Beyond Landau Fermi liquid and BCS superconductivity near quantum criticality

Hilbert v. Löhneysen

Physikalisches Institut and Institut für Festkörperphysik Karlsruhe Institute of Technology

Lecture Series at APCTP, Pohang

May 23-27, 2016

Lecture 3 $CeCu_{6-x}Au_{x}$ – a case study for quantum criticality in heavy fermion systems

Contents of Lecture 3

Introduction to the CeCu_{6-x}Au_x system

Non-Fermi-liquid thermodynamic and transport properties

Measurement of critical fluctuations by inelastic neutron scattering

Fate of the Kondo energy scale

at the concentration-tuned QCPin CeCu_{6-x}Au_x?

Role of the tuning parameter:

compositon, hydrostatic pressure, magnetic field

Determining the entropy landscape near quantum criticality

Does the monoclinic-orthorhombic transition qualify as a QPT?

Introduction to the CeCu_{6-x}Au_x system

Heavy-fermion system CeCu₆

Onuki, Komatsubara

Note: evidence for magnetic order in CeCu₆ at $T \simeq 3$ mK

E. A. Schuberth et al, PRB 51, 12892 (1995)

Magnetic order in CeCu_{6-x}Au_x

CeCu₆: heavy fermions with $\gamma = 1.6 \text{ J/molK}^2$

non-magnetic groundstate

Ōnuki et al., Amato et al.

short lived AF correlations

Aeppli et al., Rossat-Mignod et al.

Alloying with Au: long-range AF order

"negative lattice pressure" explains $T_N(x)$ for x < 1

Direct proof: Néel temperature T_N vanishes under hydrostatic pressure

x = 0.1: Quantum critical point with "non-Fermi liquid" behavior

Crystal structure and magnetic order of $CeCu_{6-x}Au_x$

Orthorhombic structure Pnma

CeCu₆: small monoclinic distortion suppressed for x > 0.15

Incommensurate three-dimensional magnetic ordering ...

> ... confined to the *a*c** plane, *c** component depends on x

Czochralski method

Pulling from the melt in a W crucible inductive heating Ar pressure (p = 2.5 bar)

Starting materials:

Ce (4N), Cu (5N), Au (5N)

Pulling speed: 12 – 20 mm/h rotation: 3-5 min⁻¹

Non-Fermi-liquid thermodynamic and properties in CeCu_{6-x}Au_x near the quantum critical point x = 0.1

Non-Fermi liquid effects at quantum critical point in CeCu_{6-x}Au_x

Specific heat

Electrical resistivity

Measurement of quantum-critical fluctuations by inelastic neutron scattering

Neutron scattering

Inelastic neutron scattering intensity of CeCu_{5.9}Au_{0.1}

energy transfer $\hbar \omega = 0.1 \text{ meV}$

ILL, IN 14

O. Stockert et al., PRL 1998

1D features in k-space equivalent to 2D features in real space

 \Rightarrow quasi-2D fluctuations

Coupling to 3D quasiparticles

d = 2, z = 2

$$\Rightarrow d_{\text{eff}} = d + z = 4$$

Spin-density wave scenario:

$$\begin{split} \frac{C}{T} &= a \ln \left(\frac{T_0}{T} \right) , \quad \Delta \rho \thicksim T \\ T_N &\sim \left| \delta - \delta_C \right|, \quad \delta = p, x \end{split}$$

Hertz, Millis, Moriya, Lonzarich, Rosch

Inelastic neutron scattering intensity in the a*c* plane

$$x = 0$$
 $x = 0.1$ $x = 0.2$

Dynamical scaling of magnetic fluctuations in $CeCu_{6-x}Au_x$

A. Schröder et al., Nature 2000

Scaling of the dynamical susceptibility of critical fluctuations for $x = 0.1 \approx x_c$, with ω/T , independent of q, with anomalous scaling exponent $\alpha = 0.75$

incompatible with Hertz-Millis-Moriya model which predicts $\omega/T^{1.5}$ scaling and. $\alpha = 1$.

Further, the scaling is observed (with reduced amplitude) in various points of the Briillouin zone, not only at the wavevectorof incommensurate order

 \rightarrow "local quantum criticality

Fate of the Kondo energy scale at the concentration-tuned QCP in CeCu_{6-x}Au_x?

