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If someone points out to you that your pet theory of
the universe is in disagreement with Maxwell’s
equations — then so much the worse for Maxwell’s
equations. If it is found to be contradicted by
observation — well these experimentalists do bungle
things sometimes. But if your theory is found to be
against the second law of thermodynamics I can
give you no hope; there is nothing for it but to
collapse in deepest humiliation.

—Sir Arthur Stanley Eddington




Why do we (I?) care about rigor?

X3

-

Ideal theory has played an important role in physics.

K3
o

If the law of entropy increase is ever going to be derived
from statistical mechanics — a goal that has so far
eluded the deepest thinkers — then it is important to be
absolutely clear about what it is that one wants to
derive. ([LY1] page 5) “Guiding principle”
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*

Recall a recent controversy about Gibbs vs Boltzmann
entropy definitions. [J. Dunkel and S. Hilbert, Nat. Phys.
10, 67 (2013)]
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“The” 2nd law of thermodynamics

Clausius : No process is possible, the sole result of which
is that heat is transferred from a body to a hotter one.

Kelvin (and Planck) : No process is possible, the sole result
of which is that a body is cooled and work is done.

Carathéodory : In any neighborhood of any state there
are states that cannot be reached from it by an adiabatic
process.

Equivalence of C and K [Huang]
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In an age when a single atom can be trapped and manipu-
lated the teaching of thermal physics starting from the em-
pirical laws of thermodynamics is a pedagogical scandal. It
is now high time to reform the style of teaching thermal
physics in introductory college physics courses. qeis dQ

r
late the two expressions. The Clausius definition of entropy
is one of the most difficult subjects to teach. First of all, 7 in
the above expression (1) is the absolute temperature. If it
were not the absolute temperature in expression (1) the Clau-
sius definition would be meaningless. However, the concept
of absolute temperature is never fully explained in textbooks
that follow the traditional style of instruction. The tempera-
ture is usually introduced through an operational definition
which cannot explain the significance of the absolute tem-
perature other than as a curious experimental fact. We cannot
convey the significance of absolute temperature without a
basic understanding of its statistical nature.




How to define physical quantity

+ First, we need an order relation.

“ Second, we need an addition of two systems.
+ Example: To define inertial mass
* Step 1: Inelastic collision (to define order)
o 6-Fh P
* Step 2: addition (to define quantity)
00> WM = -rtntl
n
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Entropy Principle

Basic Concepts
Adiabatic accessibility
General Axioms
Constructing Entropy

Basic Concepts: Primitive Terms

Equilibrium

* We are mainly interested in equilibrium systems.
* But what is an equilibrium state?
* Homogeneous? not necessarily.
* Steady state with temperature gradient? (a la Fourier)

* In practice the criterion for equilibrium is circular;
Operationally, a system is in an equilibrium state if its
properties are consistently described by thermodynamic
theory. [C]




States and systems

* Macroscopic, neither microscopic nor astronomical,
system. By state X is meant a macroscopic state.

+ Equilibrium states are our main concern.

* System I': a collection of all possible (equilibrium) states
* Compound system : Cartesian Product of systems
BB, =By <l Ok X)) e B < 5

* Subsystems may or may not interact with each other

(X, X')

20° C 0° C

Example of a compound system (From [LY2])

Scaling

+ Scaled copy (scaled space)
R e e e Y
* Physically, tX is a state with scaled energy, volume,

chemical substances, and so on. I'¥ is a space with
scaled chemical substances.

(s)
s(tX) = stX, (r@)) B e e

<1y —ETebe oe (0, )

Scaled product

+ Scaled product

O e s e o)

* Multiple scaled copy of I’

I‘(tl) X coo X I‘(tN)

+ Negative scaling parameter will have meaning in a

specific context.




Adiabatic Accessibility

Adiabatic processes

* Adiabatic does not mean slow, quasi-static.
* It only means no ‘heat’ is involved in the state change.

* Adiabatic process can be very violent (e. g. bomb).

Rubbing is
an adiabatic process.

