) \,, \quad \mathcal{F}_M{}^N(x,x_s) \equiv rac{1}{2} \left(rac{\partial x_s^K}{\partial x^M} rac{\partial x_K}{\partial x_{sN}} + rac{\partial x_M}{\partial x_{sK}} rac{\partial x_s^N}{\partial x^K}
ight) \,.$$

Some issues in Hohm-Zwiebach's proposal

1. Composition law; [Hohm, Zwiebach, JHEP 1302, 075 (2013); Hohm, Lüst, Zwiebach, arXiv:1309.2977]

2. Patching condition with H-Z is restrictive;
[G. Papadopoulos, JHEP 1410, 089 (2014);
C. Hull, JHEP 04 (2015) 109]

Issue 1: Composition law

We cannot have a good geometric interpretation of the finite transformation in the doubled space.

Issue 2: H-flux is trivial (1/2)

[G. Papadopoulos, JHEP 1410, 089 (2014)]

Let us assume Hohm-Zwiebach's proposal.

On an overlap, $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$, we have 2 local coordinates;

$$\begin{cases} x_{(\alpha)}^m = x_{(\alpha\beta)}^m(x_{(\beta)}), \\ \tilde{x}_{(\alpha)m} = \tilde{x}_{(\beta)m} - \zeta_{(\alpha\beta)m} \end{cases}$$

Regarding this as a Finite coord. transf. the generalized metric on each patch should be related as

$$\mathcal{H}_{MN}^{(lpha)} = \mathcal{F}_M{}^K(x_{(lpha)}, x_{(eta)}) \, \mathcal{F}_N{}^L(x_{(lpha)}, x_{(eta)}) \, \mathcal{H}_{KL}^{(eta)} \, .$$

(i.e. we use $\mathcal{F}_M{}^N$ as the transition function)

Issue 2: H-flux is trivial (2/2)

<u>From these two</u>, it was proven that we can find a 1-form $\lambda_{(\alpha)}$ that makes $\widetilde{B}_{(\alpha)} \equiv B_{(\alpha)} + d\lambda_{(\alpha)}$ is globally defined; $\widetilde{B}_{(\alpha)} = \widetilde{B}_{(\beta)}$. [G. Papadopoulos, JHEP 1410, 089 (2014)]

$$ightarrow H_3 \equiv \mathrm{d}B_2 = \mathrm{d}\widetilde{B}$$
 is globally an exact form.

We cannot obtain a non-trivial H-flux; $\ \int_{\partial M_4} H_3 = 0$.

Patching with H-Z's proposal is restrictive!

How can we obtain a non-trivial H-flux ?

In the conventional SUGRA (Generalized Geometry);

Hull's proposal (1/2)

 $\bullet \quad \tilde{\partial}^m = 0$

$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{W}^{M}(x) = \begin{pmatrix} w^{m}(x) \\ \hat{w}_{m}(x) \end{pmatrix} = \begin{pmatrix} \delta_{n}^{m} & 0 \\ -B_{mn}(x) & \delta_{m}^{n} \end{pmatrix} \begin{pmatrix} w^{n}(x) \\ \tilde{w}_{n}(x) \end{pmatrix} \\ \begin{array}{l} \begin{array}{l} \textbf{(untwisted vector)} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{W}^{M}(x) = \begin{pmatrix} \mathcal{L}_{v} w^{m}(x) \\ \mathcal{L}_{v} \hat{w}_{m}(x) \end{pmatrix} & \leftarrow & \textbf{vector} \\ \begin{array}{l} \begin{array}{l} \boldsymbol{\delta}_{V} W^{M} = \hat{\mathcal{L}}_{V} W^{M} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \textbf{\delta}_{V} \hat{W}^{M}(x) = \begin{pmatrix} \mathcal{L}_{v} w^{m}(x) \\ \mathcal{L}_{v} \hat{w}_{m}(x) \end{pmatrix} & \leftarrow & \textbf{vector} \\ \begin{array}{l} \begin{array}{l} \boldsymbol{\delta}_{V} W^{M} = \hat{\mathcal{L}}_{V} W^{M} \\ \end{array} \end{array} \\ \begin{array}{l} \textbf{hvariant under} \\ \textbf{B-transf.} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{l} \textbf{(c.f. } \begin{array}{l} \boldsymbol{\delta}_{V} \tilde{w}_{m} = \mathcal{L}_{v} \tilde{w}_{m} + 2 \partial_{[m} \tilde{v}_{n]} \end{array} \end{array} \end{array} \right) \end{array}$

