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Abstract

We provide a pedagogical introduction to the method of holographic renormalization, in its
Hamiltonian incarnation. We begin by reviewing the description of local observables, global
symmetries, and ultraviolet divergences in local quantum field theories, in a language that does
not require a weak coupling Lagrangian description. In particular, we review the formulation of
the Renormalization Group as a Hamiltonian flow, which allows us to present the holographic
dictionary in a precise and suggestive language. The method of holographic renormalization
is then introduced by first computing the renormalized two-point function of a scalar operator
in conformal field theory and comparing with the holographic computation. We then proceed
with the general method, formulating the bulk theory in a radial Hamiltonian language and
deriving the Hamilton-Jacobi equation. Two methods for solving recursively the Hamilton-
Jacobi equation are then presented, based on covariant expansions in eigenfunctions of certain
functional operators on the space of field theory couplings. These algorithms constitute the
core of the method of holographic renormalization and allow us to obtain the holographic Ward
identities and the asymptotic expansions of the bulk fields.
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1 Introduction

The gauge/gravity duality [1] stipulates a mathematical equivalence between a theory of (quantum)
gravity and a local quantum field theory (QFT), without gravity, on a lower dimensional space. The
best studied examples of such holographic dualities typically involve gravity in an asymptotically
anti de Sitter (AdS) space and a dual QFT ‘living’ on the boundary of AdS. This mathematical
equivalence is reflected in a precise map between physical observables on the two sides of the
duality. For local observables, this map is summarized in the prescription for computing QFT
correlation functions from the gravity dual, originally proposed in [2, 3]. Namely, for every local,
single-trace and gauge-invariant operator O(x) there is a field, Φ, in the dual ‘bulk’ gravity theory.
The generating functional of connected correlation functions of O(x), W [J ], is then identified with
the bulk on-shell action

W [J ] ∼ Son−shell[Φ]|Φ∼J , (1.1)

evaluated on solutions of the bulk equations of motion subject to Dirichlet boundary conditions
on the AdS boundary. The arbitrary function that is kept fixed at the boundary is identified with
the source J(x). This statement is an operational definition of the holographic dictionary, allowing
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one to compute, in principle, any local QFT observable from the bulk theory. However, there are
a number of practical and conceptual obstacles.

The most obvious technical difficulty is that both sides of (1.1) actually involve infinite quanti-
ties. On the QFT side, we know that the generating functional of composite operators generically
possesses ultraviolet (UV) divergences, even in a conformal field theory (CFT). We will see an
explicit example of this phenomenon later on. On the gravity side, the on-shell action is also gener-
ically divergent, due to the infinite volume of AdS space. In order to make sense of (1.1), therefore,
one must somehow remove the divergences from both sides and identify the remaining finite ex-
pressions. On the QFT side the procedure for systematically and consistently removing the UV
divergences is known as renormalization. Holographic renormalization [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
is the analogous procedure for the gravity side of the duality.

A more conceptual drawback of the identification (1.1) is that it only maps certain objects on
the two sides of the duality, such as the on-shell action and the generating function. However,
the bulk fields, or indeed the equations of motion in the bulk are not given any concrete meaning
on the QFT side, except from the indirect role in evaluating the on-shell action. As we shall see,
both the Renormalization Group (RG) of local QFTs and the dual gravitational theories admit a
Hamiltonian description that allows us to formulate the holographic dictionary more precisely.

These lecture notes are organized as follows. In section 2 we discuss local QFT observables and
global symmetries in a language that does not assume a weak coupling or Lagrangian description.
Moreover, we put forward a Hamiltonian formulation of the Renormalization Group of local QFTs
that directly parallels the description of the holographic dual bulk theory later on. We end section
2 with a concrete example of UV divergences in the two-point function of a scalar operator in a
CFT. In section 3 we carry out explicitly the holographic computation for the two-point function on
a fixed AdS background and reproduce the renormalized result obtained from the CFT calculation.
The Hamiltonian formulation of the holographic dictionary is presented in section 3.2. Section 4
discusses at length the radial Hamiltonian formulation of the bulk dynamics for Einstein-Hilbert
gravity coupled to a self interacting scalar. In Section 5 we present two algorithms for recursively
solving the radial Hamilton-Jacobi equation, which constitutes the core of holographic renormal-
ization. Given the solution of the Hamilton-Jacobi equation derived in section 5, in section 6 we
provide general expressions for the renormalized one-point functions in the presence of sources and
derive the holographic Ward identities. Finally, in section 7 we show how the asymptotic expan-
sions of the bulk fields can be obtained systematically from the solution of the Hamilton-Jacobi
equation. Some background material is presented in the appendices. In particular, appendix B is
a self contained review of Hamilton-Jacobi theory in classical mechanics.

2 Local QFT observables and the local Renormalization Group

Before we delve into the details of the holographic dictionary and the computation of QFT ob-
servables from the bulk gravitational theory, it is instructive to review some basic aspects of QFTs
and to put them in a language that will later help us make contact with the holographic dual
bulk theory. In particular, since the gauge/gravity duality relates the strongly coupled regime of
local QFTs to the bulk gravity theory, it is crucial to describe the local QFT observables and their
properties in a way that is valid at strong coupling. Ideally we would like to discuss local QFT
observables without assuming the existence of a microscopic Lagrangian description of the QFT.

2



2.1 QFT correlation functions and the generating functional

The basic objects of a local QFT are correlation functions of local operators, O(x), namely

〈O1(x1)O2(x2) . . .On(xn)〉. (2.1)

In particular, if we know all correlation functions of all local operators of a local QFT, then in most
cases we know all there is to know about this theory.2 In a generic theory, even if there is only a
finite number of local operators present in a given QFT, the number of correlation functions that
we need to know can be infinite. So, instead of having to deal with an infinite number of correlation
functions, it is useful to introduce the generating function of correlation functions, Z[J ], as a book
keeping device. For a single local operator O(x), the generating function takes the form

Z[J ] =
∞∑
k=0

1

k!

∫
ddx1

∫
ddx2 . . .

∫
ddxkJ(x1)J(x2) . . . J(xk)〈O(x1)O(x2) . . .O(xk)〉, (2.2)

where d is the spacetime dimension. Given Z[J ], any correlation function of the operator O(x) can
be extracted by multiple functional differentiation:

〈O(x1)O(x2) . . .O(xk)〉 =
δkZ[J ]

δJ(x1)δJ(x2) . . . δJ(xk)

∣∣∣∣
J=0

. (2.3)

These definitions straightforwardly generalize to a set of local operators {O1(x),O2(x), · · · }, with
the corresponding generating functional Z[J1, J2, · · · ] depending on the sources J1(x), J2(x), · · · .
Moreover, the definition of the generating functional through (2.2) is completely general and it does
not assume a Lagrangian description of the theory. Of course, if the theory admits a Lagrangian
description, then the generating functional Z[J ] has the standard path integral representation

Z[J ] =

∫
Dφ ei

∫
ddxL(φ)+

∫
ddxJ(x)O(x), (2.4)

where φ here stand for the elementary Lagrangian fields.
An alternative but equivalent way to encode all local observables is in terms of the generating

function of connected correlation functions

W [J ] = logZ[J ], (2.5)

or

W [J ] =
∞∑
k=0

1

k!

∫
ddx1

∫
ddx2 . . .

∫
ddxkJ(x1)J(x2) . . . J(xk)〈O(x1)O(x2) . . .O(xk)〉c, (2.6)

where 〈O(x1)O(x2) . . .O(xk)〉c are now connected correlation functions. The first derivative of the
generating function (2.6) corresponds to the one-point function of the dual operator in the presence
of an arbitrary source, namely

〈O(x)〉J =
δW [J ]

δJ(x)
. (2.7)

Taking further derivatives with respect to the source we can obtain any desired correlation function
of the operator O(x). In particular, the one-point function in the presence of sources (2.7) encodes

2Sometimes, additional global observables must be specified to uniquely identify a theory [14]
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the same local information as the generating function (2.6). This fact will be crucial for the
discussion of the holographic dictionary later on.

Another important aspect of (2.7) is that it amounts to a prescription for the insertion of the
local operator O(x) in any correlation function and so, in effect, it provides a definition of the local
operator O(x). This is indeed the point of view adopted in the so called local Renormalization
Group formulation of QFT [15], where local operators are defined as derivatives of the generating
function with respect to the corresponding local coupling. For example, the stress tensor, a U(1)
current and a scalar operator are defined through the relations

Tij(x) = − 2
√
g

δW

δgij(x)
, (2.8a)

J i(x) = − 1
√
g

δW

δAi(x)
, (2.8b)

O(x) = − 1
√
g

δW

δϕ(x)
, (2.8c)

where gij is a general background metric on the space where the QFT is defined, and Ai is an Abelian
background gauge field. The indices i, j = 1, 2, · · · , d run over all coordinates parameterizing the
space where the QFT is defined.

2.2 The local Renormalization Group as a Hamiltonian flow

The expressions (2.8) for the one-point functions in the presence of sources bare striking resemblance
to the expression for the canonical momenta in classical Hamilton-Jacobi (HJ) theory. In particular,
the one-point functions (2.8) look mathematically identical to the expressions (B.8) or (B.14) for
the canonical momenta in appendix B, where we review some basic aspects of HJ theory that we
will use repeatedly throughout these lectures.

This analogy turns out to be particularly useful for developing the holographic dictionary and
can be formalized as follows [16]. Let Q be the space of functions (more generally tensors) on the
spacetime, Σ, where the QFT resides (e.g. Rd). The sources Jα(x) are coordinates on Q, which
is the analogue of the configuration space in classical mechanics. Let us extend this configuration
space to Qext = Q×R, by appending an abstract “time” τ to the generalized coordinates Jα(x) as
in appendix B in the case of a time-dependent Hamiltonian. Accordingly, an abstract Hamiltonian
operator, H, must be introduced as conjugate momentum to τ . Note that H is a global operator,
i.e. it does not depend on x.3 The extended phase space is then parameterized by the variables

{Oα(x),H; Jα(x), τ}, (2.9)

and it is isomorphic to the cotangent bundle T ∗Qext, which is endowed with the pre-symplectic
form

Θ =

∫
ddx Oα(x)δJα(x)− Hdτ, (2.10)

and the canonical symplectic closed 2-form

Ω =

∫
ddx δOα(x) ∧ δJα(x)− dH ∧ dτ, (2.11)

that can be written locally as Ω = δΘ.

3To make contact with [16] one can introduce a Hamiltonian density, h(x), through H =
∫
ddx h(x).
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Any functional, F [J ; τ ], provides a closed section of the cotangent bundle, s : Qext −→ T ∗Qext,
given locally by

s = δF [J ; τ ]. (2.12)

It follows that
Θ ◦ s = δF [J ; τ ], (2.13)

or equivalently

Oα =
δF [J ; τ ]

δJα
, H = −∂F [J ; τ ]

∂τ
, (2.14)

while

Ω ◦ s =

∫
ddx

∫
ddx′

δ2F [J ; τ ]

δJβ(x′)δJα(x)
δJβ(x′) ∧ δJα(x)− ∂2F [J ; τ ]

∂τ2
dτ ∧ dτ = 0. (2.15)

As follows from the Hamilton-Jacobi theorem (see appendix B), the τ -evolution of all the variables
is then governed by Hamilton’s equations

J̇α =
δH
δOα

, Ȯα = − δH
δJα

, Ḣ =
∂H
∂τ

. (2.16)

Note that the functional derivatives in (2.14) and (2.16)are partial derivatives.
There are two different closed sections of the cotangent bundle T ∗Qext one can naturally define

for any local QFT. Taking τ to be related to some generic energy scale µ via τ = log(µ/µo), where
µo is some constant reference scale, the bare and renormalized generating functions, respectively
W [J ] and Wren[J ; τ ], provide two distinct closed sections of the cotangent bundle T ∗Qext. The
difference between these two functionals is that Wren[J ; τ ] is RG invariant, i.e. given σ : R −→ Q,
its total derivative with respect to τ vanishes, Ẇren[σ(τ); τ ] = 0, while W [J ] is not an RG invariant.
The total derivative of W [J ] with respect to τ gives, by construction, the Legendre transform of
the Hamiltonian H, i.e. the associated Lagrangian4

Ẇ [J ] = L =

∫
ddxJ̇αOα − H =

∫
ddxβαOα − H, (2.17)

where βα = J̇α are the beta functions of the couplings Jα. Moreover, W [J ] depends on τ only
through the couplings Jα, while Wren[J ; τ ] can also depend explicitly on τ through the conformal
anomaly. Through (2.14), these two sections define different local operators and Hamiltonians,
which are related through a canonical transformation [17].

Renormalized RG Hamiltonian

Taking F [J ; τ ] = Wren[J ; τ ], the first equation in (2.14) is just the renormalized version of the local
RG definition of local operators that we saw above in (2.8), namely5

Oren
α =

δWren[J ; τ ]

δJα
. (2.18)

4Note that in [16] only the RG invariant Wren[J ; τ ] is considered, written in terms of the bare and renormalized
couplings. W [J ] is not discussed at all in that reference.

