Beyond Landau Fermi liquid and BCS superconductivity near quantum criticality

Hilbert v. Löhneysen

Physikalisches Institut and Institut für Festkörperphysik Karlsruhe Institute of Technology

Lecture Series at APCTP, Pohang

May 23-27, 2016

Lecture 4 Examples of quantum critical *d-* and *f-*electron systems

Contents of Lecture 4

CePdAl – a partially frustrated heavy-fermion system

Approaching quantum criticality of CePdAl with Ni substitution

Frustrated Ce moments in CePdAl: a two-dimensional spin liquid?

Classical and quantum phase transitions in the itinerant ferromagnet $Sr_{1-x}Ca_xRuO_3$

Evolution of critical expoenents in Sr_{1-x}Ca_xRuO₃ with *x*

Unusually slow the quantum critical dynamics

CePdAl – a partially frustrated heavy-fermion system

Frustration and conductivity

Frustration parameter $f = \Theta_{CW}/T_c$ V. Fritsch et al., PRB 72 (2006)

CePdAl – a partially frustrated Ce-based compound

Three-dimensional magnetic structure of CePdAl

Dönni et al., J. Phys.: Cond. Matt. 8, 11213 (1996)

Magnetic ordering wector

Q = ($\frac{1}{2}$ 0 τ), $\tau \approx 0.35$

1/3 of Ce moments frustrated

```
\mu(Ce1) = 1.58 \mu<sub>B</sub>
```
Note: weak *T*-dependent incommensuration neglected in the picture

Model of frustrated kagomé-like planes

Nunez-Regueiro and Lacroix, Physica C 282-287, 1885 (1997)

nn interaction J_1 (FM) and nnn J_2 (AF) in the *ab* (kagome) planes, neglect of interplane coupling J_3

$$
H = \sum_{i} \Delta_i(T) |\mu_i|^2 - \frac{1}{2} \sum_{i \neq j} J_{ij} \vec{\mu}_i \cdot \vec{\mu}_j
$$

Kondo effect modelled by the energy difference $\Delta_i(T)$ between Ce nonmagnetic Kondo state µ*ⁱ* = 0 and magnetic state $\mu_i \neq 0$.

Mean-field phase diagram

confirmed by variational MC

Motome et al., PRL 105, 036403

coupling between planes neglected!

Approaching quantum criticality of CePdAl with Ni substitution

CePdAl – a partially frustrated Ce-based compound

… or by isoelectronic Ni doping

Isikawa et al., Physica B 281&282, 36 (2000) Bagrets, Fritsch et al., unpublished

Quantum critical point?

Suppression of T_N by hydrostatic pressure ...

Goto et al., J. Phys. Chem: Sol. 63, 1159 (2001)

Specific heat of $CePd_{1-x}Ni_xAl$ polycrystals

Specific-heat anomaly at T_N broadens and is completely suppressed around $x = 0.14$

T_N (*x*) of CePd_{1-x}Ni_xAl polycrystals

V. Fritsch et al., unpublished

Best fit with linear T_N dependence on x , compatible with 2D HMM scenario, deviation for $x \rightarrow x_c$ ("order by disorder"?) Comparison of pressure and Ni substitution: $T_N(V(x))$ and $T_N(V(p))$? Experimental $T_N(p)$ data differ strongly!

Likely reason: non-hydrasticity of *p.* Thermal expansion: $\alpha \parallel c < 0$, $\alpha \perp c > 0$ $\rightarrow dT_N/dp_a > 0$ and $dT_N/dp_c < 0$.

Approaching quantum criticality of CePdAl by Ni substitution

Goto et al., J. Phys. Chem. Sol. 63, 1159 (2002)

Entropy of CePd_{1-x}Ni_xAl

First experiments on CePd_{1-x}Ni_xAl single crystals

Magnetic susceptibility of a CePdAl single crystal

Strong Ising-like anisotropy due to single-ion crystal-field effects

Isikawa et al., J. Phys. Soc. Jpn. 65, Suppl. B, 117 (1996)

Magnetic susceptibility of $CePd_{1-x}Ni_xAl$ with $x = 0.14$

Ising-like anisotropy survives

AF order and 2D quantum criticality in $CePd_{1-x}Ni_xAl?$

Interpretation within the Hertz-Millis-Moriya model: candidate for planes with 2D fluctuations?

planes perpendicular *ab* Proposition needs to be checked by inelastic neutron scattering

> In this scenario, frustrated moments play a key role and provide a rationale for 2D fluctuations

However, frustrated moments may lead to additional fluctuations not contained in the HMM model

AF planes separated by frustrated moments

Frustrated Ce moments in CePdAl: a two-dimensional spin liquid?

Spin liquid in CePdAl?

planes \perp *ab* $\mathbf c$ $\mathbf b$

Frustrated planes between AF planes form a rectangular 2D lattice: 2D Ising spin liquid?

