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Summary of Axioms

General axioms

(A1) Reflexivity. X
A∼ X.

(A2) Transitivity. X ≺ Y & Y ≺ Z implies X ≺ Z.

(A3) Consistency. If X ≺ X ′ and Y ≺ Y ′, then

(X,Y ) ≺ (X ′, Y ′).

(A4) Scaling invariance. If X ≺ Y , then tX ≺ tY

for all t > 0.

(A5) Splitting and recombination. For 0 < t < 1,

X
A∼ (tX, (1− t)X).

(A6) Stability. If (X, εZ0) ≺ (Y, εZ1) holds for a se-

quence of ε’s tending to zero and some states Z0,

Z1, then X ≺ Y .

(A7) Convex combination. Assume X and Y are

states in the same state space, Γ, that has a con-

vex structure. If t ∈ [0, 1] then

(tX, (1− t)Y ) ≺ tX + (1− t)Y .

Axioms for simple systems

(S1) Irreversibility. For each X ∈ Γ there is a point

Y ∈ Γ such that X ≺≺ Y . (Note: This axiom is

implied by T4, and hence it is not really indepen-

dent.)

(S2) Lipschitz tangent planes. For each X ∈ Γ the

forward sector AX = {Y ∈ Γ : X ≺ Y } has a

unique support plane at X (i.e., AX has a tan-

gent plane at X). The slope of the tangent plane

is assumed to be a locally Lipschitz continuous

function of X.

(S3) Connectedness of the boundary. The

boundary ∂AX of a forward sector is connected.

Axioms for thermal equilibrium

(T1) Thermal contact. For any two simple systems

with state spaces Γ1 and Γ2, there is another sim-

ple system, the thermal join of Γ1 and Γ2, with

state space

∆12 = {(U, V1, V2)|U = U1 + U2}

with (U1, V1) ∈ Γ1, (U2, V2) ∈ Γ2. Moreover,

((U, V1), (U2, V2)) ≺ (U1 + U2, V1, V2)

(T2) Thermal splitting. For any point (U, V1, V2) in

∆12 there is at least one pair of states, (U1, V1) ∈
Γ1, (U2, V2)) ∈ Γ2, with U = U1 + U2, such that

(U, V1, V2)
A∼ ((U1, V1), (U2, V2)).

In particular, if (U, V ) is a state of a simple sys-

tem Γ and λ ∈ [0, 1] then

(U, (1−λ)V, λV )
A∼ (((1−λ)U, (1−λ)V ), (λU, λV )).

If (U, V1, V2)
A∼ ((U1, V1), (U2, V2)) we write

(U1, V1)
T∼ (U2, V2).

(T3) Zeroth law. X
T∼ Y & Y

T∼ Z implies X
T∼ Z.

(T4) Transversality. If Γ is the state space of a sim-

ple system and if X ∈ Γ, then there exist states

X0
T∼ X1 with X0 ≺≺ X ≺≺ X1.

(T5) Universal temperature range. If Γ1 and Γ2

are state spaces of simple systems then, for ev-

ery X ∈ Γ1 and every V in the projection of

Γ2 onto the space of its work coordinates, there

is a Y ∈ Γ2 with work coordinates V such that

X
T∼ Y .

Axiom for mixtures and reactions

(M) Absence of sinks. If Γ is connected to Γ′ then

Γ′ is connected to Γ, i.e., Γ ≺ Γ′ implies Γ′ ≺ Γ.
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Transitivity of
A∼

If X
A∼ Y and Y

A∼ Z, then X
A∼ Z.

Pf) SinceX ≺ Y and Y ≺ Z, A2 givesX ≺ Z. Like-

wise, using Z ≺ Y and Y ≺ X, we arrive at Z ≺ X.

This completes the proof.

CP in multiple scaled copies

The proof resorts to mathematical induction for fixed

but arbitrary N . First we observe that if M = N + 1

with ti = t′i (i < N) and tN = t′N + t′M , then split-

ting Γ(tN ) into Γ(t′N ) × Γ(t′M ) shows that Y and Y ′ are

comparable. Now we will prove the general cases.

Step 1. If M = 1, we can split Y ′ into N copies.

Hence Y and Y ′ are comparable.

Step 2. Now assume CP is valid for M and con-

sider Y ′ with M + 1 multiple scaled copies. Set t
′′

i = t′i
for i = 1, . . . ,M − 1 and t

′′

M = t′M + t′′M+1. Then any

state in a scaled state space Γ′′ with two-primed pa-

rameters is comparable with that in a scaled state space

Γ′ with one-primed parameters as shown above. Since

Y and Y ′′ ∈ Γ′′ are comparable by assumption and

comparability is an equivalence relation, Y and Y ′ are

comparable.

Hence, by mathematical induction, the proof is com-

plete.