The Experiments by
Benjamin Thompson

Adiabatic accessibility

A state Y is adiabatically accessible from a state X, in symbols
X <Y (to be pronounced “X precedes Y” or “Y succeeds X”),
if it is possible to change the state from X to Y by means of an
interaction with some device (which may consist of mechanical and
electrical parts as well as auxiliary thermodynamic systems) and
a weight, in such a way that the device returns to its initial state
at the end of the process (or can be returned), whereas the weight
may have changed its position in a gravitational field.

sole results : X — Yand position change of the weight

VLTI
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Examples I (from [T])

Microwave oven

Ice Generator Hot water 8
6 o4 H oA
=g

Ice

Hot water Water Water

564 <

Examples II (from [T])

Ice Hot water Water Water

1 < il

Stirling
engine

Water Water Hot water
Stirling l ~.
\l"
s

Examples LI (from [T])

Bomb

Vase

B4l <

Some notations and terminology

We write X << Y if
XV but Yy /X
Comparable if
either X <Y orY < X

Adiabatically equivalent if (< is a preorder relation)

both X <Y andY < X

Adiabatically equivalent states : X Ry




What we want to show
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Entropy principle

There is a real-valued function on all states of all systems (in-
cluding compound systems), called entropy and denoted by S
such that

1. Monotonicity : When X and Y are compable states then

X Y itand onlyif S0 = SV

2. Additivity and Extensivity : For any X and Y of (possibly
different) systems

S(X,Y) = S((X,Y)) = §(X) + S(Y)
Saerlve
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Remarks

+ Monotonicity without comparability
XAY = 8(X) = 8(Y),
e 5K - S

- Entropy must increase in an “irreversible” process.
* ‘nonequilibrium entropy’?[LY3]

* The aim : What set of axioms is equivalent to the
entropy principle?

27

Remarks

» Entropy also dictates which process is allowed.

+ Significance of the additivity in compound systems.

[ESO0 L ST = S+ S(Z) (e W) & 7

+ Additivity and extensitivity are independent.

cf : Cauchy’s functional equation

* Photon gas : same entropy for any scaled space.

28




6 Axioms and Comparison
Principle

(A1) Reflexivity. X © e

(A2) Transitivity. X <Y &Y <Z=>X<Z

(A3) Consistency. X < X' &Y <Y' = (X,Y) < (X',Y')
(A4) Scaling invariance. X <Y = tX < tY, Vi~

(A5) Splitting and recombination. For 0 <t < 1,

oSl e

(A6) Stability. If for some states Zy, Z, and for a sequence

of €'s, tending to zero, (X,eZy) < (Y,eZ1) holds, then
e

30

Any two states in a same state space are comparable.

Comparison property (CP)

Remarks on CP

+ Comparability is an equivalence relation.

+ Itis not a priori clear whether the CP holds in real

physical systems. For example, see page 38 of [B].

+ [LY1] proves the CP using another set of axioms.

* We shall first find the entropy function for all scaled

products of a state space I'.

* The entropy function will turn out to be unique up to an

affine transformation. S(X) — aS(X) + B

32




Mathematical digression: equivalence

# Binary Relation ~ : x~y

 Bomples:1-2 Ac B

+ Arelation in a set A is an equivalence relation if
* itis reflexive (x~x for all = € A),
* itis symmetric (x~y implies y~x),
* itis transitive (x~y and y~z implies x~z).

* Example : 1~3 (modulo 2), 2~4 (modulo 2)

33

Mathematical digression: equivalence

“ An equivalence relation ~ in A partitions the set A by

equivalence classes.

+ A set of all equivalence classes is called a quotient set

and denoted by A/~.

* Example : The relation modulo 2 divides natural

numbers into even and odd numbers.
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Stability implies cancellation law

(X,2)<(Y,Z)= X <Y (Cancellation Law)

IS Set ¢ = 1/n.
(X, sZ) e)X,eX,eZ) by A5)
e)X,eY,eZ) by A1, A3, and A4)

gl (
1ar (
(1-2¢)X,eX,eY,eZ) (by A5)
= (
= (

% N

1 —2e)X,2eY,e7) by Al, A3-A5)
%) by repeating) n

&
G e SR e 00 68
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Construction of Entropy for a
Single System

36




What we want to prove (Thm. 2.2) CP in muluple scaled copies

There is a function, St, on I' with the property that for real

File. (tn) / Gl (thy)
Qumiocrs salisfumg by - iy = th - LU N M T Lty =1 X B nd e e B <L