Fermi-volume change due to Kondo collapse at the onset of magnetic ordering?

YbRh₂Si₂: moderately heavy effective masses.

magnetic transition at 70 mK can be suppressed by an small magnetic field

Strong change in Hall constant of YbRh₂Si₂ at field-induced QCP indcating change of carrier density

High-resolution UPS measurements to determine $T_{\rm K}$ across the quantum critical point

Photoemission measures occupied states only – some states above E_F are occupied states according to the Fermi-Dirac function f(E)

Obtain the DOS for these states by dividing the raw data by f(E)Nearly complete Kondo resonance becomes visible

Local quantum criticality: breakdown of Kondo effect?

Strong drop of $T_{\rm K}$ in CeCu_{6-x}Au_x close to x_c

Effective single-impurity model where Kondo exchange *J* is renormalized by local spin fluctuations at surrounding Kondo ions, neglect of coherence effects

 $T_{\rm K}(y)/T_{\rm K}(0)$, *y* is a measure of RKKY interaction, solutions only for $y < y_m$.

Distinction between Hertz-Millis and Kondo-breakdown (local) scenario ?

cf. CeRhIn₅ and CeCoIn₅: $T_{K} \approx 0.1$ and ≈ 1 K

J. D. Thompson

Different scenarios for different tuning parameters in CeCu_{6-x}Au_x?

Interplay of concentration and pressure tuning

Pressure dependence of $T_{\rm N}$

Surprising universality of C/T at quantum critical points

<i>x</i> = 0.1	p = 0
x = 0.2	p = 4.1 kbar
<i>x</i> = 0.3	<i>p</i> = 8.2 kbar

Suggestive of 2D fluctuations under pressure

Evolution of the magnetic structure of CeCu_{5.5}Au_{0.5} under hydrostatic pressure

Tuning the magnetic instability of $CeCu_{1-x}Au_x$ (x = 0.2) by pressure or magnetic field: specific heat

Field dependence of elastic scattering intensity

Inelastic neutron scattering at the field-induced instability in CeCu_{5.8}Au_{0.2}

Fit of $\chi''T^{\alpha}$ vs. *E*/ T^{β} with appropriate scaling functions

 $\alpha = 1.5, \beta = 1.5$ (standard 3D scenario) $\alpha = 0.8, \beta = 1$ (as for x = 0.1, B = 0)

O. Stockert et al., PRL 2007

Possible additional phase line at T = 0

Internal consistency for $CeCu_{6-x}Au_x$

Lowering the effective dimensionality leads to an increase of quantum fluctuations, and thus to the local QCP. Magnetic field restores 3D and hence yields Hertz-Millis

cf. experiments on Co- and Ir-doped YbRh₂Si₂ S. Friedemann et al,, Nature Phys. 2009

Global phase diagram for quantum-critical heavy-fermion systems

Q. Si, Physica B 378-380, 23 (2006)

Q. Si and S. Paschen, Phys. Status Solidi B 250, 425 (2013)

Possible continuous evolution from local-moment to itinerant antiferromagnetism in Kondo systems

M. Vojta, PRB 78, 125109 (2008) See also T. Senthil et al., PRL 90, 216403 (2003)

LAF - IAF transition may be gradual How can one experimentally "control" of the vertical axis? What is the effect of magnetic field in this plot?

CeCu_{1-x}Au_x: gradual evolution of ordered magnetic moments (from ENS)

Tiny specific-heat anomaly at T_N on top of a large "non-Fermi-liquid" background

Scenarios for quantum criticality in heavy-fermion systems

Scattering of heavy quasiparticles by spin fluctuations: diverging m^* for 3D FM and 2D AF

Unbinding of composite heavy quasiparticles; local quantum criticality

CeCu ₂ Si ₂	Ce _{1-x} La _x Ru ₂ Si ₂	CePd ₂ Si ₂	UCu _{5-x} Pd _x	CeCu _{6-x} Au _x	YbRh ₂ Si ₂
CeNi ₂ Ge ₂		Critical quasiparticles Abrahams, Wölfle, Schmalian		Change of Fermi volume ? Dimensionality ?	
Fractionalized Fermi lic		mi liquids	Disorder effects ?		
Hertz, Millis, Moriya, Rosch et al.		Senthil, Sachdev, Vojta		Coleman, Si, Pepin et al.	

