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AdS/CFT correspondence

[Maldacenal]

* Conjecture:
D-dim QFT = (D+1)-dim quantum gravity

— The bulk space is emergent, and the geometry is
dynamical

— The bulk geometries encode states of the quantum
field theory

— Well tested for some supersymmetric field theories

* N=4 Supersymmetric SU(N_) gauge theory = IIB superstring
theory in AdS>xS>



AdS/CFT Dictionary

[Gubser, Klebanov, Polyakov; Witten]

Low energy
A
(D+1)-dim space
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X
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Goal

A first principle derivation of AdS/CFT
correspondence, which allows one to find
holographic duals for general QFTs”

*For general QFTs, holographic duals can be non-classical / non-
local. However, we would like to find a general prescription to
construct them.



What is behind the AdS/CFT
correspondence? RG =GR

Radial direction in the bulk = length scale of
QFT
Bulk variables : scale dependent coupling
functions

Equations of motion in the bulk corresponds
to the beta functions of QFT

Radial evolution of the bulk fields correspond
to the RG flow




The connection between RG and GR is
incomplete

RG flow is classical :
Given initial condition, coupling Bulk variables have quantum
functions are deterministic without fluctuations
uncertainty

*In order to make the connection precise, RG should be promoted to quantum RG
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Plan

* An introduction to quantum RG
— RG flow as a wavefunction collapse

* An application of quantum RG
— Vector model

— Matrix model



From action to state

s) = [ Do o),

) = H 5(¢; — i)

(¢

* An action of QFT in D-dimensional space defines a D-
dimensional quantum state

* The Boltzmann weight becomes wavefunction



Sources as variational parameters

= —JYO0uy

17}) = [ Do o]0}

e State can be labeled by the sources of operators



Tensor representation

r >u7ij

j. : ¢ : ¢ : In general, O,,depends on multiple
(A il

points in spacetime (e.g. bi-local operator
in vector model, Wilson loop in gauge theory)

Tiik
i
6%jk(¢i¢j)(¢j¢k) | T

i j k

0,, can be composite of
multiple operators




Tensor representation

iy

(T} = / D ¢V g)

* Local action generates states given by a product of
local tensors

 They are over-complete



Single-trace operator

OM — Z Ny OnlOng

* Minimal set of operators of which all singlet
operators can be written as polynomial



States generated from single-trace
operators form a complete basis

s

iy = [ Do o)



States generated from single-trace
operators form a complete basis

/D¢ exkjﬂq TV 5 nkO’nlo’nQ N /D] S(ja.])

ji
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Partition function is an overlap
between states

— /ng e~ (So+51) — <S{)'<

S0y = / D¢ e~ 5019l g)
S

5)



RG flow as wave-function collapse

Z = (So|S1) = (Sole 1| S,) = (Sp| Sy + 65, )

* |S,>is the ground state of H* with zero energy
* Hacting on |S;> generates RG flow

[ = <SQ}6_Zﬁ}Sl>




Example : Wilson-Polchinski RG equation

So = -

AN
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/dk

/de Gy (k)i
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Direct product state for the reference
state (tentative IR fixed point)

Z:/DNW$

-

j(0)>\p(j(0))



Coarse graining

Z:/DNW$




Quantum RG

_dzﬁ|j(0)>:/Dj(1) 6—9‘11(1)(j<1>n_j<o>n)—dz%[j*<1>,j(o)]|j(1)>

J(0)

State with multi-trace tensors can be written as a linear superposition
of single-trace states

Non-local single-trace tensors are generated



(a)

(d)



Quantum RG

o / Dj DjDj(z) Wg(j') =/ EU T Dy, (j)

7(0)=3,3(2)=j

* The RG flow is confined to the space of [
single-trace sources

 Sum over all RG path in the single-trace
space

/

» Single-trace sources are promoted to .
quantum operators [, i1 ] = " ;
* Quantum RG to Wilsonian RG is what
guantum computer is to classical computer

subspace of N
single—trace operators

\



Further comments

* The bulk tensor network involves single-trace
tensors of all sizes ( no pre-assigned local
structure ) : kinematic non-locality is a necessary
condition for diffeomorphism invariance in the bulk

* The bulk theory include dynamical gravity : the
source for single-trace energy momentum tensor
(metric) gets promoted to dynamical variables

* Regularization of quantum gravity boils down to
regularization of QFT



Example 1 : Lattice Vector Model



S

Example : Vector model

/de

[V + i + (3

Lattice Regularization :

So = m* ) (¢] )

.