²⁷Al NMR measurements down to 30 mK: dynamics of frustrated moments prevails down to very low *T*, with T_1 ⁻¹ ~ *T*

 Oyamada et al., Phys. Rev. B 77, 064432 (2008).

AF planes separated by frustrated moments

Specific heat of CePdAl at low temperature

Several unusual features

large γT term

 $\gamma \sim 0.8$ J/mole_{Ce-no}K²

 T^2 term \sim T^2 setting in at 0.5 K excitation gap: $\Delta / k_B \approx 0.9$ K 2D spin waves in AF planes

T -2 contribution at low *T* presumably due to nuclear hyperfine splitting

Electrical resistivity of CePdAl single crystals

- Kondo increase
- coherence maximum
- drop to ρ_0

strong decrease of the residual resistivity $ρ_0$ in magnetic field above *B^c* :

 $\Delta \rho_0^{} / \rho_0^{}$ strongest for ρ II c

at lowest temperature: $\rho(T) = \rho_0 + AT^{1.8}$.

- no indication of Kondo effect by non-ordered frustrated Ce moments
- assuming *T*² resistivity:

 $A/\gamma^2 \thicksim 13$ $a_{\rm KW}$ Spinon excitations?

Field-induced phases in CePdAl close to the critical field

Features in magnetizattion $M(B)$ and resistivitiy $p(T)$ are suggestive of first-order transitions

T. Goto et al., J. Phys. Chem. Sol. 63, 1159 (2002)

C. Taubenheim et al. K.Grube et al.

High-field thermal expansion of CePdAl

Extrema in α_c above B_c : due to Zeeman splitting of the lowest CEF doublet? *kBTmax ~ g µ (B – B^c)*

Magnetic phase diagram of CePdAl from thermal expansion and magnetostriction

Towards a (*B*,*T*) phase diagram from elastic neutron scattering

Lock-in of the c component τ of the magnetic propagation vector at 1.9 K: relation to feature in $\alpha_{\scriptscriptstyle \cal B}(T)$?

Evolution of ferromagnetic component with magnetic field

K. Prokes et al., Physica B 385-386, 359 (2006)

Fate of the Kondo effect in the presence of frustration?

If we now naively generalize this single-impurity model to the lattice, we will find that the $T=0$ ground state always has Kondo screening. It is only upon including frustrating intermoment exchange interactions—equivalent to having "dispersing" spinons that it is possible to break down Kondo screening and reach a state in which the slave boson is not condensed.

Senthil, Vojta, Sachdev, PRB 69, 135111 (2004)

A pedestrian's approach to the problem

- (1) 2D rectangular Kondo lattice exposed to frustrating molecular field within an *ab* layer?
- (2) Include staggered magnetization.
- (3) Additional complication: 6*s* ²5*d* ¹ electrons.

Long-range and short-range magnetic order in CePdAl

LRO/SRO intensity ratio of 2/1 below T_N :

compatible with short-range (dynamic?) order of frustrated moments

 \rightarrow rationale for quasi-2D fluctuations

cf. NMR measurements *Oyamada et al., Phys. Rev. B* 77*, 064432 (2008).*

Classical and quantum phase transitions in the itinerant ferromagnet $Sr_{1-x}Ca_xRuO_3$

A brief history of $Sr_{1-x}Ca_xRuO_3$

SrRuO₃ is the $n = \infty$ member of the Ruddleston-Popper series $\text{Sr}_{n+1}\text{Ru}_{n}\text{O}_{3n+1}$ Most prominent are the $n=1$ and $n=2$ materials

Sr*2*RuO⁴ odd-parity superconductor

Sr*3*Ru*2*O⁷ anomalous quantum criticality

A. Callaghan et al., Inorg. Chem. 5, 1572 (1966) S. Lee et al., J. Phys. Cond. Matt. 25, 465601 (2013)

Structural and magnetic data of $Sr_{1-x}Ca_xRuO_3$

Polycristalline samples:

- Sintering of $S₁CO₃$, CaCo₃, and $RuO₂$ powders
- Calcination at 900°C, 10 h
- Milling and pelleting and sintering at 1370°C, 30 h

Evolution of critical expoenents in Sr_{1-x}Ca_xRuO₃ with x

Two cases

- (1) Magnetic easy axis varies on a length scale $\lt \xi$: random anisotropy changes the universality class of the transition
- (2) Crystallites (\sim several μ m) >> ξ : individual crystallites obey scaling relations. Each crystallite is exposed to an effective field

$$
H_{\rm eff} = H \times f(\theta, \varphi)
$$

leading to a magnetization density $M(\theta, \varphi)$.