[C. Hull, JHEP 04 (2015) 109]

We can easily obtain the finite transf. for the untwisted vector:

$$\hat{W}^{M}_{s}(x) = egin{pmatrix} w^{m}_{s}(x) \ \hat{w}_{sm}(x) \end{pmatrix} = egin{pmatrix} rac{\partial x^{m}}{\partial x^{n}_{s}} & 0 \ 0 & rac{\partial x^{n}_{s}}{\partial x^{m}} \end{pmatrix} egin{pmatrix} w^{n}(x_{s}) \ \hat{w}_{n}(x_{s}) \end{pmatrix} \cdot \quad (x^{m}_{s} = \mathrm{e}^{sv} \, x^{m})$$

Hull's proposal (2/2)

[C. Hull, JHEP 04 (2015) 109]

Under a finite gauge transformation, B-field should transform as

$$B_{mn}^{s}(x) = \frac{\partial x_{s}^{p}}{\partial x^{m}} \frac{\partial x_{s}^{q}}{\partial x^{n}} \left(B_{pq} + \partial_{p} \tilde{\mathbf{v}}_{q} - \partial_{q} \tilde{\mathbf{v}}_{p} \right)(x_{s}) \,.$$
diffeo.
a certain finite parameter

From these, he obtain a Finite transf. law for generalized vector :

$$W_{s}^{M}(x) = e^{s\tilde{E}_{V}} W^{M}(x) = \begin{pmatrix} \delta_{n}^{m} & 0 \\ B_{mn}^{s}(x) & \delta_{m}^{n} \end{pmatrix} \begin{pmatrix} w_{s}^{n}(x) \\ \hat{w}_{sn}(x) \end{pmatrix} = R^{M}{}_{N} W^{N}(x_{s})$$
with $R^{M}{}_{N} = \begin{pmatrix} \frac{\partial x^{m}}{\partial x_{s}^{k}} & 0 \\ 0 & \frac{\partial x_{s}^{k}}{\partial x^{m}} \end{pmatrix} \begin{pmatrix} \delta_{n}^{k} & 0 \\ 2 \partial_{[k} \tilde{v}_{n]}(x) & \delta_{k}^{n} \end{pmatrix}$. "up to B-field trsf."
Exact!
diffeo. Finite gauge parameter.
 \tilde{x}_{m} v^{m} d -dimensional null plane
(section Σ_{d})

Summary: Previous approaches

[Hohm, Zwiebach '12]

Finite gauge transf. = Finite gen. coord. transf; $x^M \to e^{sV} x^M$ $W_{sM}(x) = \mathcal{F}_M{}^N W_N(x_s), \quad \mathcal{F}_M{}^N(x, x_s) \equiv \frac{1}{2} \left(\frac{\partial x_s^K}{\partial x^M} \frac{\partial x_K}{\partial x_{sN}} + \frac{\partial x_M}{\partial x_{sK}} \frac{\partial x_s^N}{\partial x^K} \right),$

Issue 1: composition law , Issue 2: non-trivial H-flux [Papadopoulos '14] It was shown that $W_{sM}(x) \sim e^{s\hat{\mathcal{E}}_V} W_M$, [J-H. Park '13; up to a B-field gauge transf. Berman, Cederwall, Perry '14]