A
Si= =D ) (91 d) + 5D (] 9)’

1



Example : Vector model

Z = (S|t

Gapped phase (direct product state) H\(Jl ij
‘So> — /qu e_mQZz‘C/b%k’Cbi ¢>’ \(

Deformation to the gapped fixed point (entangled state)
10) — / Dep e Tirt8] 16,3 u(0100° | o)




Hamiltonian

3 2 - * *
H:Z —777;'7T;-k‘|‘7/(¢7;'77i_|_¢7;'777;)

* His not Hermitian, but has real eigenvalues
(related to Hermitian through a similarity
transformation)

* |S,>is the ground state of H*
« e?M gradually removes entanglement™ in |t©)>

* Entanglement in spacetime




Bulk Hamiltonian (in a fixed gauge)

1 2
I o) B 2T N e

m2 m2

_ 4\ 2
T T T T
-+ g [2 —+ W(tm -+ tjj)] tz‘j tij — W E {tkjtkitij}
1]

ijk

* t*; (t;) creates (annihilates) a quantum of
connectivity

 The Hamiltonian describes evolution of quantum
geometry in the bulk




Background independence

AN N N N
\\\\\\\

* There is no bare kinetic term for the bi-local object
* No pre-imposed background



Background independence

Vtitin = thti < tip >
* t; can move only in the presence of condensate

 The condensate, which is dynamical, determines
the geometry on which t; propagates



Saddle point approximation

* [n the large N limit, semi-classical RG path
dominates the partition function

: n * —
* At the saddle point, tij — tij, t;; — Dij
O.t;; = —2{%52” — 04 {4)\ + 13322]%} P + 20 2>k (EikDik + thiDri)
T [1 T m2 (pw —|—p33)] 2 >k zktkj}
0:pij =2 {—% [1 + TQ,L—AQ (Dis + ﬁjj)] Dij — m > (Ditjn + fkiﬁkj)}

Exact solution :

_ 2\ 2\ 6% + ¢°
T _ 2 —2z 2 — 0 o 1 . 2
.(2) 2 +m”+ m2€ (m”po(0) ) —m (1— e 2%)(q% + 02) + m2e~ 2’
2z 2z

— e _|_1—€_
_q2—|—52 m2




Metric

* Fluctuations away from saddle point

~ —

Lij = lij — i

* Anti-symmetric component obeys a simple diffusive equation in
the bulk

~

~A - ~

(m\/gzzé’z —¢"0,0, — g“”c?;(?; + ) tx,z,2) =0
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Gapped phase

The range of entanglement (hopping) saturates in
the large z limit

The strength of hopping (entanglement) decays
exponentially in z

ez |S,> is smoothly projected to the direct
product state in the large z limit

The bulk terminates at a finite proper distance

The proper distance measures the complexity : # of

RG steps needed to remove all entanglement
[Susskind]

1 2d22 ) 2 !
d ? = — + — —+ —2z g dx"dx" .
5 (1 | (562)2> m?2 ((m) ¢ ) vy
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Gapless phase

The range of entanglement (hopping) keep
increasing with increasing z

e |S;> can not be smoothly projected to the
direct product state in the large z limit

In the large z limit, the range of entanglement
diverges : crltlcal point - > Pomcare horizon

ds® = L e Z dxtdzt

In metallic phase, horizon arises at finite z

[Q. Hu, SL, to appear]