5The way we have defined the operators Oα and H in this subsection, they are in fact densities with respect to
the background metric gij , i.e. we have not divided by

√
g as in (2.8). Moreover, Oα include the stress tensor.
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The second equation in (2.14), with F [J ; τ ] = Wren[J ; τ ], can be viewed as a definition of the
Hamiltonian Hren in QFT. In particular, we conclude that Hren is numerically equal to the conformal
anomaly,

Hren = −∂Wren[J ; τ ]

∂τ
= −

∫
ddx
√
gA, (2.19)

where A is the conformal anomaly.

Bare RG Hamiltonian

Taking F [J ; τ ] = W [J ], on the other hand, provides a section of T ∗Q. The first equation in (2.14)
is then identical to the local RG expressions (2.8), while the second equation in (2.14) implies that
the bare RG Hamiltonian vanishes identically

H = −∂W [J ]

∂τ
= 0. (2.20)

As we mentioned above, the bare and renormalized Hamiltonians, as well as the corresponding
local operators, are related by a canonical transformation whose generating function (in the sense
of canonical transformations) is given by the local counterterms, Wct[J ; τ ], [17]. Note that the
explicit τ -dependence of Wren[J ; τ ] is entirely due to the local counterterms and, in particular, the
conformal anomaly. Under this canonical transformation

W [J ] −→Wren[J ; τ ] = W [J ] +Wct[J ; τ ]. (2.21)

RG equations

The RG equations for the generating functions W [J ] and Wren[J ; τ ] are respectively

L = Ẇ =

∫
ddxβαOα ⇔ H = 0, (2.22a)

0 = Ẇren =

∫
ddxβαOren

α +
∂Wren

∂τ
=

∫
ddxβαOren

α +

∫
ddx
√
gA. (2.22b)

The first of these equations is just the HJ equation (2.20). Comparing the second equation with
the HJ equation (2.19) we conclude that the renormalized Hamiltonian takes the form

Hren =

∫
ddxβαOren

α , (2.23)

where the sum in this expression is over all operators in the theory, including the stress tensor.
Given the beta functions as functions of the local running couplings Jα, this Hamiltonian is linear
in the canonical momenta, i.e. in Oren

α [16]. The standard renormalization procedure in QFT
is equivalent to determining the beta functions as functions of the local running couplings and
Wren[J ; τ ] through the HJ equation (2.19), i.e.(∫

ddxβα[J ]
δ

δJα
+

∂

∂τ

)
Wren[J ; τ ] = 0. (2.24)

This is the standard RG equation.
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Given βα[J ] one can integrate the first Hamilton equation in (2.16) to obtain

H =

∫
ddxβα[J ]Oα + F [J ; τ ], (2.25)

for some unspecified F [J ; τ ]. Combining this relation with the fact that H and Hren are related by
a canonical transformation generated by Wct[J ; τ ], namely

H− Hren +
∂Wct

∂τ
= 0, (2.26)

we deduce that

F [J ; τ ] =

(∫
ddxβα[J ]

δ

δJα
− ∂

∂τ

)
Wct[J ; τ ], (2.27)

and hence

H[Oα, J
β] =

∫
ddxβα[J ]Oα +

(∫
ddxβα[J ]

δ

δJα
− ∂

∂τ

)
Wct[J ; τ ]. (2.28)

However, if the beta functions are not just functions of the running couplings, but depend
linearly on the local operators Oα, i.e.

βα[O, J ] = Gαβ[J ]Oβ, (2.29)

then the first of Hamilton’s equations in (2.16) gives

H =
1

2

∫
ddx Gαβ[J ]OαOβ + F̃ [J ; τ ], (2.30)

for some unspecified F̃ [J ; τ ]. Notice that if the beta functions take the form (2.29), then the RG
flow is a gradient flow, since βα = GαβδW/δJβ. As we shall see, this form of the beta functions
and of the Hamiltonian H are directly related to the bulk holographic description of the theory.

2.3 Global symmetries and Ward identities

A general property of QFTs is that they typically possess a number of global symmetries. For
example, a relativistic QFT on flat Minkowski space possesses Poincaré symmetry. If the theory is
additionally scale invariant, then it will generically possess conformal symmetry. Such theories are
known as conformal field theories (CFTs) and the fact that they are conformally invariant allows
us to make sense of them on curved backgrounds that are conformally related to flat Minkowski
space. Other examples of global symmetries include internal symmetries such as SU(2) isospin (for
massless up and down quarks) or supersymmetry.

In QFTs that admit a classical Lagrangian description, global symmetries manifest themselves
as invariances of the classical action and lead via Noether’s theorem to conserved currents. For
example, Poincaré invariance of the classical action implies that the stress-energy tensor, Tij , is
conserved, i.e.

∂iTij = 0. (2.31)

Similarly, global internal symmetries lead to conserved currents J i,

∂iJ i = 0. (2.32)

At the quantum level these currents become quantum operators and their classical conservation laws
imply relations among certain correlation functions that involve these currents. These identities,
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relating various correlation functions as a result of the classical Noether theorem, are known as
Ward identities.

It is often the case, however, that some of the classical symmetries are broken at the quantum
level. This happens because in a QFT various quantities contain ultraviolet divergences which must
be regulated and renormalized to yield a well defined quantity. However, there may not exist a
regulator that preserves all of the classical symmetries of the theory, which leads to the breaking of
some symmetries at the quantum level. This breaking of the classical symmetries at the quantum
level leads to the so-called quantum anomalies in the Ward identities.

A particularly elegant way to derive the Ward identities of a quantum field theory, without rely-
ing on a classical Lagrangian description of the theory, is to work with the generating functional of
correlation functions and gauge the global symmetries by promoting the sources of the correspond-
ing conserved currents to gauge fields. Among all operators in any QFT there is always the stress
tensor, Tij , and let us assume that there is in addition an internal U(1) symmetry giving rise to a
current, J i, in the spectrum of operators. Moreover, to be generic, let us suppose that there is also
a scalar operator, O, transforming trivially both under the Poincaré group and the U(1) symmetry,
but has definite scaling dimension ∆. The generating functional of connected correlation functions
will then be a function of the sources, gij , Ai, ϕ, respectively for the stress tensor, the current of
the internal symmetry, and for the scalar operator, as well as for all other operators in the theory
which we will not need to consider:

W [g,A, ϕ, . . .]. (2.33)

As we would now do in a classical Lagrangian description of the theory to derive Noether’s
theorem, we gauge the global symmetries by promoting the Poincaré transformations to diffeomor-
phisms and the internal global symmetry to a local gauge symmetry, while promoting the sources6

g(0)
ij and A(0)i to gauge fields of the corresponding local symmetries. In a classical Lagrangian

description this would amount to introducing ‘minimal couplings’ in the Lagrangian. Under in-
finitesimal diffeomorphisms, parameterized by the vector ξi(x), the sources then transform as

δξg
ij
(0) = −(Di

(0)ξ
j +Dj

(0)ξ
i), δξA(0)i = A(0)jD(0)iξ

j + ξjD(0)jA(0)i, δξϕ(0) = ξjD(0)jϕ(0), (2.34)

while under infinitesimal U(1) gauge transformations, parameterized by the gauge function α(x),
they transform as

δαg(0)ij = 0, δαA(0)i = D(0)iα(x), δαϕ(0) = 0, (2.35)

where D(0)i denotes the covariant derivative with respect to the metric g(0)ij . The Ward identities
now can be stated very simply and generally as

δξW = 0, δαW = 0, ∀ ξi, α, (2.36)

respectively following from the Poincaré and U(1) symmetries. We can manipulate these expressions
a bit further to bring the Ward identities in a more familiar form. Starting with the U(1) Ward
identity we have

δαW = 0⇔
∫
ddx

(
δαg(0)

ij δW

δg(0)
ij

+ δαA(0)i
δW

δA(0)i
+ δαϕ(0)

δW

δϕ(0)

)
= 0

⇔
∫
ddxD(0)iα(x)

δW

δA(0)i
= 0⇔

∫
ddxα(x)D(0)i

(
δW

δA(0)i

)
= 0, (2.37)

6The subscript (0) here is intended to help make contact with the holographic computation later.
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where we have integrated by parts in the last step and have dropped the boundary term. Since
α(x) is arbitrary, it follows that the U(1) Ward identity is equivalent to the identity

D(0)i

(
δW

δA(0)i

)
= 0. (2.38)

We can now repeat this exercise for diffeomorphisms to obtain

δξW = 0⇔ Di
(0)

(
2
δW

δg(0)
ij

)
− F (0)ij

δW

δA(0)i
+

δW

δϕ(0)
D(0)jϕ(0)(x) = 0, (2.39)

where F (0)ij = ∂iA(0)j − ∂jA(0)i is the field strength of the gauge field A(0)i.
In terms of the one-point functions in the presence of sources the above Ward identities take

the simple form

D(0)i〈J i(x)〉 = 0, (2.40)

Di
(0)〈Tij(x)〉 − 〈J i(x)〉sF (0)ij + 〈O(x)〉D(0)jϕ(0)(x) = 0, (2.41)

following respectively from U(1) and Poincaré invariance.
Finally, let us consider Weyl transformations, i.e. local scale transformations, parameterized by

the Weyl factor σ(x). Under infinitesimal Weyl transformations the sources transform as

δσg(0)
ij = −2δσ(x)g(0)

ij , δσA(0)i = 0, δσϕ(0) = −(d−∆)δσ(x)ϕ(0), (2.42)

where ∆ is the conformal dimension of the operator O(x) and we focus here on a CFT since scale
invariance is not a symmetry of a generic QFT. As we have seen, even if our theory is a conformal
field theory, the generating functional of renormalized correlation functions will not be in general
invariant under such a Weyl transformation. The variation of the generating functional with respect
to Weyl transformations defines the conformal anomaly

δσW =

∫
ddx
√
g(0)δσ(x)A, (2.43)

where the anomaly density, A is a local function of the sources. Using the above transformation of
the sources, this then leads to the trace Ward identity

〈T ii (x)〉 = −(d−∆)ϕ(0)〈O(x)〉+A. (2.44)

We recognize this Ward identity as the local version of the RG equation (2.24), at a fixed point of
the renormalization group.

2.4 UV divergences and renormalization of composite operators

Let us now address in more detail the question of renormalization in QFT with a simple example.
This will allow us to directly compare with a holographic calculation in the next subsection in order
to get a first idea of the holographic dictionary.

Consider a CFT with a scalar operator O∆(x) of conformal dimension ∆. Conformal symmetry
determines the two-point function up to an overall constant, namely

〈O∆(x)O∆(y)〉 =
c(g,∆)

|x− y|2∆
, (2.45)
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where c is an arbitrary constant, depending on the dimension ∆ and possibly any coupling constants,
g, of the CFT, that we could absorb into the normalization of the operator O∆, but we will
not. Depending on the conformal dimension, ∆, this correlator may suffer from short distance
singularities. Consider the case ∆ = d/2 + k + ε, where ε is an infinitesimal parameter and k is a
non-negative integer. Iterating the identity

1

|x− y|2∆
=

1

2(∆− 1)(2∆− d)
�

1

|x− y|2∆−2
, |x− y| 6= 0, (2.46)

where 2 = δij∂i∂j , k + 1 times, we find

1

|x− y|2∆
=

1

2ε

Γ(1 + ε)Γ(d/2 + ε)

22kΓ(k + 1 + ε)Γ(d/2 + k + ε)

1

d− 2 + 2ε
�k+1 1

|x− y|d−2+2ε

∼ −1

2ε

ωd−1Γ(d/2)

22kΓ(k + 1)Γ(d/2 + k)
�kδ(d)(x− y), (2.47)

where ωd−1 = 2πd/2/Γ(d/2) is the volume of the unit (d− 1)-sphere and we have used the identity
2(x2)−d/2+1 = −(d− 2)ωd−1δ

(d)(x). We thus find that there is a pole at ∆ = d/2 + k, or ε = 0. To
produce a well defined distribution we subtract the pole and define [18]

〈O∆(x)O∆(0)〉ren = c(g,∆) lim
ε→0

{
1

2ε

Γ(1 + ε)Γ(d/2 + ε)

22kΓ(k + 1 + ε)Γ(d/2 + k + ε)

1

d− 2 + 2ε
�k+1 1

|x|d−2

(
1

|x|2ε
− µ2ε

)}
=

−ck
2(d− 2)

�k+1 1

|x|d−2

{
log
(
µ2x2

)
+ a(k)

}
, (2.48)

where

ck ≡ c(g,∆)
Γ(d/2)

22kΓ(k + 1)Γ(d/2 + k)
. (2.49)

The constant a(k) reflects the scheme dependence in the subtraction of the pole. Here we have
defined the subtraction in such a way so that a = 0, but other subtraction schemes, such as
minimal subtraction, lead to a non-zero a. The renormalized correlator agrees with the bare one
away from coincident points but is also well-defined at x2 = 0. To allow a direct comparison of the
renormalized two-point function with the result we will obtain below from the bulk calculation, it
is useful to write down its Fourier transform. Using the identity∫

ddxeip·x
1

|x|d−2
log
(
µ2x2

)
= − 4πd/2

Γ(d/2− 1)