Anomalous quantum criticality in $CeCu_{6-x}Au_x$ described in terms of critical quasiparticles

Quasiparticle weight factor Z at E_F given by

 $Z^{-1} = 1 - \partial \operatorname{Re}\Sigma(\omega)/\partial\omega = m^*/m$

Wölfle, Abrahams, PRB **84**, 041101 (2011) Abrahams, Wölfle, PNAS **109**, 3218 (2012) Abrahams, Schmalian, Wölfle, PRB **90**, 045105 (2014)

Thermal expansion – a sensitive thermodynamic probe of quantum criticality

Volume thermal expansion of $CeCu_{6-x}Au_x$

Sign change at the magnetic transition because $\alpha_v = dV/dT = -dS/dp$ Divergence for $T_c \rightarrow 0$

Theory: Zhou, Si, Garst, and Rosch, PRL 2002

Thermal expansion as a sensitive probe of phase transitions approaching a QCP: example CeCu_{5.85}Au_{0.15}

Thermal expansion close to a QCP

Fermi liquid at low T $\frac{C}{T} = \frac{\partial S}{\partial T} = \gamma = \text{constant.}$ $S = \gamma T \implies \frac{\alpha_i}{T} = -\frac{1}{VT} \frac{\partial S}{\partial \sigma_i} = -\frac{1}{V} \frac{\partial \gamma}{\partial \sigma_i} = \text{constant.}$ Deviation from Fermi-liquid behavior at a QCP $S(p,T) \uparrow$ $divergence of \frac{\alpha_i}{T}$ $divergence of \frac{\alpha_i}{T}$

accumulation of entropy

Divergence of the volume Grüneisen parameter for $T \rightarrow 0$ at a quantum critical point

 Prediction:
 Zhu, Garst, Si, and Rosch, PRL 91, 066404 (2003)

 Experiments:
 Küchler et al., PRL 91, 066405 (2003); PRL 93, 096402 (2004)

Thermal expansion as a sensitive probe of phase transitions approaching a QCP: example CeCu_{5.85}Au_{0.15}

Antiferromagnetic order below $T_N = 82 \text{ mK}$

Determining the entropy landscape near quantum criticality

Anisotropic response of thermal expansion to different transitions or excitations in CeCu_{5.9}Au_{0.1}

Thermal expansion coefficients α_i (*i* = *a*, *b*, *c*)

 $\alpha_i = \partial \epsilon_i / \partial T = -V^{-1} \partial S / \partial \sigma_i.$

 ε_i and σ_i : strain and stess components along principal axes (for orthorhomic or higher symmetry)

*T*_s:

Small monoclinic distortion of the *ab* plane ($\Theta < 2^{\circ}$, neglected in the following)

CEF:

thermal excitation to higher CEF doublets – anisotropy reflects the different spatial dependence of CEF wave functions

Low T:

passing the coherent Fermi-liquid regime toward a quantum critical point

Linear and volume thermal expansivities divided by T for $T \rightarrow 0$

Divergence of $\alpha_V(T)/T$ is stronger than that of $C/T \sim \ln(T_0/T)$, compatible with $\alpha_V(T)/T \sim \ln^2(T_0/T)$

Linear and volume Grüneisen ratios $\Gamma_i = \alpha_i/C$ and $\Gamma_V = \alpha_V/C$

Roughly logarithmic increase toward low T

compatible with local quantum critical scenario (Q. Si et al.) fit parameters T_{0i} depend on *i*

Dependence of entropy on arbitrary stress direction

Stress and expansivity tensors

$$\alpha_{ij} = \frac{1}{V} \frac{\partial^2 G}{\partial T \partial \sigma_{ij}} = -\frac{1}{V} \frac{\partial S}{\partial \sigma_{ij}}.$$

 $\sigma_{(lm)}$ picks up the anisotropy: $\sigma_{(lm)} = 0$ for isotropic systems For systems with orthogonal or higher symmetry:

$$\frac{\partial S}{\partial \sigma_u} = \vec{\nabla} S \hat{u} = \sum_{i=1}^3 \frac{\partial S}{\partial \sigma_i} \hat{u}_i = -V \sum_{i=1}^3 \alpha_i \hat{u}_i.$$