IECP helds in every scaled product space and > & — > i th,

b, b)) = (0 by Y and Y’ are comparable.

holds if and only if ) e
N M
=l =1

/
If there is another function S} with the same property, then 2

SHX) = aSr(X) + B with constants a > 0 and B.
i ]

Entropy Constants =
Generalized ordering Lemma 2.1
@5 ay Xy = (a'le, . -aalMXg\/[) for any a,a’ € R Suppose Xy and X1 are two points in I' with Xy << X;. For
A € R define
* When 0, simply ignore it.

e PGV e T
(0X1,2X2) = (2X3,0X4) means 2X9 < 2X3

Then
+ When negativel move to the other side. (1) For every X €T there is a A € R such that X € %).
BN %) 0, N, e a2 o) 0 X (ii) For every X € T, sup{A: X € A} < o0.

» Canonical entropy function
Sp(X) :=sup{A: (1 —N)Xp,AX7) < X}

+ Ab is now extended as follows:

C é (CLX, (1 = CL)X) vaER
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llemma 2.2 and 2 5

Lemma 2.2 Suppose Xy << X; are states and ay,aq, ), a}
are real numbers with ap + a; = ay + a}. Then the following
are equivalent.

(1> (CLOXOa a1X1> = (a()XO,a,lle)
(i) a1 < a} (and hence ay > ap).

In particular, 2 holds in (i) if and only if a; = a} and ag = ay.
Lemma 2.3 If X €T then the equality

A= X)
18 equivalent to
o (g )

41

Remarks

* By Lemma 2.3 and the cancellation law, the canonical

entropy lies between 0 and 1 for a state in a strip [note]

E(XQ,Xl) e {X E F’XO <X < Xl}

* Writing Sp(X) = Sr(X|Xo, X1)

* Entropy for states outside the strip $(X,, X;) [note]

SpXR, A =T ) X X

St(Xo| X, X1)
1 — Sr(XolX, X1)

SF(X|X0,X1):— 1 X < Xy

42

Uniqueness of entropy

If St is a function on I' that satisfies
(=N NV (= e Vi)
iof and only of
(1= XSHX) + ASE(Y) < (1= X)Sp(X7) + ASE(Y?),
forall x€ R and X, Y, X' .Y €T, then
Sr(X) =aSp(X)+ B

with
a= SF(Xl) = SF(X()) = 0, B = SF(X())

Entropy Constants

43

LY machine (from [T])

N
e

e

(< ()
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Constructing Universal Entropy

45

Consistent entropy scale

Xy =X X
@ Xﬂ“ I'xIl (Fv F)

L[

11/

b Xrxr
F/

Consistent entropy scale

+ Fix some system I'g and two point Zy << Z; in I'g
* For X inT, define S(X) as

S(X) = Srxr, (X, Zo)|(Xr, Zo), (X1, Z1))

* By previous theorems, we get

(X,AZ0) & (Xr,721)

* Due to the choice of X1, we get [note]
SIX, Y —SX)ES Y, SaX)—iS(X)
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Calibration

+ Choose X, << X1(Xo, X1 € I')
+ Choose Yy €T’
+ Define S(Y) as follows:

Stxro ((Y; Xo)|(Yo, Xo), (Yo, X1))

+ By definition,
@)~ X)) 0 )

+ By A5 and the cancellation law,

(Y, AXo) 2 (Yo, AX1)




In words,

We can “extract” a desired amount of entropy from
X1 and “inject” it into Yo in order to measure by
how much the entropy of the latter system
increases.

—Thess
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Concavity of Entropy

50

Convex state space

» Convex combination is a well-defined point in the space
tX+(1—-1%)Y, where 0 <t <1

- Coordinates should be U, V rather than T, P and so on.

% 2")
Compound system Convex combination

51

What we want to prove

= Entropy is a concave function of states.
SEX+(1-8)Y)>2tS(X)+ (1 -)S(Y)
+ Remarks
 Concavity will be used to define temperature.

¢ Maximum entropy principle will be proven.