[Hull '15] We should not use the equiv. relation, "up to B-field trsf." $W_{s}^{M}(x) = e^{s \hat{\mathcal{E}}_{V}} W^{M}(x) .$ certain parameters $\begin{cases} x^{m} \to x_{s}^{m} = e^{s \cdot v} x^{m} \\ \tilde{x}_{m} \to \tilde{x}_{m} \end{cases} + B_{mn}^{s}(x) = \frac{\partial x_{s}^{p}}{\partial x^{m}} \frac{\partial x_{s}^{q}}{\partial x^{n}} (B_{pq} + \partial_{p} \tilde{\mathbf{v}}_{q} - \partial_{q} \tilde{\mathbf{v}}_{p})(x_{s}) .$

$$W^M_s(x) = R^M{}_N \, W^N(x_s) \,, \qquad R^M{}_N = egin{pmatrix} rac{\partial x^m}{\partial x^k_s} & 0 \ 0 & rac{\partial x^k_s}{\partial x^m} \end{pmatrix} egin{pmatrix} \delta^k_n & 0 \ 2 \, \partial_{[k} ilde{\mathbf{v}}_{n]}(x) & \delta^n_k \end{pmatrix} \,.$$

Relation between $\tilde{\mathbf{v}}_{m}$ and V^{M} was not obtained!

§3. Finite transformations in DFT (our approach)

S-J. Rey, YS, arXiv:1510.06735.

- Composition law 🗸

- non-trivial H-flux 🗸

Our approach

★ Similar to H-Z's approach, we consider the dual-coord. transf.

I will explain later how to get rid of the Papadopoulos problem.

\star As with Hull's approach, we use $\tilde{\partial}^m = 0$ at the beginning. We adopt Hull's idea to use the untwisted vector:

$$\hat{W}^M(x) \equiv egin{pmatrix} w^m(x) \ \hat{w}_m(x) \end{pmatrix} = egin{pmatrix} \delta^m_n & 0 \ -B_{mn}(x) & \delta^n_m \end{pmatrix} egin{pmatrix} w^n(x) \ ilde{w}_n(x) \end{pmatrix} \,,$$

that transforms as

$$\hat{W}^M_{(s,V)}(x) = egin{pmatrix} w^m_s(x) \ \hat{w}_{sm}(x) \end{pmatrix} = egin{pmatrix} rac{\partial x^m}{\partial x^n_s} & 0 \ 0 & rac{\partial x^n_s}{\partial x^m} \end{pmatrix} egin{pmatrix} w^n(x_s) \ \hat{w}_n(x_s) \end{pmatrix}$$

★ Using our result, we can explicitly show that the composition law is satisfied as in GR.

Setup : define *b*_{*mn*}

$$\Rightarrow \quad \delta_V b_{mn}(x) = \pounds_v b_{mn}(x) + \partial_m \tilde{v}_n(x) - \partial_n \tilde{v}_m(x) \,.$$

same as the gauge transf. for B-field

$$\delta_V W^M = e^M{}_a z^a .$$
 \longrightarrow tangent vector

Involutive property

 $ilde{\partial}^m$

 $\overrightarrow{}$

 $\partial_{[l} b_{mn]} = 0\,.$

 b_{mn} is closed!

Definition b_{mn} (summary)

 b_{mn} is defined on the entire doubled space.

 $\overrightarrow{}$

∃ Isometries in the dual direction.

 $ilde{\partial}^k b_{mn}(x) = 0$.

Foliation is uniform in the dual direction.

Our finite transformation (1/2)

Our finite transformation (2/2)