Specific stress combinations:

hydrostatic pressure $\vec{p} = p \times (1, 1, 1)$. stress $\perp \vec{p}$: "pure shear stress"

$$\vec{\sigma}_{(lm)} = \vec{\sigma}_l - \vec{\sigma}_m \text{ with } \vec{\sigma}_l \cdot \vec{\sigma}_m = 0$$

hydrostatic pressure: volume change without distortion (if bulk modulus isotropic) pure shear stress: distortion without volume change

Dependence of entropy on arbitrary stress direction

Stress and expansivity tensors

$$\alpha_{ij} = \frac{1}{V} \frac{\partial^2 G}{\partial T \partial \sigma_{ij}} = -\frac{1}{V} \frac{\partial S}{\partial \sigma_{ij}}.$$

 $\sigma_{(lm)}$ picks up the anisotropy: $\sigma_{(lm)} = 0$ for isotropic systems For systems with orthogonal or higher symmetry:

$$\frac{\partial S}{\partial \sigma_u} = \vec{\nabla} S \hat{u} = \sum_{i=1}^3 \frac{\partial S}{\partial \sigma_i} \hat{u}_i = -V \sum_{i=1}^3 \alpha_i \hat{u}_i.$$

Specific stress combinations:

hydrostatic pressure $\vec{p} = p \times (1, 1, 1)$. stress $\perp \vec{p}$: "pure shear stress"

$$\vec{\sigma}_{(lm)} = \vec{\sigma}_l - \vec{\sigma}_m$$
 with $\vec{\sigma}_l \cdot \vec{\sigma}_m = 0$

hydrostatic pressure: volume change without distortion (if bulk modulus isotropic) pure shear stress: distortion without volume change

Shear stresses in CeCu_{5.9}Au_{0.9}

Measuring the stress dependence of the entropy

$$\overrightarrow{\nabla}S = (\partial S/\partial\sigma_a, \partial/\partial S\sigma_b, \partial S/\partial\sigma_c)$$

Anisotropic stress dependence of the entropy in CeCu_{5.9}Au_{0.1}

Summary: stress combinations driving the QCP in $CeCu_{5.9}Au_{0.1}$

What is the significance of the direction of the pure shear stress $\sigma_{\text{(ca)}}$ enhancing

Pictorial illustration of the entropy landscape for a 2D system

Relation of stress anisotropies to quantum critical fluctuations?

Anisotropic uniaxial pressure dependence of T_N for CeCu_{5.8}Au_{0.2}

Specific heat under hydrostatic ...

... and uniaxial pressure

Pressure vs. volume – stress vs strain in CeCu_{5.9}Au_{0.1}

Does the monoclinic-orthorhombic transition qualify as a QPT?

Orthorhombic-monoclinic transition ($T_m = 220 \text{ K}$ in CeCu₆)

 $T_{\rm m}$ and the monoclinic angle (2 ° in CeCu₆) decrease rapidly with Au concentration

Proximity to magnetic QCP : Coupling of two ordering phenomena, tetracritical point?

Grube et al., PRB 1999

Robinsen et al., Physiba B 2006

Observation of the monoclinic splitting in CeCu_{5.95}Au_{0.05} with elastic neutron scattering

Observation of the monoclinic splitting in CeCu_{5.95}Au_{0.05} with elastic neutron scattering

Temperature dependence of the monoclinic angle for x = 0.05

... yields, as a byproduct, an accurate check of the composition homogeneity

Temperature dependence of the monoclinic angle for x = 0.1

Data for samples close to the structural transition $T_{\rm m} \rightarrow 0$

High-temperature tail prevails even for samples where no structural transition occurs

Observation of a maximum of the structural order parameter around 8 K (~ $T_{\rm K}$)

Considering the effect of hydrostatic pressure

Hydrostatic pressure suppresses monoclinic and AF phases alike: Suppression of AF will not restore monoclinic phase

Monoclinic distortion is only accidentally "coupled" to magnetic QCP at ambient pressure