52




(A7) Convex combination

= (A7) For X, Y in a convex state space,

(e 0 e ik (1

+ Forward sectorof X e I"'in T

Ax ={Y eT|X <Y}

* Forward sector of X € I in another system I

trelEie Y T

Forward sectors are convex

B Suppose X < Y1, X <Y,, where X e IY; e I,

A

e o A
< (tY1,(1—-1)Ys) (by A3 and A4)
i e Ay

Ahis ¢t (@ - b by AD -

Corollary %, = {X : ((1 — M) Xo,AX;1) < X} is convex.
Thm27 X e .7, YeSA, =>tX+(1-t)YY € A,
where A = tA\; + (1 —t)\y [note]

54

Why we need convexity

4

A

af‘ 100°C

tY +(1-t)Z g

SOECE ==l

10=C

v

Concavity of entropy

* Thm 2.8 The canonical entropy is a concave function.

Conversely, if an entropy is concave, then axiom A7
necessarily holds a fortiori.

Choose SEX)— ) S(Y ) — )\
By Thm 2.7 ,tX + (1 — t)Y € %. Thus,
Sl T
=tS(X)+ (1 -¢)S(Y) ]
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(Tl =7 = T3)

Simple Systems

Comparison Principle = Thermal Equilibrium

Compound Systems

Internal Energy and Coordinates

58

Measurability of Energy

+ Hamiltonian dynamics is gauge invariant. [note]

* An essential prerequisite for the measurability of the
energy is the existence of wall that do not permit the transfer
of energy in the form of heat. [C]

* We conclude that we are able to measure the energy
difference of two states provided that one state can be
reached from the other by some mechanical process while the
system is enclosed by an adiabatic impermeable wall. [C]

Axiomatic Approach [B]

= Existence of work function. If X < Y, there is a unique

real number W (X,Y) (work done by the system).

+ The 1st law of thermodynamics. If X < Y andY < Z,

W(X,Z)=W(X,Y)+W(Y, 2)

+ Theorem : There exists a real-valued function U (to be

called internal energy) on I" with the property
W(X,Y) = U(X) — U(Y) whenever X <Y

60




Macroscopic coordinates

a X=(U,V)
I L
Water Work
Coordinate
7
Z [/ 74
P z v
X—Viﬂ—W
i X—>Q@<«—W % w
b ™ 7 |d e

61

3 Axioms for Simple Systems

62

a X= Uy Uy Va, V) b X=(UVy,Vy)

Remarks on simple systems

* One (internal) energy and n work coordinates.

* Spatially inhomogeneous simple system.

+ Energy and volume are fundamental as coordinates.
® Actateisapomtin Rt and e R,

# A thermometer or degenerate simple system: n = 0.

« Although I'¥ ¢ R"*!, T’ and I'Y) should be considered
completely different spaces (exception : photon gas).

63

Jw Jw

Hydrogen

Oxygen

Hydrogen ¢\_/"® Oxygen

Air

Cola

d X=(U\Y)
Iv

N-n mol H,0
M-m mol C,HsOH

Air

— —

Hglt”\:\::l;e 1/7 mol H,0 —
m mol C,H;OH

64




What to prove Axioms

+ In simple systems, forward sectors are nested. - ,
* (S1) Irreversibility. For each state X € I, there is another

state Y c I suchthat X << Y

right /‘/’”—“\\\ wrong

I

* (S2) Lipschitz tangent planes. For each X & I'the forward
sector A x has a unique support plane at X, denoted by Ilx,
which is assumed to have a finite slope w.r.t. the work
coordinates and the slope is moreover assumed to be a

locally Lipschitz continuous function of X.

# (S3) Connectedness of the boundary. 0Ax is arcwise
* Accordingly, the CP holds within the state spaces of connected.

simple systems.

65 66

Assume S1 is false.

(S1) Irreversibility e A
S e — a0 7

+ For each state X € I', there is another state Y € I such
that X <<Y.

» Carathéodory Principle (Ca) : In every neighborhood of
every state X € I, there is a state Z € I' such that X S
is false. Here, axioms A1~A7 are assumed to hold. -0z v - % (biAD

1. S1 always implies Ca. < (1—-XX,2X) (by A5)

There is an interior point X
<((1=XZ,AX) (by Assump)

2. If all the forward sectors have non-empty interiors
then Ca implies S1. - Y < X. S1 is false

By transitivity of 2

Ca is false.
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Remarks

= Cais replaced by S1.
* Any state is a boundary point of its forward sector, i.e.,

X € 0Ax

* Since Ax is convex, there is at least one support plane
which passes through X and of which A x lies entirely on
one side.