Let us obtain finite transf. law for B-field

$$\begin{cases} \delta_{V}B_{mn} = \pounds_{v}B_{mn} + 2\,\partial_{[m}\tilde{v}_{n]}(x) \, . & \mathbb{B}_{mn}(x) \equiv B_{mn}(x) - b_{mn}(x) \, . \\ \delta_{V}b_{mn} = \pounds_{v}b_{mn} + 2\,\partial_{[m}\tilde{v}_{n]}(x) \, . & \longrightarrow \delta_{V}\mathbb{B}_{mn}(x) = \pounds_{v}\mathbb{B}_{mn}(x) \, . \end{cases} \\ \mathbb{B}_{mn}^{(s,V)}(x) = \frac{\partial x_{s}^{k}}{\partial x^{m}} \frac{\partial x_{s}^{l}}{\partial x^{n}} \mathbb{B}_{kl}(x_{s}) \, . & b_{mn}^{(s,V)}(x) = b_{mn}(x) + 2\,\partial_{[m}\zeta_{n]}^{(s,V)}(x) \, . \end{cases} \\ \begin{bmatrix} B_{mn}^{(s,V)}(x) = \frac{\partial x_{s}^{k}}{\partial x^{m}} \frac{\partial x_{s}^{l}}{\partial x^{n}} \left(B_{kl} - b_{kl} \right)(x_{s}) + b_{mn}(x) + 2\,\partial_{[m}\zeta_{n]}^{(s,V)}(x) \, . \end{cases} \end{cases}$$

Finite transf. for a generalized vector

$$egin{aligned} W^M_{(s,V)}(x) &= egin{pmatrix} \delta^m_k & 0 \ B^{(s,V)}_{mk}(x) & \delta^k_m \end{pmatrix} egin{pmatrix} rac{\partial x^k}{\partial x^l_s} & 0 \ 0 & rac{\partial x^l_s}{\partial x^k} \end{pmatrix} egin{pmatrix} \delta^l_n & 0 \ -B_{ln}(x_s) & \delta^l_l \end{pmatrix} egin{pmatrix} w^n(x_s) \ ilde w^n(x_s) \end{pmatrix} \ &= egin{pmatrix} \delta^m_k & 0 \ b^{(s,V)}_{mk}(x) & \delta^k_m \end{pmatrix} egin{pmatrix} rac{\partial x^k}{\partial x^l_s} & 0 \ 0 & rac{\partial x^l_s}{\partial x^k} \end{pmatrix} egin{pmatrix} \delta^l_n & 0 \ -B_{ln}(x_s) & \delta^l_l \end{pmatrix} egin{pmatrix} w^n(x_s) \ ilde w^n(x_s) \end{pmatrix} \ &\mathcal{S}^M{}_N \end{aligned}$$

Interpretation

Finite transformations for <u>a generalized tensor</u>

Comparison with Hull's result

<u> Our transformation matrix</u>

$${\cal S}^{M}{}_{N}\equiv egin{pmatrix} \delta^{m}_{k} & 0 \ b^{(s,V)}_{mk}(x) & \delta^{k}_{m} \end{pmatrix} egin{pmatrix} rac{\partial x^{k}}{\partial x^{l}_{s}} & 0 \ 0 & rac{\partial x^{l}_{s}}{\partial x^{k}} \end{pmatrix} egin{pmatrix} \delta^{l}_{n} & 0 \ -b_{ln}(x_{s}) & \delta^{n}_{l} \end{pmatrix}\,.$$

 \star To compare with Hull's result, let us choose $b_{mn}(x) = 0$.

$$\begin{split} \mathcal{S}^{M}{}_{N} &= \begin{pmatrix} \delta^{m}_{k} & 0\\ 2 \partial_{[m} \zeta^{(s,V)}_{k]}(x) & \delta^{k}_{m} \end{pmatrix} \begin{pmatrix} \frac{\partial x^{k}}{\partial x^{n}_{s}} & 0\\ 0 & \frac{\partial x^{n}_{s}}{\partial x^{k}} \end{pmatrix} \\ &= \begin{pmatrix} \frac{\partial x^{m}}{\partial x^{k}_{s}} & 0\\ 0 & \frac{\partial x^{k}_{s}}{\partial x^{m}} \end{pmatrix} \begin{pmatrix} \delta^{k}_{n} & 0\\ 2 \partial_{[k} \zeta^{(s,V)}_{n]}(x_{s}) & \delta^{n}_{k} \end{pmatrix} \cdot & \partial_{[k} \zeta^{(s,V)}_{n]} \\ & \mathcal{R}^{M}{}_{N} &= \begin{pmatrix} \frac{\partial x^{m}}{\partial x^{k}_{s}} & 0\\ 0 & \frac{\partial x^{k}_{s}}{\partial x^{m}} \end{pmatrix} \begin{pmatrix} \delta^{k}_{n} & 0\\ 2 \partial_{[k} \tilde{\mathbf{v}_{n}]}(x) & \delta^{n}_{k} \end{pmatrix} \cdot & \partial_{[k} \tilde{\mathbf{v}_{n}]} \end{split}$$