1

p2
log(p2/µ̄2), (2.50)

where µ̄ = 2µ/γ and γ = 1.781072 . . . is the Euler constant, we obtain

〈O∆(p)O∆(−p)〉ren = ck
(−1)k+1

2(d− 2)

4πd/2

Γ(d/2− 1)
p2k log(p2/µ̄2). (2.51)

3 The holographic dictionary

3.1 A first look at the holographic dictionary and holographic renormalization

In order to compute the above scalar two-point function holographically, we consider a self inter-
acting scalar field in a fixed Euclidean background with the action

S =

∫
dd+1x

√
g

(
1

2
gµν∂µφ∂νφ+ V (φ)

)
. (3.1)
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We will take the metric to be of the form

ds2 = dr2 + γij(r, x)dxidxj , (3.2)

where i, j = 1, 2, . . . , d run over the field theory directions, and the induced metric on the constant
r slices is given by

γij(r, x) = e2A(r)ĝij(x), (3.3)

with
A(r) = r, ĝij(x) = δij , (3.4)

for AdS. This metric is diffeomorphic to the upper-half plane or Poincaré coordinates metric

ds2 =
dz2

0 + d~z2

z2
0

. (3.5)

Our first task is to obtain the radial Hamiltonian for this model, interpreting the radial coordi-
nate r as Hamiltonian ‘time’. The action can be written in the form

S =

∫ r

dr′L =

∫ r

dr′ddx
√
γ

(
1

2
φ̇2 +

1

2
γij∂iφ∂jφ+ V (φ)

)
. (3.6)

The canonical momentum conjugate to φ then is

π =
δL

δφ̇
=
√
γφ̇. (3.7)

The HJ equation can be derived from the relation

Ṡ = L =

∫
ddx

(
φ̇
δS
δφ

+ γ̇ij
δS
δγij

)
, (3.8)

where Hamilton’s principal function (see appendix B), S, has no explicit r dependence since the
Lagrangian is diffeomorphism covariant. Writing

π =
√
γφ̇ =

δS
δφ
, (3.9)

this equation becomes∫
ddx

[
√
γ

(
1

2

(
1
√
γ

δS
δφ

)2

− 1

2
γij∂iφ∂jφ− V (φ)

)
+ 2Ȧγij

δS
δγij

]
= 0. (3.10)

This is the HJ equation for the scalar field in a fixed gravitational background, which can be
rewritten in the more useful form

√
γ

(
1

2

(
1
√
γ

δS
δφ

)2

− 1

2
γij∂iφ∂jφ− V (φ)

)
+ 2ȦδγL = ∂iv

i, (3.11)

where

S =

∫
ddxL, (3.12)

and

δγ =

∫
ddxγij

δ

δγij
. (3.13)
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The term ∂iv
i on the RHS is a total derivative that can be arbitrary, but which generically needs

to be taken into account when trying to solve (3.11). It is not difficult to solve this equation
iteratively, for example in a derivative expansion, for a general potential V (φ). However, for the
present discussion it suffices to consider the simple –yet far from trivial– case of a free scalar field
with the potential

V (φ) =
1

2
m2φ2. (3.14)

The great simplification that results from this potential is that we can solve the corresponding HJ
equation exactly, to all orders in transverse derivatives.

The HJ equation (3.11) in this case becomes

√
γ

(
1

2

(
1
√
γ

δS
δφ

)2

− 1

2
γij∂iφ∂jφ−

1

2
m2φ2

)
+ 2δγL = ∂iv

i. (3.15)

Inserting an ansatz of the form

S =
1

2

∫
ddx
√
γφf(−�γ)φ, (3.16)

we find that it solves the HJ equation, provided the function f(x) satisfies [19]

f2(x) + df(x)−m2 − x− 2xf ′(x) = 0. (3.17)

The general solution of this equation is

f(x) = −d
2
−
√
x (K ′k(

√
x) + cI ′k(

√
x))

Kk(
√
x) + cIk(

√
x)

, (3.18)

where k = ∆−d/2 > 0, c is an arbitrary constant, and Ik(x) and Kk(x) denote the modified Bessel
function of the first and second kind respectively. Using the asymptotic behaviors as x→ 0

K0(x) ∼ − log x, Kk(x) ∼ Γ(k)

2

(x
2

)−k
, k > 0, Ik(x) ∼ 1

Γ(k + 1)

(x
2

)k
, (3.19)

we see that Kk(x) dominates in f(x) as x→ 0, unless |c| → ∞. In particular, we find

f(x)
x→0∼

{
−d

2 + k = −(d−∆), |c| <∞,
−d

2 − k = −∆, |c| → ∞. (3.20)

Since,

φ̇ =
1
√
γ

δS
δφ
, (3.21)

we see that the two asymptotic solutions for f(x) correspond to φ ∼ e−(d−∆)r and φ ∼ e−∆r

respectively, which are precisely the asymptotic behaviors of the two linearly independent solutions
of the equation of motion. The solution for f(x) with |c| < ∞ corresponds to the asymptotically
dominant mode. Hence, in order to make the variational problem well defined for generic solutions
of the equation of motion we have no choice but demand that |c| <∞.

Expanding the solution for f(x) with |c| < ∞ for small x and taking k to be an integer we
obtain,

f(x) = −(d−∆) +
x

(2∆− d− 2)
− x2

(2∆− d− 2)(2∆− d− 4)
+ · · ·+ (−1)k

22k−1Γ(k)2
xk log x

+

(
a(k)− c

22k−2Γ(k)2

)
xk + · · · , (3.22)
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where a(k) is a known function of k, whose explicit form we will not need, and the dots denote
asymptotically subleading terms. A number of comments are in order here. Firstly, this solution
depends explicitly on the undetermined constant |c| <∞. Secondly, this solution seems to lead to
a non-local boundary term due to the logarithmic term. And finally, one may worry that higher
terms in this asymptotic expansion need to be considered. Fortunately, all these issues can be
addressed by noticing that the contribution of the last term to the boundary term is proportional
to ∫

ddx
√
γφ(−�γ)kφ, (3.23)

which, taking into account the asymptotic behavior of the scalar and of the induced metric, can be
easily seen to have a finite limit as r →∞. Such terms, therefore, correspond to adding finite local
contributions to the boundary term Sb. We conclude that higher order terms in the asymptotic
expansion of f(x) need not be considered since they would give rise to a vanishing contribution
to Sb in the limit r → ∞. Moreover, the arbitrariness in the value of c is not a problem because
different values of c lead to boundary terms Sb which differ by a finite local term. Any value
of |c| < ∞, therefore, is equally acceptable since the corresponding boundary term makes the
variational problem well defined. Finally, coming to the apparent non-locality of the boundary
term we have deduced above, we notice that the logarithmic term can be written as

(−�γ)k log(−�γ) = (−�γ)k
(
log(µ2e−2r) + log(−�δ/µ

2)
)
, (3.24)

where µ2 is an arbitrary scale and �δ = ∂i∂i denotes the Laplacian in the flat transverse space.
Crucially, the non-local part gives rise to a finite contribution in Hamilton’s principal function and
so it can be omitted from counterterms. The most general local boundary term that makes the
variational problem well defined is therefore [12, 19]

Sct[γ, φ, r] = −1

2

∫
ddx
√
γφ

(
−(d−∆) +

−�γ

(2∆− d− 2)
− (−�γ)2

(2∆− d− 2)(2∆− d− 4)
+ · · ·

+
(−1)k

22k−1Γ(k)2
(−�γ)k log(µ2e−2r) + ξ(−�γ)k

)
φ, (3.25)

where we have allowed for a local finite boundary term with arbitrary coefficient ξ. Notice that
although it is possible to find counterterms that remove the UV divergences and are also local
in transverse derivatives, this is only at the cost of introducing explicit dependence in the radial
coordinate, r. This is precisely the origin of the holographic conformal anomaly [4].

The renormalized action on the UV cut-off ro is defined as

Sren := Sreg + Sct, (3.26)

and it admits a finite limit, Ŝren, as the cut-off is removed:

Ŝren = lim
ro→∞

Sren. (3.27)

In this case, ignoring the scheme dependent contact terms, we obtain

Sren =
(−1)k

22kΓ(k)2

∫
ddxφ(0)(−�)k log(−�/µ̄2)φ(0). (3.28)

The holographic dictionary identifies Sren with the renormalized generating function of connected
correlators, Wren[J ], and φ(0) with the source J . We therefore deduce that the renormalized two-
point function of the dual scalar operator takes the form

〈O∆(p)O∆(−p)〉ren =
(−1)k+1

22k−1Γ(k)2
p2k log(p2/µ̄2), (3.29)
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which agrees with the CFT calculation in (2.51). Comparing the coefficients, we determine

c(g,∆) =
2kΓ(d/2 + k)

πd/2Γ(k)
, (3.30)

which turns out to be precisely the correct coefficient consistent with the Ward identities.

3.2 The holographic dictionary in Hamiltonian language

The local RG description of QFTs that we discussed above allows us to formulate the holographic
dictionary in a more precise language, identifying all quantities in the bulk theory with QFT
quantities. In particular, we identify the following objects on the two sides of the gauge/gravity
duality:

Radial coordinate r ↔ τ = logµ RG “time”

Induced fields φ ↔ J Running local couplings (sources)

Regularized action Sreg[φ] ↔ W [J ] Generating function

Renormalized action Sren[φ] ↔ Wren[J ] Renormalized generating function

Radial Hamiltonian H ↔ H RG Hamiltonian

Radial momenta πφ ↔ 〈O〉 Running local operators

Non-normalizable modes φ(0) ↔ JR|∞ Renormalized couplings at ∞

Renormalized momenta π̂(∆) ↔ 〈O〉|∞ Bare operators

This table should serve as a guide in order to interpret all calculations in the bulk theory that we
are going to describe in the next sections.

4 Radial Hamiltonian formulation of gravity theories

The holographic dictionary consists in a precise map between observables on the two sides of the
duality. From the point of view of the bulk gravitational theory, the physical observables correspond
to the symplectic space of asymptotic data, which is the key to formulating a well posed variational
problem [17]. As we will now review, a general systematic construction of the symplectic space
of asymptotic data proceeds by formulating the bulk dynamics in Hamiltonian language, with the
radial coordinate identified with the Hamiltonian “time”. As we saw in the previous section, this
formulation of the bulk dynamics parallels the real space renormalization group of the dual QFT.

For concreteness, let us consider Einstein-Hilbert gravity in a d + 1-dimensional non-compact
manifold M coupled to a scalar field described by the action

S = − 1

2κ2

(∫
M
dd+1x

√
g

(
R[g]− 1

2
∂µϕ∂

µϕ− V (ϕ)

)
+

∫
∂M

ddx
√
γ2K

)
. (4.1)
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Figure 1: A non-compact manifoldM with a boundary ∂M consisting of two disconnected compo-
nents. The Hamiltonian formulation of the bulk dynamics in the vicinity of the two disconnected
components must be done separately, using two different radial coordinates, r1 and r2, emanating
respectively from each disconnected component of the boundary. The Hamiltonian analysis need
only be applicable in an open neighborhood of each boundary component, which is sufficient in
order to construct the symplectic space of asymptotic data on each component, as well as the
appropriate boundary terms required to render the variational problem well posed.

Here, κ2 = 8πGd+1 is the gravitational constant in d + 1 dimensions and the boundary term is
the standard Gibbons-Hawking term for Einstein-Hilbert gravity [20], which, as we shall see, is
required in order to formulate the dynamics in a Hamiltonian language.7 Moreover, throughout
these lectures we will work in Euclidean signature, but the entire analysis can be straightforwardly
adapted to Lorentzian signature.

The radial Hamiltonian formulation of the bulk dynamics starts with picking a radial coordinate
r such that r →∞ corresponds to the location of the boundary ∂M of M. This radial coordinate
need not be a Gaussian normal coordinate, nor should it be a good coordinate throughout M.
Instead, r need only cover an open chart Mε in the vicinity of ∂M in M. Moreover, if ∂M
consists of multiple disconnected components then a different radial coordinate must be used in
the vicinity of each boundary component and different Hamiltonian descriptions must be applied
to describe the various asymptotic regimes, as is illustrated in Figure 1.

Having picked a radial coordinate r emanating from (a component of) the boundary M, the
radial Hamiltonian formulation of the dynamics proceeds as in the standard ADM formalism [22],
except that the Hamiltonian “time” r is a spacelike coordinate instead of a timelike one. All tensor
fields are decomposed in components along and transverse to the radial coordinate r. In particular,
the metric is parameterized in terms of the lapse function N , the shift vector Ni, and the induced
metric γij on the hypersurfaces Σr of constant radial coordinate r as

ds2 = (N2 +NiN
i)dr2 + 2Nidrdx

i + γijdx
idxj , (4.2)

7We emphasize that, contrary to what is often claimed, the Gibbons-Hawking term does not render the variational
problem well posed in a non-compact manifold. It does so in a compact space, but in a non-compact manifold
additional boundary terms are required [21, 17].
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where i, j = 1, . . . , d. The metric gµν is therefore replaced in the Hamiltonian description by the
three fields {N,Ni, γij} on Σr. Moreover, the curvature tensors of the metric gµν can be expressed
in terms of the (intrinsic) curvature tensors of the hypersurfaces Σr and the extrinsic curvature,
Kij , describing the embedding of Σr ↪→M. The latter is defined as

Kij =
1

2
(Lng)ij =

1

2N
(γ̇ij −DiNj −DjNi) , (4.3)

where the dot ˙ denotes a derivative w.r.t. the radial coordinate r, Di denotes the covariant deriva-
tive w.r.t. the induced metric γij , and the unit normal to Σr, n

µ, is given by nµ =
(
1/N,−N i/N

)
.