- Next axiom is about this support plane.

69

= It assumes no cusp at X.

+ Tangent plane is a linear equation.

(S2) Lipschitz tangent planes

= Foreach X €T the forward sector Ax has a unique

support plane at X, denoted by 1lx, which is assumed to
have a finite slope w.r.t. the work coordinates and the
slope is moreover assumed to be a locally Lipschitz
continuous function of X.

v-v°+ Y RV- vy =0 T

o=l

70

Uniqueness of the support plane

* Mathematical meaning:

e U U Zgi(v — Vo) has a unique sign for
alll X e A ifand onlyif 3= B (X)

+ Function X — P(X) = (P1(X),---, P,(X)) is called the

pressure. We do not need to assume P;(X) > 0.

* Finite pressure means the plane is never ‘vertical’.

7

Local Lipschitz continuity

* Mathematical definition. For any closed ball B with

finite radius, there is a constant ¢(B) such that

|Fi(X) — P(Y)| < e(B)|X - Y|, Yxven

* Rademacher’s Thm: a locally Lipschitz continuous

function is differentiable almost everywhere. [note]

* Note that at phase transition points, pressure may be

non-differentiable.
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(S3) Connectedness of boundary

« 0Ax is assumed to be arcwise connected.

* Physical motivation : Any two states on the boundary
can be reachable each other by a quasi-static process.

* Without S3, one can build a model violating the CH.
= Adiabats : a set of boundaries {Ax }xer

= Later, we will show X € 0Ay implies Y € 0Ax

73

Geometry of Forward Sectors

74

Mathematical digression: topology

* Open and closed sets. Interior and boundary.

# Closure : the smallest closed set containing a set A.
“ Open covering : a set of open sets covering a set A.
* Relative topology

= Compact set : finite open covering.

* Heine-Borel theorem : compact = closed and bounded in
Euclidean space.

75

Lemma 3.1 (collinear points)

e fel 2 (1 -7 1el0]]

e X 2 7 then X =Y.
X e X e e

2.If Y < Z, then X <Y (and hence X < Z)
Proof

X, (I —0Zy Yy =GY, (1 — Y)Y (1 —t/Z) n
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Forward sectors are closed

. g then Y = A

Forward sectors have interiors

+ Note

el LYH a7 il 7. — * A convex set either has an interior or belongs to a
," n + 1 n + 1 h . . .
- yperplane in lower dimensions.
1 e il
(Y, EZ = ¥l EY)  If Z is a bdy point of a forward sector immersed in a
Z""" > s hyperplane, there are many supporting planes at Z.
% SKeldrof Bf
“ We have only used A1—A7. v Lot o
Ay C Ax&Ax 75 Ay
Ay If Z € 0Ay S2 is false.
Remarks Energy in forward sectors

+ Tt makes sense to talk about the normal direction of a
tangent plane, pointing to the interior.

# By S2, the normal is not orthogonal to the energy axis.
+ Thm 3.3. the normal is continuous on X.

* The normal is set to be on the positive energy side. This
will be true for all systems (Thm 4.2)

» Temperature is always positive. Negative temperature?

79

+ If Ax is on the positive energy side of Ilx,[X = (Up, Vo)]

dhem Ao WL er e e T

= If Ax is on the positive energy side of Ilx, then the

same holds for all states.

b
IIx

e

80




Planck’s principle (Thm. 3.4)

= If two states of a simple system have the same work
coordinates, then X <Y < U(X) <U(Y)

-~ U(X) is the energy of the state X.

* ‘only if’ part is the Kelvin-Planck statement: “No process
is possible, the sole result of which is a change in the energy of
a simple system (without changing the work coordinates) and
the raising of a weight”

+ Planck’s principle is not enough to show the CP.

81

Projection of boundary

o — Ve R (U, V) c0Ax for some U € K}

connected by S3

82

Properties of boundaries

(1) If Y € 0Ax, Ax has a tangent plane at Y, which is Iy .
(ii) px is an open, connected subset of R".

(iii) For each V € px there is exactly one number, ux(V),
such that (ux(V),V) € 0Ax. Le.,

0Ax = {(ux(V),V):V € px}.