Dual coordinates (1/3)

We define the variation of the dual coordinates as $\frac{d}{ds} \tilde{x}_m^s = \hat{v}_m^{(s,V)}(x)$.

$$\implies \quad \tilde{x}_m^s = \tilde{x}_m + \int_0^s \mathrm{d}s' \, \hat{\mathbf{v}}_m^{(s',V)}(x) = \tilde{x}_m + \zeta_m^{(s,V)}(x)$$

<u>Under a finite generalized diffeo.</u> $\begin{cases} x^m \to e^{s v} x^m \\ \tilde{x}_m \to \tilde{x}_m + \zeta_m^{(s,V)}(x) \end{cases}$

$$egin{aligned} b^{(s,V)}_{mn}(x) &= b_{mn}(x) + 2\,\partial_{[m}\zeta^{(s,V)}_{n]}(x) = b_{mn}(x) + 2\,\partial_{[m} ilde{x}^s_{n]}(x)\,. \ &\mathbf{S}^M{}_{\mathbf{N}} &= egin{pmatrix} \delta^m_k & 0 \ \mathbf{\delta}^m_k & 0 \end{pmatrix} egin{pmatrix} rac{\partial x^k}{\partial x^l_s} & 0 \end{pmatrix} egin{pmatrix} \delta^l_n & 0 \end{pmatrix} egin{pmatrix} \delta^l_n & 0 \end{pmatrix} \end{pmatrix} egin{pmatrix} \delta^l_n & 0 \end{pmatrix} egin{pmat$$

$${\cal S}^{M}{}_{N}\equiv egin{pmatrix} b_{k}(s,V)\ b_{mk}^{(s,V)}(x) & \delta^{k}_{m} \end{pmatrix} egin{pmatrix} \partial x^{l}_{s} & \partial \ 0 & rac{\partial x^{l}_{s}}{\partial x^{k}} \end{pmatrix} egin{pmatrix} b_{n} & 0\ -b_{ln}(x_{s}) & \delta^{n}_{l} \end{pmatrix}$$

Once a generalized diffeomorphism is given, we can calculate the corresponding Finite transformation matrix. (similar to Hohm-Zwiebach's proposal)

Papadopoulos problem??

Dual coordinates (2/3)

In a doubled space, there always exist a "trivial Killing vector":

 $V^M(x) = \partial^M f(x)$ (f(x): arbitrary function of x^m)

Indeed, every tensor is inv. along the flow of trivial Killing vector: $\hat{\mathcal{L}}_{ec{\partial}f}W^M(x)=0$.

We identify physical points with $x^M \sim x^M + \partial^M f(x)$. zero vector

weaker version of the coordinate gauge symmetry [Park '13] $x^M \sim x^M + \phi(x) \, \partial^M \varphi(x) \, .$

We can understand the identification as follows:

(Off-shell) degrees of freedom of $B_{mn}(x)$ is $\frac{(d-1)(d-2)}{2}$. $\begin{pmatrix} \frac{(d-1)(d-2)}{2} = \frac{d(d-1)}{2} - (d-1) & (\tilde{v}_m \sim \tilde{v}_m + \partial_m f) \\ anti-sym. & B_{mn} \sim B_{mn} + 2 \partial_{[m} \tilde{v}_{n]} \end{pmatrix}$

Dual coordinates (3/3)

[$ilde{x}_m$ is defined only up to the relation, $ilde{x}_m \sim ilde{x}_m + \partial_m f$.]

$$ightarrow \mathrm{d}ig(\zeta_{(lphaeta)}+\zeta_{(eta\gamma)}+\zeta_{(\gammalpha)}ig)=0\,.$$

Same condition with the Generalized Geometry!