Example 2 : A toy example

Matrix field theory which has no other
operators with finite scaling dimension
except for the energy-momentum
tensor



D-dim matrix QFT
on a curved background

2140 = / D iS00 @)

* S, is an action which has only single-trace
operators deformed by energy-momentum
tensor

* This is equivalent to putting the theory on a
curved background metric

* We assume that the theory is regularized
respecting the D-dim. Diffeomorphism invariance

ANSIEAIS



Coarse graining

— D €T y
g\ (x) = g{) (x)e V")

- .(0) 50 v, ,(0)

Z[g(o)] — | D® 1B (0)]+ibS [TH5gt]
sga;etim;ld.egfriozlent speed of RG THY 1 5S1
[Osborn(94); SL(12)] N2 59}(3)

55 [T g O] = dzN? / Pz N%:){\/\gw (—Co + CPR(x;9'))

B V.,po
_AWTW i %TMVTPU i }
Casimir energy

Change of scale :
[Sakharov(67)]

Warping factor
Double-trace operators

Higher derivative terms



Shift

(1) (1) 4 (0 (0w

53”[TW;Q(0)W] — dZNQ/dDQZ(vM > v 1,
sl

A

(1)
n,u qu) Shift of the coordinate of the low
K low energy energy field relative to the

coordinate of the high energy field

[Douglas, Mazzucato, and Razamat (11); SL (12) ]

() high energy




Auxiliary fields

1)
?
1
NZégfw)

° T'LLV —
o LW : L agrangian multiplier

* Integration of g} by parts :

0

\

09w

(1)

i (v

N2 [dPx wDrv(gi) —gii)



Double trace operator : dynamical metric

55 e (0155”1 Dur (01 6, [®: (L)
o 105 [r DY g O] +i6 S [a(DrY g (O] i8S [@;g )]

o5 = d=N* [ 4 NP @) {y/lg] (o + CPR(w:9)

A Bu;sp%(l)wﬁ(l)pa N }

55" = dz—NQ/de(vf})n’(/l) + VOn) v

e Quadratic term in '™ provides a Gaussian
width for gt) |, which becomes a genuine
fluctuating metric



Bulk action
N2 D D
Spi1 = @/dz/d :I:[Wu,,@zg“’/—]\f H—N“?—lu}

Casimir energy Beta function of ['HY'P?
- g_l ]
H = —/g|Co+ R4 2 (o™ — 7T ) |+ -
A -
HY = =2V 7t \

Not fixed by D-dimensional diff. inv.

* The linear term in ¥V can be absorbed by a shift in T*
and a boundary term



First-class constraints

* Independence of partition function on RG
schemes (speed of RG and shifts) =» (D+1)-
constraints

1 0/

M=0, 1, 2, ..., (D-1), D NP(z,2) = a(x,z) and Hp = H

* The (D+1)-constraints are (classically) first-class

0

5 < Huy(z, z) >= /dDy NM (y, 2) {Hun (2, 2), Hyp (y,2)}) = 0

Har(w,2), Hyy (y,2) 1 = 0



Einstein Gravity upto two derivatives

[SL, 1305.3908]

Spi1 = 2/12/612/6119 Wﬂyé‘zg“” NPH — N“'H}

N2
— 2/.{Q/alD“X \/\G( A+ (D+1)R+..).

Casimir energy Beta function of ['HY'['PY

r [ - \ _
H = —\/g |Co+ R™H ; (D—l 7T'UJ7TILW/)—|—..
HH -2V, mh

Uniquely fixed by the first-class
constraint condition

[ Blas, Pujolas, Sibiryakov (09); Henneaux, Kleinschmidt and Gomez (10)]



Summary

In quantum RG, only a subset of couplings are kept
while those couplings are promotes to dynamical
variables

A bulk action determines the weight for each path
in the path integral of RG paths

The bulk theory describes dynamical geometry

Quantum RG can be viewed as a smooth projection
of wavefunction

Obstruction to smooth projection of one phase to

another phase manifests itself as a horizon in the
bulk



