NON-ABELIAN T-DUALITY AS AN
O(D,D) TRANSFORMATION

Aybike Ozer

Istanbul Technical University

111111111111111



Aim of our work

* To see if the new solutions of Type || SUGRA obtained
by Non-Abelian T-duality (NATD) can be generated by
an O(D,D) transformation.

* We have some partial results for an affirmative
answer. However, the O(D,D) matrix in question
should be non-constant.



 O(D,D) is the T-duality symmetry of string theory on
toroidal backgrounds, which becomes a continous,
solution generating symmetry in the supergravity
limit.

* Recent devolopments in DFT implies that O(D,D)

should be more general , not necessarily requiring
the existence of a torus in the background geometry.

* We focus on backgrounds with SU(2) isometry group.
The NATD of such backgrounds has been studied

recently.



NATD is applied by using the standard tools of Buscher
method:

consider string theory propogating on a target space with
a compact symmetry.

gauge the symmetry and introduce a Lagrange multiplier
which constrains the gauge field to be pure gauge.

integrating out the Lagrange multiplier gives the original
action.

integrating out the gauge field gives the T-dual action.
Well- understood when the gauge symmetry is Abelian.
Some global issues for non-abelian gauge symmetry.



 We focus on NATD of backgrounds with SU(2) isometry:
* We claim:

The dual solutions can be generated by the following
non-constant O(10,10) matrix:

( O3.3 Ogur Iseg Osgur w

o ”Tafﬂ Lysrr 'I}'Fx,'-; ”Tx?

I'= I3.3 0347 bans 037
k ”'.'_13 []Tx.’- (:"Tx,'-; ‘FT,-*'.-' )

Here b is the 3 x 3 antisymmetric matrix
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where x. are the local coordinates on the group manifold



* Thisis an O(3,3) matrix embedded in O(10,10):
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where O(3,3) acts along the SU(2) isometry directions.
Note that [b]; = f; *x, =€; “ x, . In the limit where the
structure constants vanish we have
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OUTLINE

* A brief review of O(D,D), particularly its action on
the RR fields.

* A case study (in the Abelian case): generating
Lunin-Maldacena solutions with O(3,3),
embedded in O(10,10).

* The discussion of NATD as an O(10,10)
transformation.



O(D,D) action on the NS-NS sector

* An O(D,D) matrix
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(J_((~r D)' with O° JO = .J. j_(fﬂ 0 )

acts on the NS sector as
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This is for a flat D-dim background. For an N-dim curved background
with D commuting isometries, O(D,D) has to be embedded in O(N,N).



O(D,D) is generated by the following 3 types of matrices:

O shifts : T, = [® . with ©F = -0,
0 I
_ A 0 : .

Basis change : Ty = 0 (AT | with A e GL(D, R),

. . I —e, g . -
Factorized duality : Tp, = .. e | with (e;) = 00

O shifts : g—g, B—-B+0©

Basis change : g— ATgA, B — ATBA

Factorized duality :  generalizes R <+ 1/R in the ith direction
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J==xTp, --- Tp, = 'R E generalizes R «+ 1/R in all directions



R-R SECTOR

RR potentials fit naturally into a spinor representation of
Pin(D,D). [Fukuma-Oota-Tanaka, Hohm- Zwiebach-Kwak]

If the NS-NS sector transforms under the action of a given
O(D,D) matrix T, the RR sector will transform under S, where
p(S)=T.

p: Pin(D,D)—— O(D,D), p(S)V=SVSt

For a given T, the corresponding Pin(D,D) element is found by

solving ,
STySt=0IyTY. pS)=T

where I, are the 2° x 2P Dirac matrices satisfying the Clifford
algebra C(D,D)
Ty . In} =2 unN



The RR sector transforms under the action of
corresponding elements of Pin(D,D):

o Pin(D D) — oD, D),
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(¥, T} =671, {1 =0= (T, a1} (i,j=1,...d).

The oscillators realize the Clifford algebra by defining
l",.” = [Fl et l",r;. l";_;._l. Tt rg;_}] — [XEEE'H. VEE'_!-.:'. i=1,---.D
A spinor x in the 2P Fock space can be identified with
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The isomorphism (as a linear space) between the Clifford
algebra and Exterior algebra gives a correspondence between
polyforms and spinor states
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Then we define a spinor state corresponding to w as
w— |w>= Q[0>

QE>=|wAE>

The transformation of the RR forms under T-duality is determined
by the action of the Pin(D,D) elements on the spinor state | F >

associated with the polyform encoding all the RR fields of type
lIA and Type |IB along with the dual forms:

D>— S|D> F>— S|F>



The p-form fields in the RR sector transform as a spinor
of Pin(D,D) as follows:

 We introduce the polyforms (democratic formulation of sugra)

5

1
D = z Dp_|_17 F = Z Fp+~2.

p+1=0 p+2=1
where D, ..., D, are the gauge potentials of Type IIA and |IB
Sugra (combined with the B-fields in a convenient way) , and

F — 'I"_B .-'"Ir."‘-.. 'I'I'F_D

we also introduce dual gauge potentials by solving the eom
of D, inclusion of which results in the polyform
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Chirality:
The 2P dimensional spinor representation of O(D,D) is

reducible.