Using the expressions for the inverse metric and the Christoffel symbols given in appendix A one
finds that the Ricci scalar takes the form

R[g] = R[γ] +K2 −KijK
ij +∇µζµ, (4.4)

where R[γ] is the Ricci scalar of the induced metric γij , K = γijKij denotes the trace of the
extrinsic curvature, and ζµ = −2Knµ + 2nρ∇ρnµ. From the identities in appendix A follows that
ζr = −2K/N and, hence, the Gibbons-Hawking term in (4.1) precisely cancels the total derivative
term in Ricci curvature (4.4). This allows us to write the action as an integral over a radial
Lagrangian as

S =

∫
drL, (4.5)

where

L = − 1

2κ2

∫
Σr

ddx
√
γN

(
R[γ] +K2 −Ki

jK
j
i −

1

2N2

(
ϕ̇−N i∂iϕ

)2 − 1

2
γij∂iϕ∂jϕ− V (ϕ)

)
. (4.6)

Note that, as we anticipated earlier, the Gibbons-Hawking term is required for the radial Hamil-
tonian formulation of the bulk dynamics. This observation can be utilized in order to derive the
correct Gibbons-Hawking term for general bulk Lagrangians, such as, for example, that describing
a scalar field conformally coupled to Einstein-Hilbert gravity [23].

From the radial Lagrangian (4.6) we read off the canonical momenta conjugate to the induced
metric γij and the scalar ϕ

πij =
δL

δγ̇ij
= − 1

2κ2

√
γ(Kγij −Kij), (4.7a)

πϕ =
δL

δϕ̇
=

1

2κ2

√
γ N−1

(
ϕ̇−N i∂iϕ

)
. (4.7b)

However, the Lagrangian (4.6) does not depend on the radial derivatives (generalized velocities),
Ṅ and Ṅi, of the shift function and lapse vector and so their conjugate momenta vanish identi-
cally. This means that the lapse function and the shift vector are not dynamical fields, but rather
Lagrange multipliers, whose equations of motion lead to constraints. The separation of variables
into dynamical fields and Lagrange multipliers through the ADM decomposition (4.2) is one of the
main advantages of the Hamiltonian formulation of the bulk dynamics.

The Legendre transform of the Lagrangian (4.6) gives the Hamiltonian

H =

∫
Σr

ddx
(
πij γ̇ij + πϕϕ̇

)
− L =

∫
Σr

ddx
(
NH+NiHi

)
, (4.8)
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where

H = 2κ2γ−
1
2

(
πijπ

j
i −

1

d− 1
π2 +

1

2
π2
ϕ

)
+

1

2κ2

√
γ

(
R[γ]− 1

2
∂iϕ∂

iϕ− V (ϕ)

)
, (4.9a)

Hi = −2Djπ
ij + πϕ∂

iϕ. (4.9b)

It follows that Hamilton’s equations for the Lagrange multipliers N and Ni impose the constraints

H = Hi = 0, (4.10)

and, hence, the Hamiltonian vanishes identically on the constraint surface. This is a direct conse-
quence of the diffeomorphism invariance of the bulk theory [24]. In particular, the constraintsH = 0
and Hi = 0 are first class constraints that, through the Poisson bracket, generate diffeomorphisms
along the radial direction and along Σr, respectively.

4.1 Hamilton-Jacobi formalism

From the expressions (4.8) and (4.9) we observe that the Hamiltonian does not depend explicitly
on the radial coordinate r, but only through the induced fields on Σr. This is a consequence of the
diffeomorphism invariance of the action (4.1) and it implies that the HJ equation takes the form

H = 0, (4.11)

which is equivalent to the two constraints (4.10), where the canonical momenta are expressed as
gradients of Hamilton’s principal function S (see appendix B)

πij =
δS
δγij

, πϕ =
δS
δϕ
. (4.12)

This form of the canonical momenta turns the constraints (4.10) into functional partial differential
equations for S. The momentum constraint, Hi = 0, implies that S[γ, ϕ] is invariant with respect
to diffeomorphims on the radial slice Σr. The Hamiltonian constraint, H = 0, takes the form

2κ2

√
γ

((
γikγjl −

1

d− 1
γijγkl

)
δS
δγij

δS
δγkl

+
1

2

(
δS
δϕ

)2
)

+

√
γ

2κ2

(
R[γ]− 1

2
∂iϕ∂

iϕ− V
)

= 0, (4.13)

and dictates the radial evolution of the induced fields on Σr.
As is reviewed in appendix B, a solution S[γ, ϕ] of the HJ equation leads to a solution of Hamil-

ton’s equations, and hence of the second order equations of motion. In particular, given a solution
S[γ, ϕ] of the HJ equation, equating the expressions (4.7) and (4.12) for the canonical momenta
(this corresponds to the first of Hamilton’s equations) leads to the first order flow equations

γ̇ij = 4κ2

(
γikγjl −

1

d− 1
γklγij

)
1
√
γ

δS
δγkl

, (4.14a)

ϕ̇ =
2κ2

√
γ

δS
δϕ
. (4.14b)

Integrating these first order equations one obtains the corresponding solution of the second order
equations of motion. Crucially, to determine the most general solution of the equations of motion
one need not find the most general solution of the HJ equation. The HJ equation is a (functional)
partial differential equation and so its general solution contains arbitrary integration functions of

17



the induced fields. However, the general solution of the equations of motion is parameterized by
2n integration constants,8 where n is the number of generalized coordinates, i.e. of induced fields
on Σr. The general solution of the equations of motion, therefore, can be obtained from a complete
integral of the HJ equation, which is a principal function S[γ, ϕ] containing n integration constants
(functions of the transverse coordinates only) [24]. Another n integration constants are obtained
by integrating the first order equations (4.14), which leads to a solution of the equations of motion
with 2n integration constants, i.e. the general solution.

Another important aspect of HJ theory reviewed in appendix B is that the regularized action,
defined as the on-shell action evaluated with the radial cut-off Σr, i.e.

Sreg[γ(r, x), ϕ(r, x)] =

∫ r

dr′ L|on−shell , (4.15)

is naturally a functional of the induced fields γij and ϕ on Σr and satisfies the HJ equation (4.13).
If the regularized action is evaluated on the general solution of the equations of motion, then Sreg

contains n integration constants and so it corresponds to a complete integral of the HJ equation.
If, however, Sreg is evaluated on solutions of the equations of motion that satisfy certain conditions
in the deep interior ofM, such as regularity conditions, then it will generically contain less than n
integration constants and so it will not correspond to a complete integral of the HJ equation.

Recapitulating the last two paragraphs, we have seen that the 2n integration constants pa-
rameterizing the general solution of the equations of motion are divided into two distinct sets of
integration constants in the HJ formalism: n integration constants parameterize a complete integral
of the HJ equation, while the remaining n arise as integration constants of the first order equations
(4.14). As we shall see later, the integration constants parameterizing a complete integral of the
HJ equation correspond generically to the normalizable modes of the asymptotic solutions of the
equations of motion, while the integration constants coming from the flow equations correspond to
the non-normalizable modes.9 Moreover, we have argued that the regularized action (4.15), evalu-
ated on the general solution of the equations of motion gives rise to a complete integral of the HJ
equation. Combining these two facts leads to an observation that is fundamental to holographic
renormalization and its relation to HJ theory. In order for a theory to be (holographically) renor-
malizable, the near-boundary divergences of the regularized action (4.15) must be the same for all
solutions of the equations of motion and should not depend on the details of the solutions in the
deep interior of M. This means that the near-boundary divergences of any complete integral of
the HJ equation must be the same, and hence independent of the n integration constants param-
eterizing a complete integral of the HJ equation. We therefore arrive at the following definition:

Definition 4.1 (Holographic renormalizability)
A gravity theory in a non-compact manifold that admits a radial Hamiltonian description is holo-
graphically renormalizable if:

(i) The near boundary divergences of any complete integral of the radial HJ equation are the
same, so the difference between any two complete integrals is free of divergences.

8In order to distinguish them from arbitrary integration functions of the HJ partial differential equation, we refer
to arbitrary functions of the transverse coordinates arising from the integration of the radial equations of motion as
“integration constants”.

9Since under certain conditions both modes can be normalizable, more generally the distinction is between asymp-
totically subleading and dominant modes, respectively.
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(ii) The common divergent terms of all complete integrals are local functionals of the induced
fields on the radial cut-off Σr, i.e. analytic functions of the induced fields and polynomial in
transverse derivatives.

The first of these conditions is equivalent with the existence of a well defined symplectic space of
asymptotic solutions of the equations of motion and it is required in order to render the variational
problem in M well posed [21, 17]. The second condition, however, is necessary only due to the
holographic interpretation of the near boundary divergences of the regularized action as the UV
divergences of the generating functional of a local quantum field theory. As is discussed in [17], a
free scalar field in Rd+1 is an example of a system that satisfies condition (i), but not (ii). In cases
when condition (i) is not met, there are two possibilities for making progress. One option is to
treat the mode(s) that causes condition (i) to be violated perturbatively, and proceed as one would
in conformal perturbation theory in the presence of an irrelevant operator. This approach was
discussed in general in [25, 26] and explicit examples can be found in [27, 28, 29, 30, 31, 32]. Such
an analysis is often sufficient, but it is also possible to treat the modes that violate condition (i) non-
perturbatively. This requires constructing a well-defined symplectic space of asymptotic solutions of
the equations of motion and generically involves some rearrangement of the bulk degrees of freedom,
such as a Kaluza-Klein reduction. This approach, which is discussed in [17], is the holographic dual
of following the RG flow in the presence of the irrelevant operator in reverse until a new UV
“fixed point” is found. The new “fixed point” in this case is defined in terms of the symplectic
space of asymptotic solutions of the bulk equation of motion, and almost in all cases it involves
asymptotically non-AdS backgrounds.

Assuming that both conditions of Definition 4.1 hold, as we will assume from now on, the UV
divergences of any complete integral of the HJ equation, and hence of the regularized action, can
be removed by adding the negative of the divergent part of any solution of the HJ equation as a
boundary term in the original action (4.1). Namely, we define the counterterms as

Sct = −Slocal, (4.16)

where Slocal is the divergent part of any complete integral of the HJ equation, which, by condition
(ii) of the above definition, is a local functional of the induced fields on the radial slice Σr. In the
next section we will give a precise definition of Slocal, and discuss procedures for systematically
determining these terms by solving the HJ equation. Before we turn to the systematic construction
of Slocal, however, we should emphasize one last important point. Although the local and divergent
part of the HJ solution is unique, the above discussion suggests that it is possible to add further
finite and local boundary terms to the bulk action (4.1), corresponding to (a very special choice
of) the integration constants of a complete integral of the HJ equation. More generally, therefore,
the counterterms will be defined as

Sct = − (Slocal + Sscheme) , (4.17)

where Sscheme denotes these extra finite terms, which we will discuss in more detail in the next
sections. These terms, an example of which is the term proportional to ξ in (3.25), do not can-
cel divergences, but they correspond to choosing a renormalization scheme [8]. Once the local
counterterms, Sct, have been determined, the renormalized action on the radial cut-off is given by

Sren := Sreg + Sct =

∫
ddx

(
γijΠ

ij + ϕΠϕ

)
, (4.18)

where the renormalized canonical momenta Πij and Πϕ are arbitrary functions that correspond to
the integration constants parameterizing an asymptotic complete integral of the HJ equation. As
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we shall see explicitly later, the holographic dictionary relates Πij and Πϕ with the renormalized
one-point functions of the dual operators.

5 Recursive solution of the Hamilton-Jacobi equation

The main task in carrying out the procedure of holographic renormalization is determining the
local functional Slocal, as well as the asymptotic expansions for the induced fields on Σr. There
is a number of methods to obtain these, differing in generality and efficiency. The approach of
[4, 8, 9, 10] does not rely on the HJ equation and its first objective is to obtain the asymptotic
expansions for the induced fields by solving asymptotically the second order equations of motion.
Evaluating the regularized action on these asymptotic solutions and then inverting the asymptotic
expansions in order to express the result in terms of induced fields on the cut-off Σr leads to
an explicit expression for Slocal. This method is general but it is unnecessarily complicated. In
particular, as we shall see, it is much more efficient to first obtain Slocal by solving the HJ equation,
and only then derive the asymptotic expansions of the induced fields by integrating the first order
equations (4.14), instead of the second order equations. Moreover, deriving the holographic Ward
identities is much simpler in the radial Hamiltonian language since they follow directly from the
first class constraints (4.10).