Keeping in mind the equivalence relation,

even if we consider a diffeo. along the dual direction, we can consider a background with non-trivial H-flux!

Composition law (1/2)

Composition law (2/2)

Patching condition

$$\begin{cases} x_{(\alpha)}^m = x_{(\alpha\beta)}^m(x_{(\beta)}) \\ b_{(\alpha)mn} = b_{(\beta)mn} + 2 \partial_{[m} \zeta_{(\alpha\beta)n]} \end{cases}$$

In general, we need to patch open sets with different foliations .

$$egin{aligned} W^M_{(lpha)} = egin{pmatrix} \delta^m_k & 0 \ b^{(lpha)}_{mk} & \delta^k_m \end{pmatrix} egin{pmatrix} rac{\partial x^k_{(lpha)}}{\partial x^k_{(lpha)}} & 0 \ 0 & rac{\partial x^l_{(eta)}}{\partial x^k_{(lpha)}} \end{pmatrix} egin{pmatrix} \delta^l_n & 0 \ -b_{(eta)ln} & \delta^n_l \end{pmatrix} egin{pmatrix} W^N_{(eta)}(x_{(eta)}) \,. \ & \mathcal{S}^M{}_N \end{aligned}$$

Example: (smeared) NS5-brane (1/2)

Background of (smeared) NS5 branes

$$\frac{t}{\mathrm{d}s^{2}} = -\mathrm{d}t^{2} + H(r)\left(\mathrm{d}r^{2} + r^{2}\,\mathrm{d}\theta^{2}\right) + \mathrm{d}x_{3\dots7}^{2} + H(r)\,\mathrm{d}x_{89}^{2},$$

$$B^{(2)} = \frac{\sigma\,\theta}{2\pi}\,\mathrm{d}x^{8}\wedge\mathrm{d}x^{9}, \quad \mathrm{e}^{2\phi} = H(r), \quad H(r) \equiv \frac{\sigma}{2\pi}\,\log(r_{\mathrm{c}}/r).$$

Example: (smeared) NS5-brane (2/2)

In the presence of H-flux, we cannot chose a global section (foliation). (such as $b_{mn} = 0$) <u>NS5-brane charge</u>

$$\begin{array}{c} t & Q_{\mathrm{NS5}} \equiv \frac{2\pi}{\sigma} \int_{C} \mathrm{d}B_{89} = \frac{2\pi}{\sigma} \Big[\int_{\theta=0}^{\theta=\pi} \mathrm{d}B_{(\alpha)89} + \int_{\theta=\pi}^{\theta=2\pi} \mathrm{d}B_{(\beta)89} \Big] \\ & = \frac{2\pi}{\sigma} \left[B_{(\alpha)89} - B_{(\beta)89} \right]_{\theta=0}^{\theta=\pi} = 2\pi \,. \end{array}$$

Summary: our approach

$$\begin{split} W^{M}_{(s,V)}(x) &\equiv \mathrm{e}^{s\hat{\mathcal{L}}_{V}} W^{M}(x) = \mathcal{S}^{M}{}_{N} W^{N}(x_{s}) \,, \quad x^{m}_{s} \equiv \mathrm{e}^{s\,v} \, x^{m} \,. \\ \mathcal{S}^{M}{}_{N} &\equiv \begin{pmatrix} \delta^{m}_{k} & 0 \\ b^{(s,V)}_{mk}(x) & \delta^{k}_{m} \end{pmatrix} \begin{pmatrix} \frac{\partial x^{k}}{\partial x^{l}_{s}} & 0 \\ 0 & \frac{\partial x^{l}_{s}}{\partial x^{k}} \end{pmatrix} \begin{pmatrix} \delta^{l}_{n} & 0 \\ -b_{ln}(x_{s}) & \delta^{n}_{l} \end{pmatrix} \,. \\ b^{(s,V)}_{mn}(x) &\equiv b_{mn}(x) + 2 \,\partial_{[m} \zeta^{(s,V)}_{n]}(x) \,. \begin{cases} \zeta^{(s,V)}_{m}(x) \equiv \int_{0}^{s} \mathrm{d}s' \,\hat{\mathbf{v}}^{(s',V)}_{m}(x) \,. \\ \hat{\mathbf{v}}^{(s,V)}_{m}(x) \equiv \frac{\partial x^{n}_{s}}{\partial x^{m}} \,\hat{\mathbf{v}}_{n}(x_{s}) \,. \end{cases} \end{split}$$

