
Quantum	Renormaliza/on	Group	
and	Holography	

Sung-Sik	Lee	
McMaster	University	
Perimeter	Ins/tute	

References	: 		
arXiv	:	1305.3908	
arXiv	:	1603.08509	
	



AdS/CFT	correspondence	

•  Conjecture	:		
							D-dim	QFT	=	(D+1)-dim	quantum	gravity	

– The	bulk	space	is	emergent,	and	the	geometry	is	
dynamical	

– The	bulk	geometries	encode	states	of	the	quantum	
field	theory	

– Well	tested	for	some	supersymmetric	field	theories	
•  N=4	Supersymmetric	SU(Nc)	gauge	theory	=	IIB	superstring	
theory	in	AdS5xS5	

[Maldacena]	



AdS/CFT	Dic/onary	
[Gubser,	Klebanov,	Polyakov;	Widen]	

High	energy	

(D+1)-dim	space	

D	–dim	flat	space	

Low	energy	
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Goal	

A	first	principle	deriva/on	of	AdS/CFT	
correspondence,	which	allows	one	to	find	

holographic	duals	for	general	QFTs*		

*For	general	QFTs,	holographic	duals	can	be	non-classical	/	non-
local.	However,	we	would	like	to	find	a	general	prescrip/on	to	
construct	them.	



What	is	behind	the	AdS/CFT	
correspondence?					RG	≈	GR	

•  Radial	direc/on	in	the	bulk	=	length	scale	of	
QFT	

•  Bulk	variables	:	scale	dependent	coupling	
func/ons	

•  Equa/ons	of	mo/on	in	the	bulk	corresponds	
to	the	beta	func/ons	of	QFT	

•  Radial	evolu/on	of	the	bulk	fields	correspond	
to	the	RG	flow	



The	connec:on	between	RG	and	GR	is	
incomplete	

RG	 GR	

RG	flow	is	classical	:	
Given	ini/al	condi/on,	coupling	

func/ons	are	determinis/c	without	
uncertainty	

Bulk	variables	have	quantum	
fluctua/ons	

*In	order	to	make	the	connec/on	precise,	RG	should	be	promoted	to	quantum	RG	
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Plan	

•  An	introduc/on	to	quantum	RG	
– RG	flow	as	a	wavefunc/on	collapse	

•  An	applica/on	of	quantum	RG		
– Vector	model	
– Matrix	model	



From	ac/on	to	state	

•  An	ac/on	of	QFT	in	D-dimensional	space	defines	a	D-
dimensional	quantum	state	

•  The	Boltzmann	weight	becomes	wavefunc/on	
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Sources	as	varia/onal	parameters	

•  State	can	be	labeled	by	the	sources	of	operators	

S = �JMOM

��{J }
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MOM
���
↵



Tensor	representa/on	

(a) (b)

(c)

In	general,	OM	depends	on	mul/ple	
points	in	space/me	(e.g.	bi-local	operator	
in	vector	model,	Wilson	loop	in	gauge	theory)	

OM	can	be	composite	of	
mul/ple	operators	

eJij�i�j

(a) (b)

(c)

eJijk(�i�j)(�j�k)

i	 j	

i	 j	 k	

Jijk
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Tensor	representa/on	

•  Local	ac/on	generates	states	given	by	a	product	of	
local	tensors	

•  They	are	over-complete	
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Single-trace	operator	

•  Minimal	set	of	operators	of	which	all	singlet	
operators	can	be	wriden	as	polynomial	

OM =
X

cn1,n2,..
M On1On2 ..
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States	generated	from	single-trace	
operators	form	a	complete	basis	



States	generated	from	single-trace	
operators	form	a	complete	basis	
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Par//on	func/on	is	an	overlap	
between	states	

S0

Z =

Z
D� e�(S0+S1) =

⌦
S⇤
0

��S1

↵

��S0

↵
=

Z
D� e�S0[�]

���
↵

��S1

↵
=

Z
D� e�S1[�]

���
↵



RG	flow	as	wave-func/on	collapse	

•  |S0>	is	the	ground	state	of	H+	with	zero	energy	
•  H	ac/ng	on	|S1>	generates	RG	flow		
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Example	:	Wilson-Polchinski	RG	equa/on	
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Direct	product	state	for	the	reference	
state	(tenta/ve	IR	fixed	point)	
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Coarse	graining	