The method of [6, 11] does use the HJ equation to obtain Slocal, but it does so by postulating an
ansatz consisting of all possible local and covariant terms that can potentially contribute to the UV
divergences with arbitrary coefficients. Inserting this ansatz in the HJ equation leads to equations
for the coefficients that can be solved to determine Slocal. For simple cases this approach is practical
since the possible terms in Slocal can be easily guessed. However, this method becomes impractical
for more complicated systems where Slocal contains more than a couple of terms, or when it is not
easy to guess all terms (e.g. for asymptotically Lifshitz backgrounds). In particular, if n is the
number of independent terms in the ansatz for Slocal, the number of equations for the arbitrary
coefficients in the ansatz one obtains from the HJ equation is generically of order n(n+1)/2, which
grows much larger than n very fast. The system of equations determining the coefficients in the
ansatz is therefore overdetermined, but all equations need to be checked to ensure that the solution
is consistent.

A systematic algorithm for solving the HJ equation recursively, without relying on an ansatz,
was developed in [13]. This method is based on a formal expansion of the principal function S
in eigenfunctions of the dilatation operator of the dual theory at the UV, and can be applied to
any background that possesses some kind of asymptotic scaling symmetry. Besides asymptoti-
cally locally AdS backgrounds, this includes backgrounds with non-relativistic Lifshitz symmetry
[33, 34]. This method was generalized to relativistic backgrounds that do not necessarily possess
an asymptotic scaling symmetry in [35], while a further generalization to include non-relativistic
backgrounds was carried out in [36, 31]. This latter generalization involves an expansion of S in si-
multaneous eigenfunctions of two commuting operators. However, here we will focus on the simpler
cases discussed in [13] and [35], which involve an expansion in eigenfunctions of a single operator.

The initial steps in the recursive algorithms of [13] and [35] are common, and they just rely
on the fact that we seek a solution S of the HJ equation in the form of a covariant expansion in
eigenfunctions of a –yet unspecified– functional operator �. Namely, we formally write

S = S(α0) + S(α1) + S(α2) + · · · , (5.1)

where each term is an eigenfunction of �, i.e.

�S(αk) = λkS(αk), (5.2)
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with an eigenvalue λk. αk denotes a convenient label that counts the order of the expansion. In
order to obtain a recursive algorithm for determining S(αk) it is necessary to also introduce a density
L such that

S =

∫
Σr

ddxL[γ, ϕ]. (5.3)

We then have
L = L(α0) + L(α1) + L(α2) + · · · , (5.4)

where S(αk) =
∫

Σr
ddxL(αk). Note that the densities L(αk) are only defined up to total derivative

terms and they are not necessarily eigenfunctions of the operator �. They are egenfunctions up to
total derivatives.

An important identity that is crucial in the construction of the recursion algorithm follows from
the expressions (4.12) for the canonical momenta. Namely, for arbitrary variations we have

πijδγij + πϕδϕ = δL+ ∂iv
i(δγ, δϕ), (5.5)

for some vector field vi(δγ, δϕ). Specializing this to the operator � gives

πij(αk)�γij + πϕ(αk)�ϕ = �L(αk) + ∂iv
i
(αk)(�γ, �ϕ) = λkL(αk) + ∂iṽ

i
(αk)(�γ, �ϕ), (5.6)

where

πij(αk) =
δS(αk)

δγij
, πϕ(αk) =

δS(αk)

δϕ
, (5.7)

and ṽi(αk) is a vector field, generically different from vi(αk) due to the fact that the action of � on
L(αk) may involve a total derivative. Since L is defined only up to a total derivative, however,
without loss of generality we can choose the total derivatives in such a way so that

πij(αk)�γij + πϕ(αk)�ϕ = λkL(αk). (5.8)

This identity will be crucial in the construction of the recursion algorithm.

5.1 The induced metric expansion

To proceed with the recursion algorithm we need to pick a suitable operator �. The choice of such
an operator is not unique, but it has to satisfy certain consistency criteria. Here we will discuss
two specific choices. The first one is the operator

δγ =

∫
2γij

δ

δγij
, (5.9)

which was introduced in [35]. The covariant expansion in eigenfunctions of this operator treats the
scalar field non-perturbatively. In particular the resulting asymptotic solution of the HJ equation is
expressed in terms of a generic scalar potential V (ϕ), without the need to explicitly specify V (ϕ).
As a result, this expansion of the solution of principal function S is valid even for (relativistic)
asymptotically non-AdS backgrounds, such as non-conformal branes [37].

It is easy to see that the covariant expansion in eigenfunctions of the operator (5.9) is a derivative
expansion.10 Choosing the label αk = 2k to count derivatives, the corresponding eigenvalue is

10For the gravity-scalar system the expansion in eigenfunctions of (5.9) is indeed a derivative expansion. However,
in general this is not the case. A counterexample is a Maxwell field.
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λk = d− 2k, where d is the contribution of the volume element. The zero order solution, therefore
takes the form

S(0) =
1

κ2

∫
Σr

ddx
√
γU(ϕ), (5.10)

for some “superpotential” U(ϕ). Inserting this ansatz into the Hamiltonian constraint we find that
U(ϕ) satisfies the equation

2(U ′)2 − d

d− 1
U2 − V (ϕ) = 0. (5.11)

As for the full HJ equation, we only need to obtain an asymptotic solution of this equation, around
the value of ϕ near the boundary. As we have emphasized already, the recursive algorithm for
solving the HJ equation we are describing here applies equally to asymptotically AdS and non-
AdS backgrounds. The form of the scalar potential, therefore, is largely unrestricted, and we will
keep both V (ϕ) and U(ϕ) general in the subsequent discussion. However, before we proceed it is
instructive to have a closer look at the explicit form of V (ϕ) and U(ϕ) in the case of asymptotically
AdS backgrounds.

In order for the theory (4.1) to admit an AdS solution, corresponding to ϕ = 0, the scalar
potential must admit a Taylor expansion of the form

V (ϕ) = −d(d− 1)

`2
+

1

2
m2ϕ2 + · · · , (5.12)

where ` is the AdS radius of curvature and the scalar mass must satisfy the Breitenlohner-Freedman
(BF) bound [38]

m2`2 ≥ −(d/2)2, (5.13)

in order for the AdS vacuum to be stable with respect to scalar perturbations. Moreover, the mass
is related to the dimension ∆ of the dual operator through the quadratic equation

m2`2 = −∆(d−∆). (5.14)

Seeking a solution of (5.11) in the form of a Taylor expansion in ϕ, one finds two distinct solutions
of the form11

U(ϕ) = −d− 1

`
− 1

4`
µϕ2 + · · · , (5.15)

where µ takes the two possible values ∆ or d−∆. However, only a solution of the form

U(ϕ) = −d− 1

`
− 1

4`
(d−∆)ϕ2 + · · · , (5.16)

can be used as a counterterm since only this solution removes the divergences from all possible
solutions involving a non-trivial scalar [39].

Given the superpotential U(ϕ) that determines the zero order solution in the covariant expansion
of the HJ equation, we insert the formal expansion in eigenfunctions of the operator (5.9) in the
HJ equation and match terms of equal eigenvalue using the identity (5.8), which leads to the linear
recursion equations

2U ′(ϕ)
δ

δϕ

∫
ddxL(2n) −

(
d− 2n

d− 1

)
U(ϕ)L(2n) = R(2n), n > 0, (5.17)

11The overall sign of U is determined by requiring that the first order equations (4.14) imply the correct leading
asymptotic behavior for the scalar, namely ϕ ∼ e−(d−∆)r. Moreover, when the scalar mass saturates the BF bound,
one of the two asymptotic solutions for U(ϕ) contains logarithms. We refer to [39] for the explicit form of the function
U(ϕ) in that case.
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where

R(2) = −
√
γ

2κ2

(
R[γ]− 1

2
∂iϕ∂

iϕ

)
, (5.18)

R(2n) = −2κ2

√
γ

n−1∑
m=1

(
π(2m)

i
jπ(2(n−m))

j
i −

1

d− 1
π(2m)π(2(n−m)) +

1

2
πϕ(2m)πϕ(2(n−m))

)
, n > 1.

Note that if U ′(ϕ) = 0, i.e. U(ϕ) is a constant, then these recursion equations become alge-
braic. When U ′(ϕ) 6= 0, these equations are first order linear inhomogeneous functional differential
equations. The general solution, therefore, is the sum of the homogeneous solution and a unique
inhomogeneous solution. The homogeneous solution takes the form

Lhom
(2n) = F (2n)[γ] exp

(
1

2

(
d− 2n

d− 1

)∫ ϕ dϕ̄

U ′(ϕ̄)
U(ϕ̄)

)
, (5.19)

where F (2n)[γ] is a local covariant functional of the induced metric of weight d−2n. It can be easily
shown that these homogeneous solutions contribute only to the finite part of the on-shell action,
and so we are not interested in them [35]. We are, therefore, only interested in the inhomogeneous
solution of (5.17), which formally takes the form

L(2n) =
1

2
e−(d−2n)A(ϕ)

∫ ϕ dϕ̄

U ′(ϕ̄)
e(d−2n)A(ϕ̄)R(2n)(ϕ̄), (5.20)

where

A = − 1

2(d− 1)

∫ ϕ dϕ̄

U ′(ϕ̄)
U(ϕ̄). (5.21)

If R(2n) does not involve derivatives of the scalar field with respect to the transverse coordinates,
then evaluating the integral (5.20) is straightforward since it reduces to an ordinary integral. When
R(2n) does contain derivatives of the scalar field, however, some care is required in evaluating this
integral. Table 1 in [35] provides general integration identities for up to and including four transverse
derivatives, in all possible tensor combinations. This allows one to determine L(2n) for n ≤ 2, which
suffices for d ≤ 4.

The recursive procedure to successively determine L(2n) proceeds as follows. For n = 1, R(2) is
given explicitly in (5.18) and so L(2) can be immediately obtained from (5.20). The result is given
in Table 2 of [35]. Having obtained the solution for L(2), the relations (5.7) give the corresponding
canonical momenta, which allow one to evaluate the next R(2n) using (5.18). Inserting this back
in (5.20) and performing the integral gives the next order solution for L(2n). For n = 2 the general
result is given in Table 3 of [35].

The order at which the recursive procedure stops depends on the leading asymptotic behavior
of the fields. For asymptotically locally AdS backgrounds the recursion stops at order n = [d/2], i.e.
the integer part of d/2, since higher order terms are UV finite and arbitrary integration constants,
parameterizing a complete integral of the HJ equation, enter in the solution. In that case, therefore,
the counterterms are defined as

Sct := −
[d/2]∑
n=0

S(2n). (5.22)

For even d, the last term in this sum gives rise to explicit cut-off dependence through a logarithmic
divergence. The way this arises in this approach is as follows. The recursive procedure described
above must be done keeping d as an arbitrary parameter. Denoting by 2k the final value of d, the
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recursion is carried out up to order n = k, where one finds that the solution L(2k) contains a factor
of 1/(d − 2k), which is singular when we set d to its integer value 2k. This singularity is then
removed by the replacement

1

d− 2k
→ ro, (5.23)

where ro is the radial cut-off [13, 35]. After this replacement one sets d = 2k in the countert-
erms, which now contain a term which explicitly depends on ro. This term is identified with the
holographic conformal anomaly [4].

5.2 Dilatation operator expansion

We next turn to the covariant expansion developed in [39], which is an expansion in eigenfunctions
of the dilatation operator

δD =

∫
ddx

(
2γij

δ

δγij
+ (∆− d)ϕ

δ

δϕ

)
, (5.24)

where ∆ is the conformal dimension of the scalar operator dual to ϕ. As we pointed out earlier, this
expansion is less general than the expansion in eigenfunctions of δγ that we just discussed, since it
is applicable only to backgrounds with an asymptotic scaling symmetry, but for such backgrounds
it is technically simpler than the induced metric expansion. For an application of this expansion
to backgrounds with asymptotic Lifshitz symmetry we refer the interested reader to [33, 34].