Recalling the trivial coord. gauge sym., $\tilde{x}_m \sim \tilde{x}_m + \partial_m f$, we introduce a diffeo. in the dual directions: $\tilde{x}_m \rightarrow \tilde{x}_m + \zeta_m^{(s,V)}(x)$.

Composition law is explicitly shown!

§3. Finite transformations in SL(5) EFT

S-J. Rey, YS, arXiv:1510.06735.

N. Chaemjumrus, C.M. Hull, arXiv:1512.03837 SL(5) + SO(5,5) + E₆ EFT

Review: Exceptional Field Theory (1/3)

Review: Exceptional Field Theory (2/3)

$$(x^i, y_{ij}) \Rightarrow \begin{vmatrix} \mathbf{X} & \mathsf{SL}(5) \text{-manifest coordinates:} \\ x^{ab} = x^{[ab]} \quad (a, b = 1, \dots, 5) \, . \\ (x^{i5} = x^i = -x^{5i} \, , \ x^{ij} = \frac{1}{2} \, \epsilon^{ijkl} \, y_{kl}) \, . \end{vmatrix}$$

Consistency of the theory (section condition)

EFT unifies the 11-diml SUGRA and type IIB SUGRA

Review: Exceptional Field Theory (3/3)

$$\begin{array}{ll} \underline{\mathsf{SL}(\mathsf{5})\text{-}\mathsf{EFT\ action}} & \mathcal{L} = \frac{1}{12} \,\mathcal{M}^{MN} \,\partial_M \mathcal{M}^{KL} \,\partial_N \mathcal{M}_{KL} - \frac{1}{2} \,\mathcal{M}^{MN} \,\partial_N \mathcal{M}^{KL} \,\partial_L \mathcal{M}_{MK} \\ & \quad + \frac{1}{12} \,\mathcal{M}^{MN} \left(\mathcal{M}^{KL} \,\partial_M \mathcal{M}_{KL} \right) \left(\mathcal{M}^{RS} \,\partial_N \mathcal{M}_{RS} \right) \\ & \quad + \frac{1}{4} \,\mathcal{M}^{MN} \,\mathcal{M}^{PQ} \left(\mathcal{M}^{RS} \,\partial_P \mathcal{M}_{RS} \right) \left(\partial_M \mathcal{M}_{NQ} \right). \end{array}$$

Gauge symmetry ... Generalized Lie derivative

$$\hat{\pounds}_{V}W^{A} = \underbrace{V^{B} \partial_{B}W^{A} - W^{B} \partial_{B}V^{A}}_{\text{Lie derivative}} + \underbrace{\varepsilon^{eAB} \varepsilon_{eCD} \partial_{B}V^{C} W^{D}}_{\varepsilon^{ea_{1}a_{2}b_{1}b_{2}}} (\varepsilon^{12345} = 1)$$

