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Landau Fermi liquids  



 

Blackboard script not reproduced here 

 

See standard textbooks on interacting electron systems, e. g., 

 

G.Baym, C, Pethick, Landau Fermi-liquid Theory: Concepts 

andapplications, Wiley 1991 (also available online)  

 

See also: H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, 

Fermi liquid instabilities at magnetic quantum phase transitions, 

Rev. Mod. Phys. 79, 1015 (2007) , In particular p.1018-1027 

 

 

See also  N. W. Ashcroft, N. D. Mermin, Solid State Physics, 

Saunders College Publishing1976, in particular ch. 17 

 

 



Noninteracting independent free  particles and quasiparticles 

R. D. Mattuck, in: A guide to Feynman diagrams in the many-body problem ,  

McGraw-Hill 1967;2nd edition , Dover 1992 



Kondo effect: 

concept of a local Fermi liquid 



Physica 5, 225 (1938) 



J. Kondo 1964: explanation of the resistance minimum in metals 

Kondo Hamiltonian 

Ή =  - 2J S s 



Electrical resistivity of (La,Ce)Al)2 



Kondo anomaly of the specific heat of Cu-Cr 



Spezifische Wärme von verdünnten Cu1-xFex-Legierungen Kondo anomaly of the specific heat of Cu-Fe 



Kondo anomalies of (La,Ce)B6 
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Two important parameters:  

hybridization with conduction electrons: 

     broadening D of local level 

on-site Coulomb repulsion U on local level 

     tendency to single occupancy, i. e., local moment 

stable magnetic moment local magnetic moment „lost“ 

U >> Δ  U < Δ  

Anderson model for a magnetic impurity in a metal 

P.W. Anderson, Phys. Rev. 124 (1961) 



Second-order scattering processes of conduction electrons by 

magnetic impurities (Kondo scattering) 

Intermediate state involvinga conduction-band 

particle (i) or hole (ii) 

                (i) 

 

 

Illustration 

 

 (ii) 



Kondo temperature TK of 3d transition-metal impurities  

in noble-metal hosts 



Relation between Anderson and Kondo models 

Schrieffer-Wolff transformation (1966) maps Anderson impurity Hamiltonian 

onto an effective spin Hamiltonian  
  

   Ή =  - 2J S s     with J = J0 + J1  

 J0 : Heisenberg exchange integral between                 

       localized and conduction electrons  > 0 
  

 J1 =  < Vlc>
2 U / (El – EF) (El – EF + U)  < 0 

 

if hybridization sufficiently strong, then |J0| < |J1|       

   antiferromagnetic exchange J < 0 (spin-singlet formation) 

 

Note: in rare-earth metals angular momentum not quenched, 

e.g., Ce3+  4f1 configuration: 2F5/2 Hund‘s rule ground state,    

     six-fold degeneracy lifted by crystal field 

Modified Kondo Hamiltonian  

 B. Coqblin, J. R. Schrieffer, Phys. Rev. 185, 847 (1969) 



Two “ingredients“ for Kondo effect of isolated 4f impurities in metals 

• hybridization of 4f and conduction electrons 

• strong on-site electron repulsion in 4f state 

singly occupied lowest 4f state will be screened by conduction electrons:        

singlet formation 

Resonance at EF due to virtual excitions from 4f state to EF 

       Kondo resonance 

Origin of heavy masses m  100 m0 

in rare-earth alloys: Kondo effect 

“local Fermi liquid“ 
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“Kondo anomalies“ at low T 

Heavy-fermion system: lattice-coherent superposition of Kondo anomalies 



Heavy-fermion systems 



Kondo resonance in the heavy-fermion system CeCu6 

D. Ehm et al., Phys. Rev. B  76, 04511 (2007) 



Wilson relation between the specific-heat  coefficient  

and the Pauli susceptibility  

Heavy-fermion systems: 

 F0
a ~ - 0.5 

Z. Fisk et al. 



Electrical resistivity of  heavy-fermion systems 

Kondo-like increase of r(T) 

toward low T 

 

Coherence maximum  

below TK, cf. Bloch theorem 

 

At lowest T, r(T) = r + AT2, 

cf.  Fermi liquid 



Kadowaki-Woods ratio of the specific-heat coefficient  

and the coefficient A of the T2 resistivity 

Electrical resistivity 

    r = r0 + A(kBT/EF)2 

 

 A ~ 2  

Specific heat 

   C = T,      ~ m*/m0 = EF
0/EF 

  

K. Kadowaki, S.B. Woods, 

Solid State Commun.58, 507 

(1986) 

A. C. Jacko et al., Nature Phys. 5, 422 (2009) 



Quantum phase transitions 

in heavy-fermion systems 



Competition between Kondo effect and RKKY interaction 

Leading to quantum criticality in heavy-fermion systems 

TRKKY ~ J 2 

TK ~ exp [-1/J N(EF)] 

J 

T 

Jc 

Kondo effect 
 

Formation of local singlets 

with conduction electrons 

 

 nonmagnetic groundstate 

 

 

RKKY interaction 
 

Polarization of conduction 

electrons via J  is sensed by 

another magnetic ion 

 

 tendency towards 

 magnetic order 



Quantum phase transitions (2nd order) 

: 



Interplay of superconductivity and magnetism 

near quantum critical points 

UGe2 

URhGe 

UCoGe 



Interplay of superconductivity and  

antiferromagnetism at quantum criticality in CeCoIn5 

S. Zaum et al., PRL 2012 
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Scattering of heavy quasiparticles  

by spin fluctuations: diverging  m*  

for 3D FM and 2D AF 

Hertz, Millis, Moriya, Rosch et al. Coleman, Si, Pepin et al. 

Unbinding of composite  

heavy quasiparticles: 

change of Fermi volume 

conventional 

YbRh2Si2 

unconventional 

TK  0 ? 

d 

CeCu6-xAux 

CeNi2Ge2 

CePd2Si2 

Ce1-xLaxRu2Si2 

Multiple energy scales? 

Dimensionality ? 

Disorder effects ? 

CeCu2Si2 

UCu5-xPdx 

Scenarios for quantum criticality in heavy-fermion systems 