The dilatation operator (5.24) can be motivated as follows. Since the bulk theory is diffeomor-
phism invariant, the Hamiltonian does not explicitly depend on the radial coordinate r. It follows
that the solution S of the HJ equation also only depends on the radial coordinate through the
induced fields, i.e. S = S[γ, ϕ]. Hence, the radial derivative can be represented by the functional
operator

∂r =

∫
ddx

(
γ̇ij [γ, ϕ]

δ

δγij
+ ϕ̇[γ, ϕ]

δ

δϕ

)
. (5.25)

Using the leading asymptotic form of the induced fields appropriate for asymptotically locally AdS
backgrounds, namely (setting the AdS radius of curvature, `, to 1)

γij ∼ e2rg(0)ij(x), ϕ ∼ e−(d−∆)rϕ(0)(x), (5.26)

where g(0)ij(x) and ϕ(0)(x) are arbitrary sources, implies that

γ̇ij ∼ 2γij , ϕ̇ ∼ −(d−∆)ϕ. (5.27)

Inserting these expressions in the covariant representation (5.25) of the radial derivative we obtain

∂r ∼
∫
ddx

(
2γij

δ

δγij
+ (∆− d)ϕ

δ

δϕ

)
≡ δD, (5.28)

where δD is the dilatation operator. This operator is ideally suited for asymptotically locally AdS
backgrounds, but in order to construct the corresponding covariant expansion one must fix the
dimension ∆ from the beginning. Hence, contrary to the expansion in eigenfunctions of δγ , one
must repeat the whole procedure for every different value of ∆.
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As above, we start by writing the principal function as12

S =

∫
Σr

ddx
√
γL, (5.29)

and formally expand L[γ, ϕ] in an expansion in eigenfunctions of the dilatation operator as

L = L(0) + L(2) + · · ·+ L̃(d) log e−2r + L(d) + · · · , (5.30)

where
δDL(n) = −nL(n), ∀n < d, δDL̃(d) = −dL̃(d). (5.31)

A number of comments are in order here. Firstly, note that here we have defined L(n) as eigenfunc-
tions of δD, while earlier we only required S(αk) to be eigenfunctions of the operator �. This implied
that L(αk) is an eigenfunction of � up to a total derivative term. In order to derive (5.6), however,
we argued that, since L(αk) is defined only up to a total derivative, one can always choose the total
derivatives terms in L(αk) such that it is an eigenfunction of �. In (5.30) we have applied this argu-
ment already so that L(n) are eigenfunctions of δD. A second comment concerns the eigenvalue of
L(n) under δD, and the corresponding subscript labeling L(n). In general, these eigenvalues depend
on the value of the conformal dimension ∆ of the scalar operator and need not be integer. However,
the terms of weight 0 and d are universal and are always there. What changes depending on the
value of ∆ is the intermediate terms. Finally, notice that we have included the logarithmic term
already in the expansion (5.30), introducing explicit cut-off dependence. We could have proceeded
instead using dimensional regularization as in the expansion in eigenfunctions of δγ above, but it
is instructive to discuss this alternative argument as well.

In particular, the explicit cut-off dependence introduced in the expansion (5.30) implies that
the term L(d) transforms inhomogeneously under δD. In order to derive the action of the dilatation
operator on the coefficient L(d) we recall that the full on-shell action must not depend explicitly
on the radial coordinate r, as a consequence of the diffeomorphism invariance of the bulk action.
Hence, requiring that ∂r gives asymptotically the same result as δD we must have

∂r

(√
γ(L̃(d) log e−2r + L(d))

)
∼ δD

(√
γ(L̃(d) log e−2r + L(d))

)
, (5.32)

which determines, using δD
√
γ = d

√
γ, that

δDL(d) = −dL(d) − 2L̃(d). (5.33)

This transformation of the finite part of the on-shell action implies that L(d) cannot be a local

function of the fields γij and ϕ, unless L̃(d) vanishes identically. This is summarized in the following
lemma:

Lemma 5.1 If L̃(d) is not identically zero, then the transformation δDL(d) = −dL(d)−2L̃(d) implies
that L(d) cannot be a local functional of the induced fields γij and ϕ.

Proof:

What we need to show is that L(d) cannot be a polynomial in derivatives. Suppose L(d) is
a polynomial in derivatives. Since L(d) is scalar, derivatives must come in pairs and must be

12To keep in line with the original notation in [39], we define the density L without
√
γ here, in contrast to the

earlier definition (5.3).
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contracted with an inverse metric γij . It follows that every polynomial in derivatives can be
decomposed as a finite sum of eigenfunctions of the dilatation operator, namely,

L(d) = F(0) + F(1) + · · ·+ F(N), (5.34)

for some positive integer N , where δDF (n) = −nF (n). Hence,

δDL(d) = −
(
F(1) + 2F(2) + · · ·+NF(N)

)
= −d(F(0) + F(1) + · · ·+ F(N))− 2L̃(d). (5.35)

Identifying terms of equal dilatation weight then gives

F (n) = 0, n 6= d, 2L̃(d) = (n− d)F (n) = 0, n = d. (5.36)

This implies that L̃(d) = 0, contradicting the original hypothesis. �

In fact this is no accident. As we shall see, the term L(d) corresponds to the renormalized

on-shell action, while L̃(d) is the conformal anomaly. The fact that L̃(d) is the conformal anomaly
we will see more explicitly below when we derive the trace Ward identity. However, the fact that
L(d) corresponds to the renormalized on-shell action can be deduced directly from the dilatation

weight of the various terms in the covariant expansion. Note that L(n) with n < d, as well as L̃(d)

all lead to divergences as r → ∞. This is because L(n) ∼ e−nr as r → ∞ and
√
γ ∼ edr. We

therefore define the counterterms as

Sct := −
∫

Σr

ddx
√
γ
(
L(0) + L(2) + · · ·+ L̃(d) log e−2r

)
. (5.37)

It follows that the renormalized on-shell action on the radial cut-off is

Sren := Sreg + Sct =

∫
Σr

ddx
√
γL(d) + · · · , (5.38)

where the dots stand for terms of higher dilatation weight that vanish as r →∞. By construction,
Sren admits a finite limit as r →∞, namely

Ŝren := lim
r→∞

Sren = lim
r→∞

∫
Σr

ddx
√
γL(d). (5.39)

As we anticipated, the term L(d), which is a non-local function of the induced fields, determines
the renormalized on-shell action.

Let us now proceed to determine the divergent coefficients L(n) with n < d and L̃(d). Since the
canonical momenta are related to the on-shell action via the relations (4.12), it follows that the
momenta also admit an expansion of the form

πij =
δ

δγij

∫
Σr

ddx
√
γL =

√
γ
(
π(0)

ij + π(2)
ij + · · ·+ π̃(d)

ij log e−2r + π(d)
ij + · · ·

)
, (5.40a)

πϕ =
δ

δϕ

∫
Σr

ddx
√
γL =

√
γ(πϕ(d−∆) + . . .+ π̃ϕ(∆) log e−2r + πϕ(∆) + . . .). (5.40b)

Note that δDπ
i
j(n) = −nπij(n) and δDπ

ij
(n) = −(n + 2)πij(n). With these expansions at hand, we

are ready to develop the recursive algorithm. Before we discuss the general algorithm, however,
let us point out that the first two of the L(n) coefficients can be obtained easily, without relying
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on the algorithm. From the asymptotic relations (5.27) and the expressions (4.7) for the canonical
momenta we deduce that

πij ∼ − 1

2κ2
(d− 1)

√
γγij , πϕ ∼ −

1

κ2
(d−∆)

√
γϕ, (5.41)

and hence

π(0)
ij = − 1

2κ2
(d− 1)γij , πϕ(d−∆) = − 1

κ2
(d−∆)ϕ. (5.42)

Integrating π(0)
ij with respect to γij determines L(0), whereas integrating π(d−∆) with respect to

ϕ (assuming ∆ < d) determines L(2(d−∆)). Namely,

L(0) = − 1

κ2
(d− 1), L(2(d−∆)) = − 1

2κ2
(d−∆)ϕ2. (5.43)

As we shall see below, these results are reproduced by the general algorithm.
The first step in the algorithm it to relate the coefficients L(n) with n < d and L̃(d) to the

corresponding canonical momenta using the identity (5.8). Since

δDγij = 2γij , δDϕ = −(d−∆)ϕ, (5.44)

applied to the dilatation operator this identity reads

2πii − (d−∆)πϕϕ = δD (
√
γL) , (5.45)

or, inserting the expansions (5.30) and (5.40),

2
√
γ
(
π(0) + π(2) + · · ·+ π̃(d) log e−2r + π(d) + · · ·

)
−(d−∆)

√
γϕ(πϕ(d−∆) + . . .+ π̃ϕ(∆) log e−2r + πϕ(∆) + . . .) = (5.46)

√
γ
(
dL(0) + (d− 2)L(2) + · · ·+ 0 · L̃(d) log e−2r − 2L̃(d) + 0 · L(d) + . . .

)
.

In order to equate terms of the same dilatation weight, i.e. to obtain the exact analogue of (5.8),
we need to know the precise value of the scalar dimension ∆. However, this identity shows that
the coefficients L(n) of the on-shell action can always be expressed in terms of the coefficients in
the expansion of the canonical momenta.

As an example, we can use (5.46) to determine L(0). Provided ∆ < d, identifying terms of
dilatation weight zero gives

L(0) =
2

d
π(0) =

2

d

(
− 1

2κ2
d(d− 1)

)
= − 1

κ2
(d− 1), (5.47)

where we have used the trace of π(0)
ij given in (5.42) in the second equality. This is in agreement

with the result (5.43) we found above. Similarly we deduce that

L̃(d) = −π(d) +
1

2
(d−∆)ϕπϕ(∆). (5.48)

As we shall see shortly, this relation is in fact the trace Ward identity. The general algorithm using
the dilatation operator expansion can be summarized as follows:
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The algorithm:

1. The first step is to use the identity (5.46) to express L(n), for n < d, and L̃(d),
in terms of the canonical momenta by matching terms of equal dilatation weight.
Note that the on-shell action, L, depends only on the trace of πij .

2. The second step is to insert the expansions (5.40) into the Hamiltonian constraint
(4.9a) and match terms of equal dilatation weight. This gives an iterative rela-
tion for the trace π(n) and πϕ(∆−d+n) in terms of the momentum terms of lower
dilatation weight.

3. Having determined π(n) and πϕ(∆−d+n) at order n, we can use the relations we
found in the first step to determine L(n). The full momentum π(n)

ij - i.e. not
just its trace - is then obtained via the relations (5.7).

4. Steps 2 and 3 are iterated until all local terms are determined.

5.3 An example

It is instructive to work out the counterterms explicitly in a concrete example. To this end, let us
apply the dilatation operator expansion to asymptotically AdS gravity in five dimensions (d = 4)
coupled to a scalar field, ϕ, dual to an operator of conformal dimension ∆ = 3, and with a general
scalar potential. The action takes the form13

S =

∫
d5x
√
g

(
− 1

2κ2
R[g] +

1

2
gµν∂µϕ∂νϕ+ V (ϕ)

)
, (5.49)

where
V (ϕ) = κ−2V0 + κ−1V1ϕ+ V2ϕ

2 + κV3ϕ
3 + κ2V4ϕ

4 + · · · , (5.50)

with

V0 = Λ = −6, V1 = 0, V2 =
1

2
m2 = −3/2. (5.51)

Let us now implement step by step the algorithm we described above. The first step is to use
equation (5.46) to express all local terms of the expansion of the on-shell action, i.e. L(n), n < d,

and L̃(d), in terms of the canonical momenta by matching terms of equal dilatation weight. For the
system at hand, and dropping the total divergence term, (5.46) becomes

2
(
π(0) + π(1) + π(2) + π(3) + π̃(4) log e−2r + π(4) + · · ·

)
−ϕ(πϕ(1) + πϕ(2) + π̃ϕ(3) log e−2r + πϕ(3) + . . .) = (5.52)(

4L(0) + 3L(1) + 2L(2) + L(3) + 0 · L̃(4) log e−2r − 2L̃(4) + 0 · L(4) + . . .
)
. (5.53)

13Note that the scalar field here is rescaled by a factor of
√

2κ2 relative to the scalar in (4.1).
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Matching terms of equal dilatation weight we obtain

L(0) =
1

2
π(0) = −3/κ2,

L(1) =
2

3
π(1),

L(2) = π(2) −
1

2
ϕπϕ(1) = π(2) +

1

2
ϕ2,

L(3) = 2π(3) − ϕπϕ(2),

L̃(4) = −π(4) +
1

2
ϕπϕ(3), (5.54)

as well as the constraint on the momenta

π̃(4) −
1

2
ϕπ̃ϕ(3) = 0. (5.55)

Note that L(4) is not determined, but it does not contribute to the divergences of the on-shell
action. As we saw in (5.39), it is the renormalized part of the on-shell action. At this point we
have determined all divergent terms of the on-shell action in terms of the canonical momenta.