This ux(V) is given by ux (V) = inf{u : (u,V) € Ax}. The
function uyx is continuous on px and locally convez, i.e.,
uy s convex on any convex subset of px. Moreover,

A)(D{(U,V>ZUZUX(V), VE,O)(}QF.

83

Properties of boundaries

(iv) The function ux is a differentiable function on px with
a locally Lipschitz continuous derivative and satisfies the
system of partial differential equations

8UX

o VA A AR R

(v) The function uy is the only continuous function defined
on px that satisfies the above differential equation in the
sense of distributions, and that satisfies ux(V°) = U°.

(vi) If Y € 0Ax, then X € 0Ay and hence Ax = Ay.
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Forward Sectors are nested

= Two forward sectors satisfy exactly one of 3 possibilities.

. vy .

€h) A @ Interiordsy, 1e. X <2 Y x

(o) Ay C InteriorAx, i.e., Y << X \x\/

* Hence, CP holds in simple systems.

85

Axioms for Thermal Equilibrium

86

(T'1) Thermal contact

X e Alg
X=(UV,,V,)

Jw

* For any two simple systems,
there is another simple system,
the thermal join, with convex
state space Ajs.

v

“ Moreover,

(0T, Vi), (U Vol < O Vo)

Hydrogen @\_7 @ Oxygen

87

(T2) Thermal splitting

For any point (U, V1, V3) € Ay, there is at least one pair of states,
(U1, V1) € Ty, (U, V3)) € Ty, with U = Uy + Us, such that

(U, Vi, Va) & (U, A), (Us, Vo)),

In particular, if (U, V') is a state of a simple system I" and A € [0, 1]
then

UV A (R, 0, 0 i),

88




(T3) Zeroth law of thermodynamics

* Definition : thermal equilibrium

If (U1,V1),(Us, V3)) ~ (Uy + Uy, V1, V) we say that the states
X = (U1,V1) and Y = (U, V5) are in thermal equilibrium
and write
X
S HX VLYV 7 thenX 7
* Thm 4.1 (Scaling invariance of thermal equilibrium)

X o implies puX LAY for any pu, A >0

89

Direction of forward sectors

* The forward sectors of all simple systems point the

Same way.
Assum (Ul = U2a‘/17‘/2) ré’ ((Uh‘/l)) (U27‘/2))
Iif (Ulavl) =5 (Ul = 57‘/1) and (U27‘/2) = (U2 = 57‘/2)

(Uﬂ‘/la‘/Q) = (U+57 Vl?‘/2) and (U7 V17V2) = (U £ 57 Vl;‘/Q)

Contradiction to the Planck’s principle ol

90

Maximum entropy principle

+ If S is an entropy function of a simple system, then S is a
concave function of U for fixed V. [note]

« If S1 and S2 are consistent entropy functions on two
simple systems I'y and I'y, then (U3, 17) g (Usa, V2) holds
if and only if the sum of entropies takes its maximum
value at (U1, V1), (U2, V2) for fixed total energy and fixed
work coordinates. Thatis, (U = U; + Us)

i [S1(W, V1) + S2(U — W, V)] = 51(U1, V1) + S2(Us, V)

91

(T4) Transversality

= If I is the state space of a simple system and if X € T,

then there exist states X = X; with Xy << X << X;.

+ Remark

* T4 implies S1.

» Weaker condition Xy < X < X; with Xy << X is
sufficient at this moment, but this does not imply S1.
The strong version will be needed later, however.
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(T5) Universal temperature range

If I'y and 'y are simple systems then, for every X € I'y and ev-
ery V' € p(I'y), where p is a projection on the work coordinates

p(U,V) ==V, there is Y € T'» with p(Y) = V such that X ~ Y
* Remarks
* The term temperature is used only for a mnemonic.

* Physical motivation : Sufficient large copy of X is a heat
bath and it is always possible for Y with fixed work

coordinates to be in thermal equilibrium with the heat
bath.
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Comparison Principle in
Compound Systems

94

Lemma 4.1 Extension of strips

= For any state space (of a simple or compound system), if
NN XL X and if

e NG
e e e
X, L ((1 — Xo)Xo, X0 X1),

then
A\

A / :
S ) S
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CP in multiple scaled copies
b~

)

et It b 0 simple system and let ai,.. .. an b1 by be nos
itive real numbers with a1 +---+ay = by + -+ by. Then
all points in T\ x ... x T'@N) gre comparable to all points in

B (B WIOGC wecan setgi it ayi—1

+ Once the above theorem is established, we can define,

by Thm 2.2, unique entropy for this system up to affine
transformation.