$$\delta_{V}\mathcal{M}_{MN} = \hat{\pounds}_{V}\mathcal{M}_{MN} \qquad \frac{\partial}{\partial y_{ij}} * = 0.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}i_{2}}{}_{j} & G^{i_{1}i_{2},j_{1}j_{2}} \end{pmatrix}.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}i_{2}}{}_{j} & G^{i_{1}i_{2},j_{1}j_{2}} \end{pmatrix}.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}i_{2}}{}_{j} & G^{i_{1}i_{2},j_{1}j_{2}} \end{pmatrix}.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}i_{2}}{}_{j} & G^{i_{1}i_{2},j_{1}j_{2}} \end{pmatrix}.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}i_{2}}{}_{j} & G^{i_{1}i_{2},j_{1}j_{2}} \end{pmatrix}.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}i_{2}}{}_{j} & G^{i_{1}i_{2},j_{1}j_{2}} \end{pmatrix}.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}i_{2}}{}_{j} & G^{i_{1}i_{2},j_{1}j_{2}} \end{pmatrix}.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}i_{2}}{}_{j} & G^{i_{1}i_{2},j_{1}j_{2}} \end{pmatrix}.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}i_{2}}{}_{j} & G^{i_{1}i_{2},j_{1}j_{2}} \end{pmatrix}.$$

$$\mathcal{M}_{MN} \equiv \begin{pmatrix} G_{ij} + \frac{1}{2}C_{ikl}C^{kl}{}_{j} & \frac{1}{\sqrt{2}}C_{i}^{j_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}j_{2}} & \frac{1}{\sqrt{2}}C^{i_{1}j_{2}} & \frac{1}{\sqrt{2}}C^{i_{1}j_{2}} \\ \frac{1}{\sqrt{2}}C^{i_{1}j_{2}} & \frac{1}{\sqrt{2}}$$

There was no proposal for the Finite transf. law.

Finite transf. law in SL(5) EFT

$$\begin{array}{ll} \textbf{Coordinates:} & x^M = (x^i, \, y_{ij}) & (\leftrightarrow x^A = x^{[ab]}) \\\\ \underline{\textbf{Gen. vector:}} & W^M(x) \equiv \begin{pmatrix} w^i(x) \\ \frac{1}{\sqrt{2}} \, \tilde{w}_{i_1 i_2}(x) \end{pmatrix} \cdot & \delta_V W^M = \hat{\pounds}_V W^M \end{array}$$

٠

٠

Untwisted vector :

<u>Our task</u>: to obtain a finite transf. for $C_{ijk}(x)$.

Results

Similar to the case of DFT:

$$W^M_{(s,V)}(x) = \mathcal{S}^M{}_N \, W^N(x_s)\,,$$

$${\cal S}^{M}{}_{N}\equiv egin{pmatrix} \delta^{i}_{k}&0\ -rac{1}{\sqrt{2}}\,c^{(s,V)}_{i_{1}i_{2}k}(x)&\delta^{k_{1}k_{2}}_{i_{1}i_{2}} \end{pmatrix}egin{pmatrix} rac{\partial x^{k}}{\partial x^{l}_{s}}&0\ 0&rac{\partial x^{[l_{1}}_{s}}{\partial x^{[k_{1}}}\,rac{\partial x^{l_{2}]}}{\partial x^{k_{2}]}} \end{pmatrix}egin{pmatrix} \delta^{l}_{j}&0\ rac{1}{\sqrt{2}}\,c_{l_{1}l_{2}j}(x_{s})&\delta^{j_{1}j_{2}}_{l_{1}l_{2}} \end{pmatrix}\,.$$

Future works:

M-theory on *n*-torus : U-duality group : E_n . $n=4 \rightarrow n=5, 6, 7, (8?), ...$ [Chaemjumrus, Hull, '15] generalization is straightforward.

Finite transformation in non-geometric BG in EFT. <u>c.f. [K. Lee, S-J. Rey, YS, work in progress]</u>

Summary

- In Hohm-Zwiebach's proposal for the finite transfs., there was an issue in the composition.
- We proposed a new transformation law, which satisfies the composition law as usual in GR.
- We introduced a foliation by *d*-dim'l null subspace, and proposed a patching condition (*Dirac manifold*) between open sets with different foliations.
- We obtained a fin. transf. law in non-geom. BG, and studied a patching condition for a T-fold. (5²₂-brane) (skipped today)
- We applied our procedure to SL(5) EFT, and obtained a finite transf. Law.