Averaging over crystallites with $p(\theta, \varphi)$ gives the total magnetization density

$$
M = \int \sin \theta d\theta d\varphi p(\theta, \varphi) M(\theta, \varphi) = t^{\beta} \tilde{\phi} (H/t^{\beta \delta}),
$$

where

$$
\tilde{\phi}(x) = \int \sin\theta d\theta d\varphi p(\theta, \varphi) \phi(f(\theta, \varphi), x).
$$

 This is the same scaling form with modified scaling function (except for pathological $P^{(\theta,\varphi)}$ distributions). In particular, the limits for small and large arguments, corresponding to Arrott-Noakes plots, are the same.

Magnetization of ferromagnetic $Sr_{1-x}Ca_xRuO_3$

Determination of critical exponents β and γ from modified Arrott plots

D. Fuchs et al., PRB 89, 147405 (2014)

Scaling analysis of the finite-*T* transitions in $Sr_{1-x}Ca_xRuO_3$

$$
M(t, H) = t^{\beta} \phi(H/t^{\beta\delta})
$$

$$
x = 0
$$

$$
\beta \approx 0.5, \gamma \approx 1, \delta \approx 3
$$

x > 0 continuous change of β , γ , and δ Widom relation

 $\gamma/\beta = \delta - 1$ approximately obeyed for all $x \leq 0.6$

D. Fuchs et al., PRB 89, 147405 (2014)

Unusually slow quantum critical dynamics

Magnetization and susceptibility of $\overline{\text{Sr}_{0.3}\text{Ca}_{0.7}\text{RuO}_3}$

..C.-L. Huang et al., Nature Conm. 2015

Scaling law of the free energy at a QCP

$$
\mathcal{F}(T,B) = b^{-(d+z)} \mathcal{F}(b^z T, b^y B),
$$

yields for the magnetization

$$
M(T, B) = -\frac{\partial \mathcal{F}}{\partial B} = b^{y - (d+z)} M(b^z T, b^y B).
$$

Setting the scale factor $b^2T = 1$, or $b^yB = 1$ for $T \rightarrow 0$ gives

$$
M(T,B)=T^{\frac{d+z-y}{z}}\Phi(\frac{B}{T^{y/z}})\text{, or}\quad M\left(B\right)\propto B^{\frac{d+z-y}{y}}\propto B^{1/\delta}
$$

The correlation length exponent ν can be obtained by determining the magnetization as function of $r = x_c - x$ because $\xi \sim |r|^{-\nu}$:

$$
M(r) = r^{\nu(d+z-y)}M(r=0) \sim |r|^\beta
$$

Hence $\beta = \nu (d + z - y)$. With δ we obtain

$$
y=\delta\beta/\nu.
$$

The critical part of the specific heat scales as

$$
C_{cr}(T,B)=T^{\frac{d}{z}}\Psi\left(B/T^{\frac{\beta\delta}{\nu z}}\right).
$$

Scaling of the susceptibility and magnetization

best data collapse observed with exponents

$$
\frac{\beta}{\nu z} \approx 1, \ \frac{\delta \beta}{\nu z} \approx 1.7
$$

for both $\chi(T,B)$ and $M(T,B)$.

Determining the least-squares fit

Scaling of the field dependence of the specific heat

Strikingly, $d/z = 1.7$ yields with $d = 3$:

$$
Z\approx 1.8,
$$

much smaller

than in typical ferromagnets

best data collapse observed with in agreement with $\chi(T,B)$ and $M(T,B)$ $\delta\beta$ \overline{V} ≈ 1.7 $\Delta C(B,T) - \Delta C(0,T)$ (phonon contribution subtracted)

(b) $\Delta(C_{\rm e} + C_{\rm m})/T^{d/z}$ (mJ mol⁻¹ K^{-d/z-3} $d/z = 1.7, \beta \delta / \nu z = 1.95$ -2 $1.8\frac{\beta\delta/\nu z}{2.0}$ -4 (10^{-8}) 1.5 -6 -8 1.0 -10 $1E-3$ 0.01 0.1 $\mathbf{B}/T^{\beta\delta\vee z}$ (T/K $^{\beta\delta\vee z}$)

Zero-field specific heat of $Sr_{0.3}Ca_{0.7}RuO₃$

Consequence of $d > z \approx 1.8$: critical contribution subleading to electronic contribution, resulting in a finite Δ *C*/*T* at *T* = 0

Qualitative discussion on the anomalous dynamic exponent *z* in $Sr_{0.3}Ca_{0.7}RuO₃$

Original prediction by Hertz 1976

- *z* = 3 for a clean ferrromagnet
- *z* = 4 for a disordered ferromagnet

Generally, disorder tends to enhance *z*

Complication because additional dynamics of fermions might lead to a first-order transition

Belitz and Kirkpatrick

Alternative scenario Griffiths phase in ferromagnet example $Ni_{1-x}V_x$

Ubaid-Kassis et al., PRL 104, 066402 (20910)

Strong coupling between critical fluctuations and incoherent quasiparticles: local fluctuations may lead to a local gap in the Stoner continuum, leading to less damping of fluctuations, i. e., smaller *z*