One can impose a Weyl condition which yields two spinor
representations of opposite chirality of dimension 2P-1

The spinor states they act on can be identified with polyforms
consisting of forms of odd and even degree.

RR fields of Type IIA and Type IIB transform under these chiral
representations.

S, and S, are in Spin*(D,D) and they preserve the chirality of
spinor states they act on.

Odd powers of S, changes the chirality of the spinor state
exchanging Type IIA and Type |IB

An important chirality changing element of Pin(D,D) is C,
where p(C) =J.



Example: Multi-parameter Lunin-Maldacena
Deformations

* Given a CFT and its supergravity dual via the AdS/CFT
correspondence, Lunin and Maldacena found the dual sugra
solutions corresponding to marginal deformations of the CFT.

 The method works if the original geometry has 3 commuting
isometries. The new solutions can be found via T-dualities.

* Inthe O(D,D) language, this corresponds to generating a new
solution by the action of the following SO(3,3) matrix
embedded in O(10,10) in an appropriate way:
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This SO(3,3) matrix can be factorized as

I3 O3y [ 0 13 19 I 0 1q
I 135/ \130 )\ 0 13) \ 130

Then the corresponding Spin(3,3) matrix is

1
C;SIE,C = eXp [Ernm@mﬂln}

i

p(CS,C) = p(C)p(S)p(C) = JTyJ.



Acting on a sugra solution with 3 commuting isometries,
such as AdS; x T! supported by self-dual 5-form flux we
end up with a new solution describing a deformed geometry
supported by 5-form and 3-form fluxes.
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NATD as an O(D,D) Transformation:

e The NS-NS sector
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1

A
B = =B, (z)dz" Ada” + Bi(z)dz" A L' + by, L' A L

2

i

o T - T
Q;u/ = G;u/ + B;wr ('v)lué - (—Tlm' + Blm'w

-

Eij Qi
Qlu,-i Qlu,u

Q — Q= (AQ +B)(CQ + D)™

S~
wlive

(-'2@';.! — Gé;e + Bé;u

)

Eij = Gij + E}éj

D353
(]T:-:E
Iﬁxﬂ
ﬂ'r‘xﬂ

D37
lTxT
UEKT
ﬂ?x?

I3x3
ﬂ'r‘xﬂ
bExH
|{:"r':-:E

Oz.7
0y

03,7
IT’:-:'.F



Q _ ( Eﬁ_}' t:?z'p, ) _ ( E’E-; _E‘ij_EH )
qu’ Qm.-' Qg.&jEji Q;w _Qﬂ.ﬂ-iEl'iji-'

-~

E = (0E + I)(IE +b;(2)) ™ = (B + e,*2) 7"
(2)=(2)—2(3)-(%)
" o X A

ds® = {i‘,wdr“dﬂ:” + E{i’“idi?“d::i + gi;d2'dY

: 1 - - S P |
B = §Bgiﬂd1“ M dIH — B“HG‘TI“ M dfz - EijdEE M dEj

This is the same background obtained by the standard methods
of NATD.



* Note that the part of the geometry along SU(2) directions
transform under O(3,3):

U-?, Jlr;-}
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where that [b]; = f; *x, =€; * x . In the limit where the structure
constants vanish this reduces to 3 consecutive abelian dualities.

* This O(3,3) matrix can be factorized as
(0 I\ (0 Ip\(IT Db
T_(f E:)_(f” 0 )([] I)
 The first transformation turns on a non constant B-field.

The second transformation inverts the background
matrix, taking from Il1A to 1IB and vice versa.



RAMOND RAMOND SECTOR

 The corresponding Pin(10,10) matrix can be found easily to be

S = C8,

(W — t_.*l}{t_.*z — ‘9_}{_:_.‘3 —g)exp (1/2 by, )
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EXAMPLE: AdS; x T* x S* [Sfetsos,Thompson ]

 NATD of this background supported by 3- and 7-form RR
fluxes has been studied by Sfetsos and Thompson.
Fy+ +F;. Fy = Vol(S*) + Vol(AdSs)

Acting on the corresponding spinor state with the Pin(10,10)
operator above, we obtain a new spinor with the corresponding

polyform F ., : o -Bp

From this we read the new RR fluxes:

Fo = 1
By = " vols?
2 — ]_—I—J"Q ' ”'[\*- }
Fy = —rdr ANVol(AdSs) + Vol T )

and their Hodge duals with respect to the new geometry.




CONCLUSIONS

* We have presented evidence that shows that NATD of
backgrounds with SU(2) isometry can be described through
the action of a non-constant O(3,3) transformation.

e This T-duality transformation amounts to turning on non-
constant B-field and then applying the transformation that
exchanges Type IIA and IIB.

 We have looked at several examples, case by case. For a
general proof of why the method works (eom, Hodge duality)
we find the framework of DFT very useful.