The second step is to insert the covariant expansions for the momenta into the Hamiltonian
constraint (4.9a), which in this case takes the form

H =
√
γ

{
1

2κ2
R[γ] + 2κ2γ−1

(
πijπij −

1

3
π2

)
+

1

2
γ−1(πϕ)2 − 1

2
γij∂iϕ∂jϕ− V (ϕ)

}
= 0. (5.56)

Inserting the covariant expansions for the momenta and equating terms of equal dilatation weight
we obtain

2κ2

(
π(0)

ijπ(0)ij −
1

3
π(0)

2

)
− κ−2V0 = 0,

4κ2

(
π(0)

ijπ(1)ij −
1

3
π(0)π(1)

)
− κ−1V1ϕ = 0,

1

2κ2
R[γ] + 2κ2

(
2π(0)

ijπ(2)ij + π(1)
ijπ(1)ij −

2

3
π(0)π(2) −

1

3
π(1)

2

)
+

1

2
(πϕ)2 − V2ϕ

2 = 0,

4κ2

(
π(0)

ijπ(3)ij + π(1)
ijπ(2)ij −

1

3
π(0)π(3) −

1

3
π(1)π(2)

)
+ πϕ(1)π

ϕ
(2) − κV3ϕ

3 = 0,

2κ2

(
2π(0)

ijπ(4)ij + 2π(1)
ijπ(3)ij + π(2)

ijπ(2)ij −
2

3
π(0)π(4) −

2

3
π(1)π(3) −

1

3
π(2)

2

)
+πϕ(1)π

ϕ
(3) +

1

2
(πϕ(2))

2 − 1

2
γij∂iϕ∂jϕ− κ2V4ϕ

4 = 0,

4κ2
(
π(0)

ij π̃(4)ij − π(0)π̃(4)

)
+ πϕ(1)π̃

ϕ
(3) = 0. (5.57)

The first of these equations is trivially satisfied, while the second equation determines π(1) = 0 and
hence from above L(1) = 0. Next we must use the third step in the algorithm, namely the relations

π(n)
ij =

1
√
γ

δ

δγij

∫
ddx
√
γL(n), π̃(d)

ij =
1
√
γ

δ

δγij

∫
ddx
√
γL̃(d). (5.58)

This allows us to determine the full momentum π(n)
ij from its trace π(n) for n < d. In particular,

we conclude π(1)
ij = 0. The third equation in (5.57) gives

π(2) −
1

4κ2
R[γ]− ϕ2, (5.59)
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and hence,

L(2) = − 1

4κ2
R[γ]− 1

2
ϕ2. (5.60)

It follows that

π(2)
ij =

1
√
γ

δ

δγij

∫
ddx
√
γL(2) =

1

4κ2

(
Rij − 1

2
Rγij

)
− 1

4
ϕ2γij . (5.61)

Continuing this recursive procedure we determine

L(3) = κV3ϕ
3,

L̃(4) =
1

16κ2

(
RijRij −

1

3
R2

)
− 1

24
Rϕ2 − 1

4
γij∂iϕ∂jϕ−

κ2

2

(
V4 −

9

2
V 2

3 +
1

6

)
ϕ4,

π(3)
ij =

κ

2
V3ϕ

3γij ,

πϕ(2) = 3κV3ϕ
2,

π̃ϕ(3) =
1

12
Rϕ+

1

2
�γϕ− 2κ2

(
V4 −

9

2
V 2

3 +
1

6

)
ϕ3,

π̃(4)
ij =

1

16κ2

[
−2RklRk

i
l
j +

1

3
DiDjR−�γR

ij +
2

3
RRij +

1

2
γij
(
RklRkl +

1

3
�γR−

1

3
R2

)]
+

1

24

(
Rij − 1

2
Rγij

)
ϕ2 − 1

24

(
DiDj − γij�γ

)
ϕ2 +

1

4
∂iϕ∂jϕ− 1

8
γij∂kϕ∂kϕ

−κ
2

4

(
V4 −

9

2
V 2

3 +
1

6

)
ϕ4γij . (5.62)

Note that these satisfy the identity

π̃(4) −
1

2
ϕπ̃ϕ(3) = 0, (5.63)

as required.

6 Renormalized one-point functions and Ward identities

We found above that the renormalized action (5.39) admits a finite limit, Ŝren, as r → ∞. The
AdS/CFT dictionary identifies this with the generating functional of renormalized connected cor-
relation functions in the dual quantum field theory. In particular, the first derivatives of the
renormalized action with respect to the sources correspond to the one-point functions of the dual
operators. This implies that we can identify the renormalized one-point functions with certain terms
in the covariant expansion of the canonical momenta in eigenfunctions of the dilatation operator.
Namely, we define

〈T ij〉ren = −2|γ|−1/2 δSren

δγij
= −2π(d)

ij , (6.1a)

〈O〉ren = |γ|−1/2 δSren

δϕ
= πϕ(∆). (6.1b)

Note that these expressions are evaluated on the cut-off, i.e. they are covariant expressions of the
induced metric and scalar field. Since these fields asymptotically behave as

γij ∼ e2rg(0)ij , ϕ ∼ e−(d−∆)rϕ(0), (6.2)
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and since Sren has a finite limit as r →∞, it follows that we must multiply these one-point functions
with a suitable factor of the radial coordinate to obtain finite values as r → ∞. In particular, we
define

〈T̂ ij〉ren := lim
r→∞

e(d+2)r〈T ij〉ren = −2|g(0)|−1/2 δŜren

δg(0)ij
= −2π̂(d)

ij ,

〈Ô〉ren := lim
r→∞

e∆r〈O〉ren = |g(0)|−1/2 δŜren

δϕ(0)
= π̂ϕ(∆).

(6.3)

Using these expressions for the renormalized one-point functions we can now derive the holo-
graphic Ward identities. Inserting the expansions (5.40) into the momentum constraint (4.9) and
matching terms of equal dilatation weight gives for the terms with weight d

− 2Djπ(d)
ij + πϕ(∆)∂

iϕ = 0. (6.4)

Rescaling this with the appropriate radial factor and taking the limit r → ∞ leads to the diffeo-
morphism Ward identity

D(0)j〈T̂ ij〉ren + 〈Ô〉ren∂
iϕ(0) = 0. (6.5)

Finally, in order to derive the trace Ward identity note that under an infinitesimal Weyl transfor-
mation the renormalized action transforms as

δσSren =

∫
Σr

√
γ(−2L̃(d))δσ + total derivative. (6.6)

This follows from the fact that such a transformation corresponds to the infinitesimal bulk diffeo-
morphism r → r + δσ(x). It follows that the conformal anomaly A is given by

A := 2L̃(d). (6.7)

To see that this is compatible with the trace Ward identity, recall that we have shown in (5.48)
that

− 2π(d) + (d−∆)ϕπϕ(∆) = 2L̃(d), (6.8)

which, using the identifications (6.3), becomes

〈T̂ ii 〉ren + (d−∆)ϕ(0)〈Ô〉ren = A. (6.9)

It should be emphasized that these Ward identities hold in the presence of arbitrary sources. This
has important implications. Namely, even if the conformal anomaly vanishes numerically on a
particular background where the sources are set to zero, the anomaly does contribute to some
n-point function because the nth derivative of the anomaly with respect to the sources will not
be zero even when evaluated at zero sources. The anomaly therefore is a genuine property of the
quantum field theory and affects the dynamics even in flat space.

7 Fefferman-Graham asymptotic expansions

Having obtained the asymptotic solution of the HJ equation in the form of a covariant expansion in
eigenfunctions of some suitable operator �, we can now use the first order flow equations (4.14) to
construct the asymptotic Fefferman-Graham expansions for the induced fields γij and ϕ. In order
to integrate these expansions, however, we must pick a specific example and a specific solution of
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the HJ equation. We will therefore demonstrate how this works in the example we worked out
above.

Inserting the expansions (5.40) in the flow equations (4.14) we get14

γ̇ij = 4κ2

(
γikγjl −

1

3
γklγij

)(
π(0)

ij + π(2)
ij + · · ·+ π̃(4)

ij log e−2r + π(4)
ij + · · ·

)
,

ϕ̇ = πϕ(1) + . . .+ π̃ϕ(3) log e−2r + πϕ(3) + . . . .

(7.1)

From the expressions (5.62) above we obtain

π(0)ij −
1

3
π(0)γij =

1

2κ2
γij ,

π(2)ij −
1

3
π(2)γij =

1

4κ2

(
Rij −

1

6
Rγij

)
+

1

12
ϕ2γij ,

π(3)ij −
1

3
π(3)γij = −κ

6
V3ϕ

3γij ,

π̃(4)ij −
1

3
π̃(4)γij =

1

16κ2

[
−2RklRkilj +

1

3
DiDjR−�γRij +

2

3
RRij +

1

2
γij

(
RklRkl +

1

3
�γR−

1

3
R2

)]
+

1

24

(
Rij −

5

6
Rγij

)
ϕ2 − 1

24
(DiDj − γij�γ)ϕ2 +

1

4
∂iϕ∂jϕ−

1

8
γij∂

kϕ∂kϕ

+
κ2

12

(
V4 −

9

2
V 2

3 +
1

6

)
ϕ4γij −

1

12
ϕ�γϕγij ,

πϕ(1) = −ϕ,
πϕ(2) = 3κV3ϕ

2,

π̃ϕ(3) =
1

12
Rϕ+

1

2
�γϕ− 2κ2

(
V4 −

9

2
V 2

3 +
1

6

)
ϕ3. (7.2)

Using these expressions we can integrate the flow equations (7.1) straightforwardly. There are two
ways to solve these equations order by order asymptotically as r → ∞. One way is to make an
explicit Fefferman-Graham ansatz for the asymptotic expansions for γij and ϕ and insert them in
the flow equations. This will result in algebraic equations for the coefficients. A more general way
that does not require prior knowledge of the form of the asymptotic expansion is expanding the
induced fields formally as

γij = γ
(0)
ij + γ

(1)
ij + γ

(2)
ij + γ

(3)
ij + · · · , ϕ = ϕ(0) + ϕ(1) + ϕ(2) + · · · , (7.3)

where each order is assumed to be asymptotically subleading relative to the previous one, but
without assuming a specific functional form. Inserting these expansions in the flow equations
results in a sequence of differential equations that can be solved order by order. To leading order
we get the homogeneous equations

γ̇
(0)
ij = 2γ

(0)
ij , ϕ̇(0) = −ϕ(0), (7.4)

and hence
γ

(0)
ij = e2rg(0)ij , ϕ(0) = e−rϕ(0), (7.5)

14Note one needs to adjust these for the different normalization of the scalar.
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where g(0)ij(x) and ϕ(0)(x) are arbitrary integration sources. At the next order for γij we still get
the same homogeneous equation

γ̇
(1)
ij = 2γ

(1)
ij . (7.6)

However, we have already introduced an arbitrary source at order 0 and, since γ
(1)
ij is asymptotically

subleading relative to γ
(0)
ij by the hypothesis, we must set γ

(1)
ij = 0. At the next order we obtain

the inhomogeneous equations

γ̇
(2)
ij = 2γ

(2)
ij +R[g(0)]ij −

1

6
R[g(0)]g(0)ij +

κ2

3
ϕ2

(0)g(0)ij ,

ϕ̇(1) = −ϕ(1) + 3κV3ϕ
2
(0)e
−2r. (7.7)

Discarding the homogeneous solutions again, the inhomogeneous solutions are

γ
(2)
ij = −1

2

(
Rij [g(0)]−

1

6
R[g(0)]g(0)ij +

κ2

3
ϕ2

(0)g(0)ij

)
,

ϕ(1) = −3κV3e
−2rϕ2

(0). (7.8)

At the next order for the metric we get

γ
(3)
ij =

8

9
κ3V3e

−rϕ3
(0)g(0)ij , (7.9)

while, using the following expansions of the momenta

π(2)ij −
1

3
π(2)γij =

1

4κ2

(
R[g(0)]ij −

1

6
R[g(0)]g(0)ij

)
+

1

12
ϕ2

(0)g(0)ij

+
1

6
ϕ(0)ϕ(1)γ

(0)
ij

+e−2r

[
1

4κ2

(
Rk(i[g(0)]γ

(2)
kj) −Ri

k
j
l[g(0)]γ

(2)
kl +D(0)(iD

k
(0)γ

(2)
kj)

−1

2

(
�(0)γ

(2)
ij + g(0)

klD(0)iD(0)jγ
(2)
kl

)
− 1

6
R[g(0)]γ

(2)
ij

−1

6
g(0)ij

(
−Rkl[g(0)]γ

(2)
kl +Dk

(0)D
l
(0)γ

(2)
kl − g

kl
(0)�(0)γ

(2)
kl

))]
+

1

12

([
(ϕ(1))2 + 2ϕ(0)ϕ(2)

]
γ

(0)
ij + (ϕ(0))2γ

(2)
ij

)
+O(e−3r),

π(3)ij −
1

3
π(3)γij = −κ

6
V3(ϕ(0))3γ

(0)
ij −

κ

2
V3(ϕ(0))2ϕ(1)γ

(0)
ij +O(e−3r),

πϕ(2) = 3κV3(ϕ(0))2 + 6κV3ϕ
(0)ϕ(1) +O(e−4r), (7.10)
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we obtain the next order equations

γ̇
(4)
ij = 2γ

(4)
ij

+(−2r)e−2r

{
1

16κ2

[
−2Rkl[g(0)]Rkilj [g(0)] +

1

3
D(0)iD(0)jR[g(0)]−�(0)Rij [g(0)] +

2

3
R[g(0)]Rij [g(0)]

+
1

2
g(0)ij

(
Rkl[g(0)]Rkl[g(0)] +

1

3
�(0)R[g(0)]−

1

3
R2[g(0)]

)]
+

1

24

(
Rij [g(0)]−

5

6
R[g(0)]g(0)ij

)
ϕ2

(0)

− 1

24

(
D(0)iD(0)j − g(0)ij�(0)

)
ϕ2

(0) +
1

4
∂iϕ(0)∂jϕ(0) −

1

8
g(0)ij∂

kϕ(0)∂kϕ(0)

