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Different phases of matter

— Gapped states (no IR d.o.f.)

e (trivial) insulator

— Topological states (sub-extensive IR d.o.f.)
* Quantum Hall liquids, topological insulator

— Gapless states (extensive gapless modes)
e Relativistic CFT (z=1; graphene, Ising critical point )
* Fermi surface (metal)
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Goal

Understanding universal properties of metals
based on low energy effective field theories



Plan

* Fermi liquid theory
* Routes to non-Fermi liquids

e Attempts toward controlling quantum
fluctuations in non-Fermi liquids
— Large N
— Dynamical modification
— Dimensional regularization



Fermi Gas
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Many-body eigenstates are labeled by a set of occupation numbers of single-
article states
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Interacting Fermions

Quantum fluctuations

Nky.o1y Nky,o9y -+ > is no longer an eigenstate



Fermi Liquids

* In certain metals, the low temperature properties of interacting
fermions are remarkably similar to those of the non-interacting
Fermi gas

e Specificheat : C~ T
* Magnetic susceptibility : x ~ const.
* Landau postulated that low energy eigenstates of the interacting

fermions are still labeled in the same way the non—inte/racting

eigenstates are labeled
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* The total energy has non -linear terms :
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Microscopic justification of Landau

A

Fermi Liquid theory

[ Shankar,Polchinski]
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At low energies, the phase space for non-forward scatterings is
small : only forward scatterings are important

— particles created near FS have long life time

Low energy eigenstates are still labeled by occupation numbers of

qguasiprticle



Non-Fermi liquids



Strongly Correlated Metals
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[Custers et al.(2003)]

* Soft collective modes in the system (such as order
parameter fluctuations at quantum critical point) can cause
strong quantum fluctuations of FS



A route to non-Fermi liquid : long-range force
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A V(q)~1/q?
kx
Fermi surface

+ gapless boson K’

* Non-forward scatterings are enhanced by long-range interactions
mediated by collective modes
e Bare fermion quickly decays into a complicated superposition of

states
* Single particle is no longer a good basis to understand low energy

properties



Examples of non-Fermi liquids
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In d=2
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Theoretical Status of
Non-Fermi liquids in 2+1D

* Coupling between fermion and boson become
strong even though bare coupling is weak
(characteristic of low dimensionality)

* |n chiral non-Fermi liquids, exact critical
exponents are known [sur, sL (2013)]

* [n general, a small parameter is needed to
study the system in a controlled way



Different routes to tame quantum fluctuations

Most benign modification

Large N (symmetry, locality, finite DOS) Ml Rl
Dynamical tuning Easy to keep symmetry Breaks locality
Tune dimension Keep symmetry, finite DOS DR Gt

(Spurious scale)

Keep locality, Break some

Tune co-dimension : :
no spurious scale introduced symmetry



Large N

WQV\N For large N, collective modes

gets dressed heavily with fermion clouds

i=1,2,...,N

This appears to suggest that effect of fluctuating boson on
fermion is small therefore processes which involve excitations of
multiple bosons are systematically suppressed for a large N

However, small interaction is amplified when fermions are

scattered along the Fermi surface . k,

[SL(09)]
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All planar graphs are important



Dynamical tuning

ky K+q

V(g)~1/q?
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Fermi surface

+ gapless boson K’

* Tune a from 2 to 1+&, which makes the boson
stiffer E

* Breaks locality of the theory

[Nayak, Wilczek(94); Mross, McGreevy, Liu, Senthil(10)]



Dimensional Regularization
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Tuning d with fixed d-m

[Chakravarty, Norton, Syljuasen(95), Fitzpatrick, Kachru, Kaplan, Raghu (13)]
d
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 Size of FS enters as a spurious scale (UV/IR mixing)
[Mandal, SL (15)]



Tuning d with fixed m

[ Dalidovich, SL (13) ; Sur, SL (14) ]
d
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m=1, Q=0




Emergent locality in momentum space
for m=1in general d

Fermi Sea K

* Fermions are primarily scattered along the directions

tangential to FS
* Atlow energies, fermions with different tangential vectors

are decoupled from each otherinthe A _ () limit



Two-patch theory
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Two-patch theory as (1+1)-dim Dirac
fermion with a continuous flavour
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d-dimensional Dirac fermion with a
continuous flavour
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The theory at d = 3 describes a spin
triplet p-wave SC
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A continuous interpolation between
2d Fermi surface to 3d p-wave SC

d Fermi liquid
with decoupled boson
3 O
d=5/2
Marginal :
Y Fermi liquid \ £ Perturbative

* Non-Fermi liquid
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Two-loop results
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[D. Dalidovich, SL (13)]



Expansion in e*3instead of e2
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Landau damping, which is generated by interaction, dominates
over the bare kinetic term



Physical properties
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* Fermion Green fnt: G(k) = L <K >

* Boson Greenfnt:  p(i) = 1 f <E1/2>

* Specific heat : o~ T(A=2)+3



m=1, Q=0




Minimal Theory for SDW
in 2d

[Abanov, Chubukov]
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Parameters of the theory

* v: Fermivelocity
perpendicular to Q,¢

e c:boson velocity

* g:Yukawa coupling

* u:quartic boson coupling

* If v=0, hot spots connected by Q,; are nested
 The four parameters can not be scaled away



A continuous interpolation between 2d
Fermi surface and 3d metal with line nodes
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One-loop RG flow

* Yukawa coupling induces nesting : v N
* Nesting makes boson slower : ¢ N

e Nested FS and slow boson screen more
efficiently : g, u N

j@jm




Cycle of negative feedback between (v,c)
and (g,u) make them all flow to zero!
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One-loop is asymptotically exact in the low energy limit in three dimensions



The kinetic energy & interactions
maintain balance as they die

® Gaussian
A ® Wilson-Fisher
' #* Strange Metal




Properties of the IR fixed point

Interactionless

Nested FS + dispersionless boson (quasi-local)

—v,c flow to zero 1/log(L) for d<3
— v,c flow to zero 1/log(log(L)) at d=3

Breakdown of Fermi liquid (strange metal)

— Non-Fermi liquid for d<3

— Marginal Fermi liquid at d=3

New form of stable metallic state :
Quasi-Local Strange Metal

[S. Sur, SL (14)]



Spectral functions in QLSM
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Summary

* Controlled low energy effective field theory
for non-Fermi liquids needed

* Dim. Reg. which tunes co-dimension of Fermi
surface provides a controlled expansion while
avoiding non-locality and UV/IR mixing



