Beyond Landau Fermi liquid and BCS superconductivity near quantum criticality

Hilbert v. Löhneysen

Physikalisches Institut and Institut für Festkörperphysik Karlsruhe Institute of Technology

Lecture Series at APCTP, Pohang

May 23-27, 2016

Lecture 3: CeCu6-xAu^x – a case study for heavy-fermion quantum criticality Lecture ³ $\text{CeCu}_{6-x}\text{Au}_x -$ a case study for quantum criticality in heavy fermion systems

Contents of Lecture 3

Introduction to the $CeCu_{6-x}Au_{x}$ system

Non-Fermi-liquid thermodynamic and transport properties

Measurement of critical fluctuations by inelastic neutron scattering

Fate of the Kondo energy scale

at the concentration-tuned QCPin $CeCu_{6-x}Au_{x}$?

Role of the tuning parameter:

compositon, hydrostatic pressure, magnetic field

Determining the entropy landscape near quantum criticality

Does the monoclinic-orthorhombic transition qualify as a QPT?

Introduction to the CeCu_{6-x}Au_x system

Heavy-fermion system $CeCu₆$

Onuki, Komatsubara

Note: evidence for magnetic order in CeCu₆ at $T \sim 3$ mK

E. A. Schuberth et al, PRB 51, 12892 (1995)

Magnetic order in $CeCu_{6-x}Au_{x}$

CeCu₆: heavy fermions with $\gamma = 1.6$ J/molK² 2.5 non-magnetic groundstate $CeCu₅Au$ 2.0 *Onuki, Amato Ōnuki et al., Amato et al.* $\sum_{z=1.0}^{1.5}$ short lived AF correlations 0.5 *Aeppli, Rossat-Mignod Aeppli et al., Rossat-Mignod et al.*

Alloying with Au: long-range AF order

"negative lattice pressure" explains $T_N(x)$ for $x < 1$

 0.0

Direct proof: Néel temperature T_N vanishes under hydrostatic pressure

 $x = 0.1$: Quantum critical point with "non-Fermi liquid" behavior

 0.5

 \times

 \triangle \bullet single crystals A o polycrystals

 $1,0$

 1.5

Crystal structure and magnetic order of CeCu6-*^x*Au*^x*

Orthorhombic structure Pnma

 CeCu_6 : small monoclinic distortion suppressed for *x* > 0.15

Czochralski method

Pulling from the melt in a W crucible inductive heating Ar pressure $(p = 2.5$ bar)

Starting materials:

Ce (4N), Cu (5N), Au (5N)

Pulling speed: 12 – 20 mm/h rotation: 3-5 min-1

Non-Fermi-liquid thermodynamic and properties in CeCu_{6-x}Au_x near the quantum critical point *x* = 0.1

Non-Fermi liquid effects at quantum critical point in $CeCu_{6-x}Au_x$

Specific heat

Electrical resistivity

Measurement of quantum-critical fluctuations by inelastic neutron scattering

Neutron scattering

Inelastic neutron scattering intensity of $CeCu_{5.9}Au_{0.1}$

energy transfer $\hbar\omega = 0.1$ meV

ILL, IN 14

O. Stockert et al., PRL 1998

1D features in k-space equivalent to 2D features in real space

 \Rightarrow quasi-2D fluctuations

Coupling to 3D quasiparticles

 $d = 2, z = 2$

$$
\Rightarrow \qquad d_{\text{eff}} = d + z = 4
$$

Spin-density wave scenario:

$$
\frac{C}{T} = a \ln\left(\frac{T_0}{T}\right), \quad \Delta \rho \sim T
$$

$$
T_N \sim |\delta - \delta_C|, \quad \delta = p, x
$$

Hertz, Millis, Moriya, Lonzarich, Rosch

Inelastic neutron scattering intensity in the a*c* plane

$$
x = 0 \qquad x = 0.1 \qquad x = 0.2
$$

Dynamical scaling of magnetic fluctuations in CeCu6-*^x*Au*^x*

A. Schröder et al., Nature 2000

Scaling of the dynamical susceptibility of critical fluctuations for $x = 0.1 \approx x_c$, with ω/*T*, independent of *q,* with anomalous scaling exponent $\alpha = 0.75$

incompatible with Hertz-Millis-Moriya model which predicts ω/*T*1.5 scaling and. $\alpha = 1$.