+
κ2

12

(
V4 −

9

2
V 2

3 +
1

6

)
ϕ4

(0)g(0)ij +
1

6
ϕ(0)ϕ̃(2)g(0)ij −

1

12
ϕ(0)�(0)ϕ(0)g(0)ij

}
+e−2r

{
π̂(4)ij −

1

3
g(0)ij π̂(4) +

1

4κ2

(
Rk(i[g(0)]γ

(2)
kj) −Ri

k
j
l[g(0)]γ

(2)
kl +D(0)(iD

k
(0)γ

(2)
kj)

−1

2

(
�(0)γ

(2)
ij + g(0)

klD(0)iD(0)jγ
(2)
kl

)
− 1

6
R[g(0)]γ

(2)
ij

−1

6
g(0)ij

(
−Rkl[g(0)]γ

(2)
kl +Dk

(0)D
l
(0)γ

(2)
kl − g

kl
(0)�(0)γ

(2)
kl

))
+

1

12

([
9κ2V 2

3 ϕ
4
(0) + 2ϕ(0)ϕ̂(2)

]
g(0)ij + ϕ2

(0)γ
(2)
ij

)
+

3κ2

2
V 2

3 ϕ
4
(0)g(0)ij

}
, (7.11)

and

ϕ̇(2) = −ϕ(2)

+e−3r(−2r)

[
1

12
R[g(0)]ϕ(0) +

1

2
�(0)ϕ(0) − 2κ2

(
V4 −

9

2
V 2

3 +
1

6

)
ϕ3

(0)

]
+e−3r

(
π̂ϕ(3) − 18κ2V 2

3 ϕ
3
(0)

)
. (7.12)

The inhomogeneous solutions of these equations take the form

γ
(4)
ij = e−2r

(
−2rh(4)ij + g(4)ij

)
, ϕ(2) = e−3r

(
−2rϕ̃(2) + ϕ̂(2)

)
, (7.13)

where

h(4)ij = −κ2

{
1

16κ2

[
−2Rkl[g(0)]Rkilj [g(0)] +

1

3
D(0)iD(0)jR[g(0)]−�(0)Rij [g(0)] +

2

3
R[g(0)]Rij [g(0)]

+
1

2
g(0)ij

(
Rkl[g(0)]Rkl[g(0)] +

1

3
�(0)R[g(0)]−

1

3
R2[g(0)]

)]
+

1

24

(
Rij [g(0)]−

5

6
R[g(0)]g(0)ij

)
ϕ2

(0)

− 1

24

(
D(0)iD(0)j − g(0)ij�(0)

)
ϕ2

(0) +
1

4
∂iϕ(0)∂jϕ(0) −

1

8
g(0)ij∂

kϕ(0)∂kϕ(0)

+
κ2

12

(
V4 −

9

2
V 2

3 +
1

6

)
ϕ4

(0)g(0)ij +
1

6
ϕ(0)ϕ̃(2)g(0)ij −

1

12
ϕ(0)�(0)ϕ(0)g(0)ij

}
, (7.14)

g(4)ij = −κ2

{
π̂(4)ij −

1

3
g(0)ij π̂(4) +

1

4κ2

(
Rk(i[g(0)]γ

(2)
kj) −Ri

k
j
l[g(0)]γ

(2)
kl +D(0)(iD

k
(0)γ

(2)
kj)

−1

2

(
�(0)γ

(2)
ij + g(0)

klD(0)iD(0)jγ
(2)
kl

)
− 1

6
R[g(0)]γ

(2)
ij

−1

6
g(0)ij

(
−Rkl[g(0)]γ

(2)
kl +Dk

(0)D
l
(0)γ

(2)
kl − g

kl
(0)�(0)γ

(2)
kl

))
+

1

12

([
9κ2V 2

3 ϕ
4
(0) + 2ϕ(0)ϕ̂(2)

]
g(0)ij + ϕ2

(0)γ
(2)
ij

)
+

3κ2

2
V 2

3 ϕ
4
(0)g(0)ij

}
− 1

2
h(4)ij ,(7.15)
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ϕ̃(2) = −1

3

[
1

12
R[g(0)]ϕ(0) +

1

2
�(0)ϕ(0) − 2κ2

(
V4 −

9

2
V 2

3 +
1

6

)
ϕ3

(0)

]
, (7.16)

and

ϕ̂(2) = −1

3

(
π̂ϕ(3) − 18κ2V 2

3 ϕ
3
(0) −

2

3
ϕ̃(2)

)
. (7.17)

This completes the computation since the coefficients π̂(4)ij and π̂(3) have been identified above
with the renormalized one-point functions. In particular, taking the trace of the expression for
g(4)ij relates the trace of π̂(4)ij with the trace of g(4)ij . Inserting this back in the expression for
g(4)ij one obtains the renormalized stress tensor π̂(4)ij in terms of g(4)ij , its trace, and lower order
terms that are explicitly expressed in terms of the sources.
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Appendix

A ADM identities

A few identities relating to the ADM decomposition (4.2) of the metric are collected in this ap-
pendix. In particular, in matrix form, the metric (4.2) and its inverse are

g =

(
N2 +NkN

k Ni

Ni γij

)
, g−1 =

(
1/N2 −N i/N2

−N i/N2 γij +N iN j/N2

)
, (A.1)

where the indices i = 1, . . . , d are raised and lowered respectively with γij and γij . Moreover, the
Christoffel symbols Γρµν [g] can be decomposed into the following components in terms of N , Ni and
γij :

Γrrr = N−1
(
Ṅ +N i∂iN −N iN jKij

)
,

Γrri = N−1
(
∂iN −N jKij

)
,

Γrij = −N−1Kij ,

Γirr = −N−1N iṄ −NDiN −N−1N iN j∂jN + Ṅ i +N jDjN
i + 2NN jKi

j +N−1N iNkN lKkl,

Γirj = −N−1N i∂jN +DjN
i +N−1N iNkKkj +NKi

j ,

Γkij = Γkij [γ] +N−1NkKij . (A.2)

B Hamilton-Jacobi primer

In this appendix we collect a few essential facts about HJ theory in classical mechanics. For an
in-depth account of HJ theory we refer the interested reader to [24, 40]. A more abstract exposition
can be found in [41].
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Let Q be the configuration space of a point particle described by the action15

S =

∫ t

dt′L(q, q̇; t), (B.1)

where qα are coordinates on Q. In the Hamiltonian formalism the generalized coordinates qα and
the canonical momenta

pα =
∂L

∂q̇α
, (B.2)

are independent variables parameterizing the phase space, which is isomorphic to the cotangent
bundle T ∗Q of the configuration space Q. The cotangent bundle is a symplectic manifold with a
canonical closed 2-form (symplectic form)

Ω = dpα ∧ dqα. (B.3)

Since Ω is closed, it can be locally expressed as

Ω = dΘ, (B.4)

where
Θ = pαdq

α, (B.5)

is known as the canonical 1-form, or pre-symplectic form. The Hamiltonian, given by the Legendre
transform of the Lagrangian,

H(p, q; t) = pαq̇
α − L, (B.6)

is a mapH : T ∗Q −→ R and governs the time evolution of the dynamical system through Hamilton’s
equations

q̇α =
∂H

∂pα
, ṗα = − ∂H

∂qα
. (B.7)

At this point it is instructive to distinguish two cases, depending on whether the Hamiltonian
depends explicitly on time t or not.

Time-independent systems

A section, s, of the cotangent bundle is a map s : Q −→ T ∗Q, providing a 1-form over each
point q ∈ Q. A closed section of T ∗Q is locally exact and so it can be written as s = dW for
some function W(q) on Q. Under the isomorphism between phase space and the cotangent
bundle this means that locally

pα =
∂W(q)

∂qα
. (B.8)

Moreover,
Θ ◦ s = dW, Ω ◦ s = 0. (B.9)

These results hold for any closed section s of T ∗Q. The HJ theorem relates certain closed
sections, s, of the cotangent bundle to solutions of Hamilton’s equations (B.7). In particular,

d (H ◦ s) =

(
∂H

∂qα
+

∂2W
∂qβ∂qα

∂H

∂pβ

)
dqα

=

(
∂H

∂qα
+ ṗα

)
dqα +

∂2W
∂qβ∂qα

(
∂H

∂pβ
− q̇β

)
dqα, (B.10)

which implies that the following two statements are equivalent (see Theorem 2.1 in [42]):

15In this appendix a dot ˙ denotes a derivative with respect to time t.
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(i) If σ : R → Q satisfies the first of Hamilton’s equations in (B.7), then s ◦ σ satisfies the
second Hamilton equation.

(ii) d (H ◦ s) = 0.

Hence, a closed section s = dW of the cotangent bundle that satisfies the (time-independent)
HJ equation

H ◦ s = H

(
∂W
∂qα

, qβ
)

= E, (B.11)

where E is some constant, provides a solution of Hamilton’s equations.

Time-dependent systems

In order to accommodate systems with a Hamiltonian that explicitly depends on time we
extend the configuration space by including time as a generalized coordinate so that Qext =
Q × R is now the extended configuration space. Phase space is accordingly extended by
including −H as the canonical momentum conjugate to t. This extended phase space is
isomorphic to the cotangent bundle T ∗Qext, which carries the canonical symplectic form

Ωext = dΘext = dpα ∧ dqα − dH ∧ dt. (B.12)

Moreover, to Hamilton’s equations we can now append the equation

Ḣ =
∂H

∂t
. (B.13)

A closed section of T ∗Qext can be locally written as s = dS for some function on Qext, and
consequently

pα =
∂S(q; t)

∂qα
, −H =

∂S(q; t)

∂t
, (B.14)

which imply that
Θext ◦ s = dS, Ωext ◦ s = 0. (B.15)

It follows that

0 = d

(
H ◦ s+

∂S
∂t

)
=

[
∂H

∂qα
+ q̇β

∂2S
∂qβ∂qα

+
∂2S
∂t∂qα

+
∂2S

∂qβ∂qα

(
∂H

∂pβ
− q̇β

)]
dqα

+

[
∂H

∂t
+ q̇α

∂2S
∂t∂qα

+
∂2S
∂t2

+
∂2S
∂qβ∂t

(
∂H

∂pβ
− q̇β

)]
dt

=

[
∂H

∂qα
+ ṗα +

∂2S
∂qβ∂qα

(
∂H

∂pβ
− q̇β

)]
dqα

+

[
∂H

∂t
− Ḣ +

∂2S
∂qβ∂t

(
∂H

∂pβ
− q̇β

)]
dt, (B.16)

which allows us to generalize the HJ theorem to time-dependent Hamiltonians. Namely, a
closed section s = dS of T ∗Qext that satisfies the HJ equation

H ◦ s+
∂S
∂t

= H

(
∂S
∂qα

, qβ; t

)
+
∂S
∂t

= 0, (B.17)

provides a solution to Hamilton’s equations.
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A few comments are in order at this point. Firstly, note that the HJ formalism for time-
dependent Hamiltonians reduces to that for time-independent Hamiltonians upon setting

S(q; t) =W(q)− Et. (B.18)

The function S(q; t) is known as Hamilton’s principal function, while W(q) is called the charac-
teristic function. Secondly, the expressions (4.12) for the canonical momenta and the Hamiltonian
should be familiar from quantum mechanics. Indeed, Hamilton’s principal function S(q; t) is related
to the WKB wavefunction by

ψWKB(q; t) ∼ eiS(q;t)/~, (B.19)

and so the expressions (4.12) are respectively the coordinate representation of the momentum
operator and the identification of the Hamiltonian with the time evolution operator.

Finally, Hamilton’s principal function S(q; t), defined as a solution of the HJ equation (B.17),
is closely related to the on-shell action. To elucidate the relation, consider the action (B.1) on the
semi-infinite line (−∞, t]. A general variation of the action (B.1) gives

δS =

∫ t

dt′
(
∂L

∂qα
δqα +

∂L

∂q̇α
δq̇α
)

=

∫ t

dt′
(
∂L

∂qα
− d

dt′

(
∂L

∂q̇α

))
δq +

∂L

∂q̇α
δqα
∣∣∣∣
t

. (B.20)

To ensure that the variational principle implies the equations of motion we need to impose the
boundary condition δqα = 0 at t′ = t. The on-shell action therefore becomes a function of the fixed
but arbitrary boundary condition qα(t), namely Son−shell(q; t), while

pα|t =
∂L

∂q̇α

∣∣∣∣
t

=
∂Son−shell

∂qα
. (B.21)

Moreover,

Ṡon−shell = L =
∂Son−shell

∂t
+
∂Son−shell

∂qα
q̇α, (B.22)

and so Son−shell satisfies the HJ equation (B.17):

0 = pαq̇
α − L+

∂Son−shell

∂t
= H

(
∂Son−shell

∂qα
, qβ; t

)
+
∂Son−shell

∂t
. (B.23)

We therefore conclude that the on-shell action as a function of the arbitrary but fixed boundary
condition q(t), Son−shell(q; t), can be identified with Hamilton’s principal function S(q; t). The fact
that the on-shell action is a solution of the HJ equation is the fundamental reason for the critical
role that HJ theory has in holographic renormalization.
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