(a) (b)
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Quantum	RG	

•  State	with	mul/-trace	tensors	can	be	wriden	as	a	linear	superposi/on	
of	single-trace	states	

•  Non-local	single-trace	tensors	are	generated	

(a) (b) (a) (b)

(c) (d)
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Quantum	RG	

•  The	RG	flow	is	confined	to	the	space	of	
single-trace	sources	

•  Sum	over	all	RG	path	in	the	single-trace	
space	

•  Single-trace	sources	are	promoted	to	
quantum	operators	

•  Quantum	RG	to	Wilsonian	RG	is	what	
quantum	computer	is	to	classical	computer	
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Further	comments	

•  The	bulk	tensor	network	involves	single-trace	
tensors	of	all	sizes	(	no	pre-assigned	local	
structure	)	:	kinema/c	non-locality	is	a	necessary	
condi/on	for	diffeomorphism	invariance	in	the	bulk	

•  The	bulk	theory	include	dynamical	gravity	:	the	
source	for	single-trace	energy	momentum	tensor	
(metric)	gets	promoted	to	dynamical	variables	

•  Regulariza/on	of	quantum	gravity	boils	down	to	
regulariza/on	of	QFT	



Example	1	:	Lauce	Vector	Model	



Example	:	Vector	model	
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Lauce	Regulariza/on	:	



��S0

↵
=

Z
D� e�m2 P

i �
⇤
i ·�i

���
↵
,

��t(0)
↵
=

Z
D� e

P
ij t

(0)
ij �⇤

i ·�j� �
N

P
i(�

⇤
i ·�i)

2���
↵

Example	:	Vector	model	
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��t(0)
↵

Gapped	phase	(direct	product	state)	

Deforma/on	to	the	gapped	fixed	point	(entangled	state)	



Hamiltonian	

•  H	is	not	Hermi/an,	but	has	real	eigenvalues	
(related	to	Hermi/an	through	a	similarity	
transforma/on)	

•  |S0>	is	the	ground	state	of	H+	

•  e-zH	gradually	removes	entanglement*	in	|t(0)>	
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Bulk	Hamiltonian	(in	a	fixed	gauge)	

•  t+ij	(tij)	creates	(annihilates)	a	quantum	of	
connec/vity		

•  The	Hamiltonian	describes	evolu/on	of	quantum	
geometry	in	the	bulk	
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Background	independence	

•  There	is	no	bare	kine/c	term	for	the	bi-local	object	
•  No	pre-imposed	background	

t†iktij

i	 j	 k	 t†iktijtjk



Background	independence	

•  tij	can	move	only	in	the	presence	of	condensate		
•  The	condensate,	which	is	dynamical,	determines	
the	geometry	on	which	tij	propagates	

t†iktijtjk ! t†iktij < tjk >

i	 j	 k	



Saddle	point	approxima/on	
•  In	the	large	N	limit,	semi-classical	RG	path	
dominates	the	par//on	func/on	

•  At	the	saddle	point,	
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Metric	
•  Fluctua/ons	away	from	saddle	point	

⇣
m

p
g

zz
@z � g

µ⌫
@µ@⌫ � g

µ⌫
@

0

µ@
0

⌫ + ...

⌘
t̃

A(x, x
0
, z) = 0

t̃Aij = t̃ij � t̃ji

t̃ij = tij � t̄ij

•  An/-symmetric	component	obeys	a	simple	diffusive	equa/on	in	
the	bulk		



Gapped	phase	
z	

Range	of	hopping	
	(entanglement)	



Gapped	phase	
•  The	range	of	entanglement	(hopping)	saturates	in	
the	large	z	limit	

•  The	strength	of	hopping	(entanglement)	decays	
exponen/ally	in	z	

•  e-z	H	|S1>		is		smoothly	projected	to	the	direct	
product	state	in	the	large	z	limit	

•  The	bulk	terminates	at	a	finite	proper	distance	
•  The	proper	distance	measures	the	complexity	:	#	of	
RG	steps	needed	to	remove	all	entanglement	
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[Susskind]	



Gapless	phase	
z	

Range	of	hopping	
	(entanglement)	



Gapless	phase	

•  The	range	of	entanglement	(hopping)	keep	
increasing	with	increasing	z	

•  e-z	H	|S1>		can	not	be	smoothly	projected	to	the	
direct	product	state	in	the	large	z	limit	

•  In	the	large	z	limit,	the	range	of	entanglement	
diverges	:	cri/cal	point	->	Poincare	horizon	