Extension of A5

A5 says X
A∼ (tX, (1 − t)X) for 0 < t < 1. By A4, we

get

1

t
X

A∼
(
X,

1− t
t

X

)
.

By definition of the generalized ordering, we write

X
A∼
(

1

t
X,

t− 1

t
X

)
.

If we define either a = 1/t (a > 1) or a = (t − 1)/t

(a < 0), we can write

X
A∼ (aX, (1− a)X)

for all a ∈ R, where we have used (X,Y )
A∼ (Y,X).

When a = 0 or 1, the above relation is trivially met.

Lemma 2.1

(i) If X0 ≺ X, X ∈ S0. If X ≺≺ X0, we claim that

(1 + α)X0 ≺ (αX1, X) for some α > 0, which in turn

gives λ = −α. Otherwise, (αX1, X) ≺ (1+α)X0 for all

α > 0 by the CP. Thus, by A4 and A5, (X1, X/α) ≺
(X0, X0/α) for all α > 0. Thus by A6, X1 ≺ X0 in

contrast to the assumption.

Strip and canonical entropy

Let λ = SΓ(X). If X0 ≺ X, X0 ≺ ((1− λ)X0, λX1) by

Lemma 2.3. By the cancellation law, we get λX0 ≺
λX1. Hence λ ≥ 0. Likewise, if X ≺ X1, ((1 −
λ)X0, λX1) ≺ X1 and, in turn, (1− λ)X0 ≺ (1− λ)X1.

Thus, λ ≤ 1.

Entropy for states outside the strip

Let λ1 = SΓ(X1|X0, X) for X1 ≺ X. Then

X1
A∼ ((1− λ1)X0, λ1X)⇒ X

A∼
(
λ1 − 1

λ1
X0,

1

λ1
X1

)
,

which gives SΓ(X|X0, X1) = 1/λ1 = SΓ(X1|X0, X)−1.

Let λ2 = SΓ(X0|X,X1) for X ≺ X0. Then,

X0
A∼ ((1−λ2)X,λ2X1)⇒ X

A∼
(

1

1− λ2
X0,

λ2

λ2 − 1
X1

)
,

which gives

SΓ(X|X0, X1) = − λ2

1− λ2
= − SΓ(X0|X,X1)

1− SΓ(X0|X,X1)
.

Consistent entropy scale

Let X ∈ Γ and Y ∈ Γ′ with (X,Y ) ∈ Γ × Γ′. Let

λ1 = S(X), λ2 = S(Y ) and λ12 = S(X,Y ). Then

(X,λ1Z0)
A∼ (XΓ, λ1Z1) and (Y, λ2Z0)

A∼ (XΓ′ , λ1Z1).

By A3 and A5,

(X,Y, (λ1 + λ2)Z0)
A∼ (XΓ, XΓ′ , (λ1 + λ2)Z1).

Since ((X,Y ), λ12Z0)
A∼ (XΓ×Γ′ , λ12Z1) by definition,

XΓ×Γ′ = (XΓ, XΓ′), and supremum is uniquely defined,

we get

S(X,Y ) = λ12 = λ1 + λ2 = S(X) + S(Y ).

By A4, t(X,λ1Z0)
A∼ t(XΓ, λ1Z1) or (tX, tλ1Z0)

A∼
(tXΓ, λ1Z1). Since tXΓ = XtΓ, we get S(tX) = tS(X).

Since X ≺ Y iff (X,Z0) ≺ (Y,Z0), S is an entropy

function and S(X) = aΓSΓ(X) +BΓ.
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Thm 2.7

To prove Thm 2.7, we use 1−λ = t(1−λ1)+(1− t)(1−
λ2), where λ = tλ1 + (1 − t)λ2. Using A3-A5 and A7,

we get

(λX0, (1− λ)X1)
A∼

(t(λ1X0, (1− λ1)X1), (1− t)(λ1X0, (1− λ1)X1))

≺ (tX, (1− t)Y ) ≺ tX + (1− t)Y,

which gives tX + (1− t)Y ∈ Sλ.

Gauge and Hamiltonian

Consider a (classical) Hamiltonian H(p, q; t) with ex-

plicit time dependence. Since the equations of motion

are
dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
,

they are invariant by gauge transformation H 7→ H ′ :=

H + g(t), where g(t) is an arbitrary function of time.

In other words, H ′ gives the exactly same equations of

motion as derived from H.

Let us assume that g(0) = 0 which gives the same

energy of the system at t = 0 irrespective of whether

we use H or H ′ for our Hamiltonian. However, the en-

ergy at t > 0 depends on which Hamiltonian we use

although the (microscopic) dynamics are identical! In

this context, it is meaningless to compare energy of two

states solely from Hamiltonian!