Further, the scaling is observed (with reduced amplitude) in various points of the Briillouin zone, not only at the wavevectorof incommensurate order

 \rightarrow "local quantum criticality

Fate of the Kondo energy scale at the concentration-tuned QCP in CeCu_{6-x}Au_x?

Fermi-volume change due to Kondo collapse at the onset of magnetic ordering?

 ${\sf YbRh}_2{\sf Si}_2$: moderately heavy effective masses.

magnetic transition at 70 mK can be suppressed by an small magnetic field

Strong change in Hall constant of $YbRh₂Si₂$ at field-induced QCP indcating change of carrier density

High-resolution UPS measurements to determine T_K across the quantum critical point

Photoemission measures occupied states only – some states above E_F are occupied states according to the Fermi-Dirac function $f(E)$

Obtain the DOS for these states by dividing the raw data by *f*(*E*) Nearly complete Kondo resonance becomes visible

Local quantum criticality: breakdown of Kondo effect?

Strong drop of T_K in CeCu_{6-x}Au_x close to x_c

Effective single-impurity model where Kondo exchange *J* is renormalized by local spin fluctuations at surrounding Kondo ions, neglect of coherence effects

 $T_{\mathsf{K}}(y)/T_{\mathsf{K}}(0)$, *y* is a measure of RKKY interaction, solutions only for $y < y_m$. *J. Kroha*

Distinction between Hertz-Millis and Kondo-breakdown (local) scenario ?

cf. CeRhIn₅ and CeCoIn₅: $T_K \approx 0.1$ and ≈ 1 K *J. D. Thompson*

Different scenarios for different tuning parameters in CeCu_{6-x}Au_x?

Interplay of concentration and pressure tuning

Surprising universality of *C*/*T* at quantum critical points

Suggestive of 2D fluctuations under pressure

Evolution of the magnetic structure of $CeCu_{5.5}Au_{0.5}$ under hydrostatic pressure

Tuning the magnetic instability of $CeCu_{1-x}Au_x$ ($x = 0.2$) by pressure or magnetic field: specific heat

 $B(T)$

Inelastic neutron scattering at the field-induced instability in $CeCu_{5.8}Au_{0.2}$

 $\alpha = 1.5, \beta = 1.5$ (standard 3D scenario) $\alpha = 0.8, \beta = 1$ (as for x = 0.1, B = 0) Fit of $\chi''T^{\alpha}$ vs. E/T^{β} with appropriate scaling functions

O. Stockert et al., PRL 2007

Possible additional phase line at *T* = 0

Internal consistency for CeCu_{6-x}Au_x

Lowering the effective dimensionality leads to an increase of quantum fluctuations, and thus to the local QCP. Magnetic field restores 3D and hence yields Hertz-Millis

cf. experiments on Co- and Ir-doped YbRh₂Si₂ S. Friedemann et al,, Nature Phys. 2009

Global phase diagram for quantum-critical heavy-fermion systems

Q. Si, Physica B 378–380, 23 (2006)

Q. Si and S. Paschen, Phys. Status Solidi B 250, 425 (2013)

Possible continuous evolution from local-moment to itinerant antiferromagnetism in Kondo systems

M. Vojta, PRB 78, 125109 (2008) See also T. Senthil et al., PRL 90, 216403 (2003)

LAF - IAF transition may be gradual How can one experimentally "control" of the vertical axis? What is the effect of magnetic field in this plot?

CeCu_{1-x}Au_x: gradual evolution of ordered magnetic moments (from ENS)

Tiny specific-heat anomaly at T_N on top of a large "non-Fermi-liquid" background

Scenarios for quantum criticality in heavy-fermion systems

Scattering of heavy quasiparticles by spin fluctuations: diverging *m** for 3D FM and 2D AF

Unbinding of composite heavy quasiparticles; local quantum criticality

Anomalous quantum criticality in CeCu6-*^x*Au*^x* described in terms of critical quasiparticles

Quasiparticle weight factor Z at E_F given by

 $Z^{-1} = 1 - \partial \text{Re}\Sigma(\omega)/\partial \omega = m^* / m$

Wölfle, Abrahams, PRB 84, 041101 (2011) Abrahams, Wölfle, PNAS 109, 3218 (2012) Abrahams, Schmalian, Wölfle, PRB 90, 045105 (2014)