•  In	metallic	phase,	horizon	arises	at	finite	z	

ds
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2
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dx
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[Q.	Hu,	SL,	to	appear]	



Example	2	:	A	toy	example	

Matrix	field	theory	which	has	no	other	
operators	with	finite	scaling	dimension	
except	for	the	energy-momentum	

tensor		



D-dim	matrix	QFT		
on	a	curved	background	

•  S1	is	an	ac/on	which	has	only	single-trace	
operators	deformed	by	energy-momentum	
tensor	

•  This	is	equivalent	to	puung	the	theory	on	a	
curved	background	metric	

•  We	assume	that	the	theory	is	regularized	
respec/ng	the	D-dim.	Diffeomorphism	invariance	
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Coarse	graining		

space/me	dependent	speed	of	RG		
[Osborn(94);	SL(12)]	

Casimir	energy	
[Sakharov(67)]	

Change	of	scale	:	
Warping	factor	

Double-trace	operators	

Higher	deriva/ve	terms	

Z[g(0)] =

Z
D� eiS1[�;g(0)(x)]+i�S

0
[Tµ� ;g(0)]

T µ� =
1

N2

�S1

�g(0)µ�

g

(0)
µ⌫

(x) ! g

(0)
µ⌫

(x)e�N

D(x)dz



Shiw	

[Douglas,		Mazzucato,	and		Razamat	(11);	SL	(12)	]	
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Auxiliary	fields	

•  		

•  π(1)μν		:	Lagrangian	mul/plier	

•  Integra/on	of	g(1)μν	by	parts	:	
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Double	trace	operator	:	dynamical	metric	

•  Quadra/c	term	in	π(1)μν		provides	a	Gaussian	
width	for	g(1)μν,	which	becomes	a	genuine	
fluctua/ng	metric	
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•  The	linear	term	in	πμν	can	be	absorbed	by	a	shiw	in	πμν		

and	a	boundary	term		
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First-class	constraints	
•  Independence	of	par//on	func/on	on	RG	
schemes	(speed	of	RG	and	shiws)	è	(D+1)-
constraints	

Although the theory in the bulk is a quantum theory of dynamical metric in (D+1)-dimensional

space, it is not clear whether this theory has the diffeomorphism invariance in the bulk, which is

the key property of gravitational theories. In the canonical formalism, the (D + 1)-dimensional

diffeomorphism invariance would show up as (D+1) first-class constraints. If A[J(x)], B1[J(x)]

and B2[J(x)] were just constants, they have to satisfy specific conditions in order for the Hamilto-

nian constraint to be first-class. For generic values of A, B1 and B2, the Hamiltonian constraint H

is not first-class, in which case the theory does not have the full (D + 1)-dimensional diffeomor-

phism invariance. Given that the coefficients are dynamically determined, it seems highly unlikely

that they have the saddle point values of the fixed ratio at all points in the bulk independent of

J n. However, we have to be more careful here because the present theory is not a pure gravita-

tional theory. As a result, A, B1 and B2 depend on other dynamical fields which themselves have

non-trivial Poisson bracket with their own conjugate momenta. Namely, we can not just replace

A, B1 and B2 with the saddle point values when we determine the nature of the constraint. In

other words, one should compute the Poisson bracket among the constraints, treating all dynami-

cal fields on the equal footing. Instead of computing the Poisson bracket explicitly, here we use a

simple argument to show that all (D + 1)-constraints are first-class.

As was emphasized in Secs. IV and V, the partition function does not depend on the choice of

the lapse ND(x, z) = α(x, z) and the shift Nµ(x, z). From the fact that the partition function is

independent of NM(x, z), we obtain

< HM(x, z) >=
1

Z

δZ

δNM(x, z)
= 0. (80)

Therefore the lapse and the shift play the role of Lagrangian multipliers which impose the local

constraints,

H = 0, Hµ = 0 (81)

inside the bulk spacetime. Since the above equality holds at any time z, we have

∂

∂z
< HM(x, z) >=

∫
dDy NM

′
(y, z) ⟨{HM(x, z),HM ′ (y, z)}⟩ = 0. (82)

In order for this to be true for any choices of NM(x, z), we have

{HM(x, z),HM ′ (y, z)} = 0 (83)

at the saddle point. This implies that the (D + 1) constraints are first-class classically. These

constraints generate local spacetime transformations in the bulk. The Hamiltonian constraint H
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nian constraint to be first-class. For generic values of A, B1 and B2, the Hamiltonian constraint H

is not first-class, in which case the theory does not have the full (D + 1)-dimensional diffeomor-

phism invariance. Given that the coefficients are dynamically determined, it seems highly unlikely

that they have the saddle point values of the fixed ratio at all points in the bulk independent of