+ We need especially A5,T2,T4, and Lemma 4.1.
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Sketch of the proof Criterion for comparison

L o, Let 'y and T's be two (possibly unrelated) state spaces. Assume
'¢" . N \‘ ‘\ there is a relation < satisfying axioms A1-A6 that holds for
'¢-"“ ‘\‘ i Y5\‘ L I['1,Ty and their scaled products. Additionally, < satisfies the
sea b “‘ s "g:Xl 2 CP on I'y and its multiple scaled copies and on T's and its
'/"“ ““ ““\“ " ‘ };:f\ ~“~..: multiple scaled copies byt, a priom’, not necessarily on I'y x I'y
':“ \“ \“ i — \\ \\\ g or any other products inwvolving both T'y and Ty
': “‘ Y%g‘js \\\ ;, If there are points Xo, X1 € I'1 and Yy, Y1 € Ty such that
e Xo<< X1, Yo=<%
l‘ XO ‘\ \\ ,\ \::}"& .
T (X0, Y1) & (X1, %),
i -A- e = — then the CP holds on products of any number of scaled copies
Y ~ (1 = M) Xo, A Xa) vV of T’y and Ty.
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Entropy calibrator

* A quadruple of points satisfying

XO 77 Xl; YO - Yl, (X(), Yl) ;’é, (Xl, Y’O) Temperature is epilogue rather than prologue.
plays a role of entropy calibrator. T Differentiability
Isotherms and Adiabats
» The existence of entropy calibrator is guaranteed by the emp crature Thermal Equilibrium

thermal axioms T1~T4.

» To conclude, S1~S3 and T1~T5 guarantee the CP and the
entropy principle is proved.
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Differentability of Entropy

101

Upper and lower temperatures

+ Definition of upper and lower temperatures at state X

1/Te(X) = lim ~ [S(U +¢,V) ~ SO, V)

+ Remark

» Two temperatures are defined for any state. [note]
* By Planck’s principle, temperature is positive.

» If U; < Us, [note]
TV - B e B s ()
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Properties

+ Continuity of the temperatures on adiabats.
+ Uniqueness of temperature
* Continuity of temperature

= Differentiability of S
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Energy flow (Clausius)

1 I'y

(Ulavl) * (U{a‘/l) ,\{Uéavéa
L

1y > ik

Ui >U{, U2<Ué

+ Existence of T is guaranteed by T1 and T2.

» U is an increasing function of T for fixed V.
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Isotherms and Adiabats
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Istotherms may have finite volume
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Isotherms cut adiabats

suppose Xo = X =< Xy with T(X,) = T(Xq) = Ty.

Gl - B . then theve s a poit X 2 X with
T(X') =Ty Le., the isotherm cuts every adiabat.

(2l — ... citherthere is.an X' A X with EX =
or, for any T} < Ty there exist points X, X' and X| with

ol e g — T(X’) — =

(3) I Tn = E.in, cuther there is an X' A X with BOET =1
or, for any T > Ty there exist points X, X' and X] with

XX o =X and b)) A =T
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Adiabats and isotherms determine the entropy

Let < and <* be two relations on the multiple scaled copies of a
szmple system I’ satisfying axioms A1-A7, S1-S3 and T1-T5.

Let &~ and & denote the corresponding relations of thermal

equilibrium between states in I'. If < and <* coincide on T’

and the same holds for the relations = o then = and
<* coincide everywhere. In other words: The adiabats in '
together with the isotherms determine the relation < on all
multiple scaled copies of I' and hence the entropy is uniquely
determined up to an affine transformation of scale.
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Mixing and Chemical
Reactions

Entropy Constants

109

Entropy of mixture

= Entropy is defined for all systems up to an additive

constants!