Thermal expansion – a sensitive thermodynamic probe of quantum criticality

Volume thermal expansion of CeCu_{6-x}Au_x

Sign change at the magnetic transition because $\alpha_v = dV/dT = -dS/dp$ Divergence for $T_{\rm c}\rightarrow 0$

Theory: Zhou, Si, Garst, and Rosch, PRL 2002

Thermal expansion as a sensitive probe of phase transitions approaching a QCP: example CeCu_{5.85}Au_{0.15}

Thermal expansion close to a QCP

Fermi liquid at low *T*

Thermal expansion close to a QCP		
uid at low T	$\frac{C}{T} = \frac{\partial S}{\partial T} = \gamma = \text{constant.}$	Grüneisen ratio
$S = \gamma T \implies \frac{\alpha_i}{T} = -\frac{1}{VT} \frac{\partial S}{\partial \sigma_i} = -\frac{1}{V} \frac{\partial \gamma}{\partial \sigma_i} = \text{constant.}$	$\Gamma_i = \frac{\alpha_i}{C} = \text{const}$	
n from Fermi-liquid behavior at a QCP	$\frac{Z_{hu, Garst, Si, and Rosch, PRL 91, 066404 (2003)}$	
p, T	divergence of $\frac{\alpha_i}{T}$	

Deviation from Fermi-liquid behavior at a QCP

Grüneisen ratio

 $=$ constant. \int $\Gamma_i = \frac{\alpha_i}{C}$ = cor \int ^{*i*} \int ^{*C*} \int *C* $\frac{\alpha_i}{\alpha}$ = const

> *Zhu, Garst, Si, and Rosch, PRL 91, 066404 (2003)*

accumulation of entropy

Divergence of the volume Grüneisen parameter for $T \rightarrow 0$ at a quantum critical point

Prediction: Zhu, Garst, Si, and Rosch, PRL 91, 066404 (2003) Experiments: Küchler et al., PRL 91, 066405 (2003); PRL 93, 096402 (2004)

Thermal expansion as a sensitive probe of phase transitions approaching a QCP: example CeCu_{5.85}Au_{0.15}

Determining the entropy landscape near quantum criticality

Anisotropic response of thermal expansion to different transitions or excitations in CeCu_{5.9}Au_{0.1}

Thermal expansion coefficients α_i (*i* = *a, b, c)*

$$
\alpha_i = \frac{\partial \epsilon_i}{\partial T} = -V^{-1} \frac{\partial S}{\partial \sigma_i}.
$$

 ε_{i} and σ_{i} : strain and stess components along principal axes $\partial \epsilon_i / \partial T = -V^{-1} \partial S / \partial \sigma_i.$

strain and stess components

along principal axes

(for orthorhomic or higher symmetry) $e^{\int_{c}^{S} G}$

Ts :

Small monoclinic distortion of the *ab* plane $(0 < 2^{\circ}$, neglected in the following)

CEF:

thermal excitation to higher CEF doublets – anisotropy reflects the different spatial dependence of CEF wave functions

Low *T*:

passing the coherent Fermi-liquid regime toward a quantum critical point

Linear and volume thermal expansivities divided by T for $T \rightarrow 0$

Divergence of α_V (*T)/T* is stronger than that of *C/T ~* ln(*T₀*/*T),* compatible with α_V (*T)*/*T* ~ ln²(*T₀*/*T)*

Linear and volume Grüneisen ratios \varGamma_{i} = α/C and \varGamma_{V} = α_{V}/C

Roughly logarithmic increase toward low *T*

compatible with local quantum critical scenario (Q. Si et al.) fit parameters T_{0i} depend on *i*

Dependence of entropy on arbitrary stress direction

$$
\alpha_{ij} = \frac{1}{V} \frac{\partial^2 G}{\partial T \partial \sigma_{ij}} = -\frac{1}{V} \frac{\partial S}{\partial \sigma_{ij}}.
$$