In quantum mechanics, the time-dependent

Schrödinger equation is invariant under the following

gauge transformtion

|ψ〉 7→ |ψ′〉 := exp

(
1

i~

∫ t

0

g(t′)dt′
)
|ψ〉.

That is, if |ψ〉 is the solution of

i~
∂

∂t
|ψ〉 = H(t)|ψ〉,

|ψ′〉 defined above is the solution of

i~
∂

∂t
|ψ′〉 = H ′(t)|ψ〉.

Notice that (time-independent) observables are not af-

fected by the (global) gauge transformation.

Equivalence of CP and S1

1. S1 implies CP.

Assume CP is false. Then there is X and its neigh-

borhood NX such that X
A∼ Z ∀Z∈NX

. By definition,

NX ⊂ AX . Choose an aribrary Y ∈ AX . There is a

point Z ∈ NX such that a set of all convex combination

of Y and Z containsX. Then by the mathematical logic

in the lecture note, we can conclude that S1 is false.

2. CP implies S1, once all forward sectors have

non-empty interior.

Assume S1 is false. Then there is X0 whose forward

sector AX0 only has states adiabatically equivalent to

X0. By assumption, AX0 should have an interior point

X which has a neighborhood NX contained in AX0 .

Thus, the logic in the lecture note shows that CP is

false.

Lipschitz continous but not everywhere

differentiable

Let f(x) = |x|. Since |f(x)−f(y)| = ||x|−|y|| ≤ |x−y|
for any x and y, f(x) is Lipschitz continuous, but f ′(0)

is not defined.

Properties of concave functions

A function f defined on an open interval (a, b) is called

a concave function if

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y)

for all a < x < y < b and 0 ≤ λ ≤ 1.

Since for a < s < u < t < b

f(u) = f

(
t− u
t− s

s+
u− s
t− s

t

)
≥ t− u
t− s

f(s) +
u− s
t− s

f(t),

we get

f(u)− f(s) ≥ u− s
t− s

(f(t)− f(s)) ,

f(u)− f(s)

u− s
≥ f(t)− f(s)

t− s
, (1)
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and

f(u) ≥ t− u
t− s

f(s) +
u− s
t− s

(f(t)− f(u)) +
u− s
t− s

f(u),

0 ≥ t− u
t− s

(f(s)− f(u)) +
u− s
t− s

(f(t)− f(u)),

f(u)− f(s)

u− s
≥ f(t)− f(u)

t− u
(2)

If a < s < u < v < t < b, we get

f(u)− f(s)

u− s
≥ f(t)− f(u)

t− u
≥ f(t)− f(v)

t− v
, (3)

where Eqs. (1) and (2) have been used.

Let Fx(h) = [f(x + h) − f(x)]/h (0 < h < b − x).

If we set s = x, t = x + h′, and u = x + h (h < h′)

in Eq. (1), we get Fs(h) ≥ Fs(h
′), that is, Fs(h) is an

decreasing function of h. If we set v = x, t = x + h

in Eq. (3), we find that Fx(h) is bounded from above.

Thus, limh−>0+ Fx(h) is well-defined for all a < x < b.

Likewise, let Gx(h) = [f(x)− f(x− h)]/h (0 < h <

x−a). If we set t = x, v = x−h, u = x−h′ (h < h′) in

Eq. (3), we find Gx(h) is an increasing function of h. If

we set u = x and s = x−h in Eq. (3), we conclude that

Gx(h) is bounded from below. Thus, limh−>0Gx(h) is

also well-defined. To summarize, any concave function

has well-defined one side derivative at all points.

One can easily construct a concave function with

different one side derivative. An example of a concave

function with f ′+(1) 6= f ′−(1) is

f(x) =

1− x, 0 < x < 1,

2(1− x), 1 ≤ x < 2.

If we denote the derivative from above [below] by

f ′+(x) [f ′−(x)], Eq. (2) shows that f ′−(x) ≥ f ′+(x) for

all x. Also by setting s = x, t = y in Eq. (3) we can

conclude that f ′+(x) ≥ f ′−(y) if x < y.

S is a concave function of U for fixed V

This theorem can be derived from T1, T2, and A5

without resorting to A7. The proof is as follows. Set

t ∈ [0, 1]. By T1,

(((1− t)U, (1− t)V ), (tU ′, tV )) ≺

((1− t)U + tU ′, (1− t)V, tV ).

By T2 with U ′′ := (1− t)U + tU ′, the latter is
A∼

(((1− t)U ′′, (1− t)V ), (tU ′′, tV ))
A∼ (U ′′, V ),

where A5 has been used. Since S is additive and non

decreasing under ≺, we get

(1− t)S(U, V ) + tS(U ′, V ) ≤ S((1− t)U + tU ′, V ),
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