* But the additive constants are important for the entropy

to dictate the order relation between two states in two
different systems. (2 moles of hydrogen + 1 mole of
Oxygen vs. 2 moles of water)

+ Goal : to find additive constants which are additive and

extensive and which dictates the order relation.
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Heuristic Argument [T]

M

=D

2 16

=(1— 185" + pSy*°

Additive constants
cannot be arbitrary!

m

Heuristic Argument [T]

Hydrogen
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Additive and Extensive Entropy

Our goal is to find constants B(I"), one for each state space I', in
such a way that the entropy defined by

S(X) = 5p(X) +B(I) for Xl

satisfies S(X) < S(Y) whenever X <Y with X e ', Y e I'.
Since the initial entropies Sp(X) already satisfy additivity and
extensivity, additive constants B(I") should satisfy

B(t1F1 X tQFQ) = tlB(Fl) aF tQB(FQ)

for all state spaces I'1, I's under consideration and ¢1,ty > 0.
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S Axiomatic A h
Nonequilibrium e

Entropy

Master Equation
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Axiomatic Approach [LY 3]
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Non-equilibrium states

* As before, we also consider equilibrium state spaces.

+ Extended state space includes all non-equilibrium states

as well as equilibrium states. T' C T

* One important requirement is the reproducibility, which

is not at all obvious.

* In many cases, non-equilibrium states are either time-

dependent or in contact with a heat bath with energy
flux.
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Assumptions

* Same order relation is defined in the extended space.
* A4 (scaling) and A5 (splitting) is not required.
+ Axiom N1. A1, A2, A3, A6 are satisfied.

# Axiom N2. For every X e T, there are X/, X" € I'such
that v 2 e F s

* Non-equilibrium entropy preserving the order relation?

17

Entropy functions

For X € I define

Sl auplSIX Nl PN aidl

S0 i [Sed) e
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Properties of entropy functions

ol 5 (0 ooiorall Xl

(b s ¢ = S(X)for X € ' and S (X) < 5(X) for al
Xl

(c) The sup and inf in the definition of Sy are attained for some
X X' cPwith X' <X 2 X"

(dy X <Y mpliess5 0 = 5 (1) and 5. 0= 5. (V).

19

Properties of entropy functions

il 00 5 ) then X <V

(f) Under composition, S_ is superadditive and S, subadditive,
i

S,(Xl) aF SQ(XQ) < S,(Xl,Xg)
SH(X1, Xp) < 54(X1) + S1(Xo)

(g) If S is any function on I that coincides with S on I and is such
that X < ¥ implies S{X) < S(Y), then S_(X) < 5(X) <
ad e
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CP and uniqueness

The following are equivalent:
(i) unique S extending S such that X <Y = S(X) < S(Y).
i) 5 (8 — S (X)) forall X el

(iii) There exists a (necessarily unique!) S extending S such that
sX) - 90 implics X ¥

(iv) The CP is valid on T
(v) Every X e I'is comparable with every Z € T.

(vi) Every X € T is adiabatically equivalent to some Z € I'.
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Master Equation [van Kampen]
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Master Equation and H function

* Master equation with a stationary state

dp

d_; = ; (Wnn’pn’ = Wn’npn) ) ; (Wnn’preb/ T Wn’np%) =0
* Let f(x) be a nonnegative convex function.

G oo o0 i1

» Define a quantity H by
(¢t e
i) = s (B2) = Sistan) >
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Time Evolution of H function

dH
= > @) Wauny — Wenpa)

nn’

= 3 WowBl {ow £/ () = @ f' (@)}

nn’

+ Since Z Wnn’pfﬂ (wn = wn’) for any wna

choosing ¥, = f(xy) — onf'(zn) gives

dd_j;—fl = Z Wnn’pyez’ {(xn’ = xn)f/(xn) = f(x”) = f($n/)} =
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Time Evolution of H function

+ H must have a well-defined limit (if 7 is finite).

+ His 0 if xn = xn’ (steady state) and f(1) = 0.
* One customarily chooses

Pn
) —rlny. o H — 2N poln—
f(x) En =

e
n

+ H is extensive.

* Generalized (extensive) entropy
S=—-kH+ 5S¢
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To be continued.
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* Several axioms are equivalent to the existence of
entropy with the behavior we expect.

* One way of proving the 2nd law from stat mech
approach : To show that microscopic dynamics satisfy
the axioms, at least for large systems.

* Themodynamics of small systems, like DNA? Can we
define a sensible internal energy for small systems?

+ Quantum mechanical definition of work? This is

important because internal energy and, accordingly,
thermodynamic quantities are only defined by works.
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