 σ_{dm} picks up the anisotropy: $\sigma_{\text{dm}} = 0$ for isotropic systems

Stress and expansivity tensors For systems with orthogonal or higher symmetry:

$$
\frac{\partial S}{\partial \sigma_u} = \vec{\nabla} S \hat{u} = \sum_{i=1}^3 \frac{\partial S}{\partial \sigma_i} \hat{u}_i = -V \sum_{i=1}^3 \alpha_i \hat{u}_i.
$$

Specific stress combinations:

hydrostatic pressure $\vec{p} = p \times (1, 1, 1)$. stress $\perp \vec{p}$: "pure shear stress"

$$
\vec{\sigma}_{(lm)} = \vec{\sigma}_l - \vec{\sigma}_m \text{ with } \vec{\sigma}_l \cdot \vec{\sigma}_m = 0
$$

hydrostatic pressure: pure shear stress: volume change distortion without distortion without volume change (if bulk modulus isotropic)

Dependence of entropy on arbitrary stress direction

$$
\alpha_{ij} = \frac{1}{V} \frac{\partial^2 G}{\partial T \partial \sigma_{ij}} = -\frac{1}{V} \frac{\partial S}{\partial \sigma_{ij}}.
$$

 σ_{dm} picks up the anisotropy: σ_{dim} = 0 for isotropic systems

Stress and expansivity tensors For systems with orthogonal or higher symmetry:

$$
\frac{\partial S}{\partial \sigma_u} = \vec{\nabla} S \hat{u} = \sum_{i=1}^3 \frac{\partial S}{\partial \sigma_i} \hat{u}_i = -V \sum_{i=1}^3 \alpha_i \hat{u}_i.
$$

Specific stress combinations:

hydrostatic pressure $\vec{p} = p \times (1, 1, 1)$. stress $\perp \vec{p}$: "pure shear stress"

$$
\vec{\sigma}_{(lm)} = \vec{\sigma}_l - \vec{\sigma}_m \text{ with } \vec{\sigma}_l \cdot \vec{\sigma}_m = 0
$$

hydrostatic pressure: pure shear stress: volume change distortion without distortion without volume change (if bulk modulus isotropic)

Shear stresses in $CeCu_{5.9}Au_{0.9}$

Measuring the stress dependence of the entropy

$$
\vec{\nabla}S = (\partial S/\partial \sigma_a, \partial/\partial S \sigma_b, \partial S/\partial \sigma_c)
$$

Anisotropic stress dependence of the entropy in CeCu_{5.9}Au_{0.1}

Summary: stress combinations driving the QCP in CeCu_{5.9}Au_{0.1}

What is the signiificance of the direction of the pure shear stress σ_{ca} enhancing

Pictorial illustration of the entropy landscape for a 2D system

Relation of stress anisotropies to quantum critical fluctuations?

Anisotropic uniaxial pressure dependence of T_N for CeCu_{5.8}Au_{0.2}

Specific heat under hydrostatic ... **Example 20 and unitable in Specific heat unidentity** Specific heat

Pressure vs. volume – stress vs strain in CeCu_{5.9}Au_{0.1}

Does the monoclinic-orthorhombic transition qualify as a QPT?

Orthorhombic-monoclinic transition ($T_m = 220$ K in CeCu₆)

 T_m and the monoclinic angle (2 \degree in CeCu₆) decrease rapidly with Au concentration

Proximity to magnetic QCP : Coupling of two ordering phenomena, tetracritical point?

Grube et al., PRB 1999 Robinsen et al., Physiba B 2006

Observation of the monoclinic splitting in CeCu_{5.95}Au_{0.05} with elastic neutron scattering

Observation of the monoclinic splitting in $\text{CeCu}_{5.95}\text{Au}_{0.05}$ with elastic neutron scattering

Temperature dependence of the monoclinic angle for $x = 0.05$

… yields, as a byproduct, an accurate check of the composition homogeneity

Temperature dependence of the monoclinic angle for $x = 0.1$

Data for samples close to the quantum critical point Data for samples close to the structural transition $T_m \rightarrow 0$

High-temperature tail prevails even for samples where no structural transition occurs

Observation of a maximum of the structural order parameter around 8 K (~ T_{K})

Considering the effect of hydrostatic pressure

Hydrostatic pressure suppresses monoclinic and AF phases alike: Suppression of AF will not restore monoclinic phase

Monoclinic distortion is only accidentally "coupled" to magnetic QCP at ambient pressure