J n. However, we have to be more careful here because the present theory is not a pure gravita-

tional theory. As a result, A, B1 and B2 depend on other dynamical fields which themselves have

non-trivial Poisson bracket with their own conjugate momenta. Namely, we can not just replace

A, B1 and B2 with the saddle point values when we determine the nature of the constraint. In

other words, one should compute the Poisson bracket among the constraints, treating all dynami-

cal fields on the equal footing. Instead of computing the Poisson bracket explicitly, here we use a

simple argument to show that all (D + 1)-constraints are first-class.

As was emphasized in Secs. IV and V, the partition function does not depend on the choice of

the lapse ND(x, z) = α(x, z) and the shift Nµ(x, z). From the fact that the partition function is

independent of NM(x, z), we obtain

< HM(x, z) >=
1

Z

δZ

δNM(x, z)
= 0. (80)

Therefore the lapse and the shift play the role of Lagrangian multipliers which impose the local

constraints,

H = 0, Hµ = 0 (81)

inside the bulk spacetime. Since the above equality holds at any time z, we have

∂

∂z
< HM(x, z) >=

∫
dDy NM

′
(y, z) ⟨{HM(x, z),HM ′ (y, z)}⟩ = 0. (82)

In order for this to be true for any choices of NM(x, z), we have

{HM(x, z),HM ′ (y, z)} = 0 (83)

at the saddle point. This implies that the (D + 1) constraints are first-class classically. These

constraints generate local spacetime transformations in the bulk. The Hamiltonian constraint H
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•  The	(D+1)-constraints	are	(classically)	first-class	
M=0,	1,	2,	…,	(D-1),	D	

αdz
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z

x
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x(a) (b)

FIG. 3: (a) Bulk spacetime made of the D-dimensional boundary spacetime and the semi-infinite line that

represents the length scale in the RG procedure. Each step of coarse graining, say the l-th step, generates

a set of D-dimensional fields
(
J (l)n(x), P (l)

n (x)
)

that represent dynamical sources and operators at that

scale. These fields are combined into (D + 1)-dimensional fields (Jn(x, z), Pn(x, z)) in the bulk, where

the extra coordinate is given by z = ldz. Each ‘vertical’ line traces the positions of the bulk fields which

are generated from the original field variable Φ(x) at each x in the boundary spacetime. The spacetime

dependent shift Nµ(x, z) causes the bulk fields to have different D-dimensional coordinates from that of

Φ(x). Each ‘horizontal’ line represents the manifold in the bulk spacetime with an equal z coordinate.

Because the speeds of coarse graining are in general different at different points in spacetime, two points

within the manifold with an equal z do not in general have the same proper length along the extra dimension,

where the proper length is the scale in the RG. (b) The same bulk spacetime where the coordinate z is used

instead of the proper length along the extra dimension. The vertical lines have the same meaning as in (a).

Each horizontal line represents the manifold with an equal proper length, that is, the set of points with the

same length scale in RG. Note that an horizontal line that is concave upward in (a) is concave downward in

(b).

The sources and operators are conjugate to each other as expected. The ‘Hamiltonian’ is given by

H =
D∑

M=0

∫
dDx NMHM , (66)

where ND(x, z) ≡ α(x, z) and HD ≡ H. Note that the ‘time’ xD = z is different from the real

time x0 in the boundary field theory. The Hamiltonian in Eq. (66) generates the evolution along the

time xD associated with increasing length scale of the system, not along the real time x0. In this

sense, one can regard the Hamiltonian as a generator for a quantum beta function. One difference
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Summary		
•  In	quantum	RG,	only	a	subset	of	couplings	are	kept	
while	those	couplings	are	promotes	to	dynamical	
variables	

•  A	bulk	ac/on	determines	the	weight	for	each	path	
in	the	path	integral	of	RG	paths	

•  The	bulk	theory	describes	dynamical	geometry	
•  Quantum	RG	can	be	viewed	as	a	smooth	projec/on	
of	wavefunc/on	

•  Obstruc/on	to	smooth	projec/on	of	one	phase	to	
another	phase	manifests	itself	as	a	horizon	in	the	
bulk	


