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HOLOGRAPHIC RENORMALIZATION
AND ENTANGLEMENT ENTROPY

Chanyong Park (APCTP)
@ Lecture series on

1. Beyond Landau Fermi liquid and BCS_ —
superconductivity near quantum criticality
2. Real-space re@rmalizofion group approach
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Lecture 1. Holographic renormalization

- Brief review on the AdS/CFT correspondence

- Renormalization schemes of the dual gravity

Lecture 2. Holographic entanglement entropy

- Central charge of the dual CFT




\/ Motivakion

~—

N’
One of the wost remarkable successes in the ADAS/CFT correspondence is the microscopic

derivation of the Bekenstein-Hawking entropy for a BPS black hole
A

BRE

This idea relates the gravitational entropy to the degeneracy of the dual quantum fleld

SBH

Eheorv wikh ks microscopic descri.p?:i.om.

On the other hand, there exists a different kind of entropy called the entanglement
entropy i quantum wmechanical systems which measures the entanglement between

quan&um skakbes,

Ryu and Takayanagi Proposed the formula following the black hole entropy

_ Area of v ~’

4G

S

The goal of this work is to fiqure out the entanglement entropy in the strong coupling \/

regime following the AAS/CFT correspondence. | J Q, /
— P\



\/32\/52«: of the holog m’phéc entanglement enéro’py

& The entanglement em&ropj measures

~ how closely and quantumly a given wave function is entangled.

Definitlion of EE (enfanglement entropy)

- Divide a guantum system tnto two parts, A and B,

B @- OA 3

H =H QH, .

Il
Q)
oy,

- Reduced density matrix of the subsystem A : pPB = 1T A ptot
- The entanglement entropy (EE)

Sp = —Ir ppplog pp
which is proportional to the area of the entangling syrface ( 0A)
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Sp describes the quantum entanglement detected by an observer who is only

accessible to the subsystem B and can not receive any signal from A,

This is similar to the Bekenstein-Hawking entropy of the black hole.
Since an observer sitting in the oubside of the horizon, B, can not receive any
information from A, we can regard A as a black hole and the boundary of A as the

black hole horizown.

1. The area Law of the entanglement entropy is

B

also similar to that of the black hole entropy

2. The entanglement entropy is utilized to figure

oult the black hole entropy

© NS (U >
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\_/ Due to the stmitariﬁj to the black hole,

N’
- Ryu and Takayahagi [2004] Froposed the holographic entanglement entropy (hgg)
~ following the AdS/CFT correspondence
the £E£ of a d-dimensional CFT can be evaluated bj the area of the minimal
surface in the drl-dimensional dual AdS gravity
Area(vya)
S =
4G
F@N)
t
‘ o
A
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/ R=dim? CFT resulk
-

- It is known that the entanglement entropy of the 2-dim CFT is given bj

— c L ml c [
= -1 —sin — | =~ —log -
e 3 . (7‘(’6 > L) 3 Oge

where L and L are the length of the subs‘jsEem A and the total system.
€ is a UV cuboff (Lattice spacing) and c is the central charge of the CFT.

Away from criticality (fixed point), the entanglement entropy is replaced by
§

€

Sg = g.Alog

where ¢ is the correlotion length and A is the number of the boundary points of A
( A =2 in the setup ),

This is due to the infinite conformal symmetry and modular tnvariance of a
2-dim, CFT defined on the torus. \/
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< Assume bthat a 2-dim, dual CFT theory Llives on R (kime) X S (spa?:i,od.) and § is divided ™
—/  into bkwo subsjsf:ems, A and B (94 is two points Y.
Then, on the gravity side, the static minimal surface 74 with the same boundary o4
is given by a geodesic curve in AdS(3).
The area of 74 is Proporf:iomat ko the £ (HEE, kotografvhéc EE).
(a) /_\
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3=Aim, ALS mebric

ds* = 212( dt* + dz* + dz2*)

Induced mebric on the minimal surface ot a given time

2/2 _l_ 1
2

ds® = dz?

The entanglement eh&ropj is given b'j
/l/ 2 2/2 _|_
SE =
4G 1/2
The minimal surface satisfies the following equation

O:zz”—|—z/2—|—1

Solubtion

v



The entanglement entropy for € — 0

1 [
— _— log -
SE 2G & €
Using the fact
3R
c— oTE where we balkke R =1

we finally obtain

c [
SE' = 5 log — = :
‘ (-1)/2]}

Introducing the IR cutoff, §

the similar calculakion leads to !
C — (12l
Sp ~ = logé =) !

3 €
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\/'ven in higher dimensions and in the strong coupling regime,

—

one can easily apply the Ryu-Takayanagi formula
"/

YA is given by a co-dimension 2 surface

Z
>

z>¢ (UV cut off)

In the AdS/CFT context

the entanqlement enbropy is qeomelrized as a minimal surface area,
g Py g
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\\—’///// Aspects of the holographic entanglement entropy

~ GENERAL PROPERTIES OF THE ENTANGLEMENT ENTROPY

1) Area law of the entanglement entropy

The leading term of the entanglement entropy is provided by the short distance
interaction between two subsystems near the boundary, In the continuum Limit, this term
causes a UV divergence and its coefficient is proportional to the area of the entangling

surface 04 (UV culboff sensilive, reqularization scheme dependent).

Area(0A)
cd—1

A
Most strongly entangled ———

Sg ~ + subleading finite terms
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\—/ 2) Subleading finite terms

_  There exists the terms not relying on a UV cutoff, which can provide an important
_  physical information associated with the Llong range correlations.

In general, the entanglement entropy crucially depends on the shape and size of the

entangling surface,

In AdSye1, Llek us bake into account the HEE of a strip (a) and disk (b)




\/ (a) Area of a strip

—

_ o d—1
—J e 9 Rd-1 (L>d—2 9d—1-(d—1)/2 pd-1 ' (2(d_1)) (L>d—2
T d—2 B d—2

T ().

where L and € indicate the size of the total system and a UV cubtoff respectively,

€

- This resulk represents the entanglement entropy of vacuum states.

- There is no Logarithmic term except for d=2.
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\_/ (b) Area of a disk

e

which depemds on the dimehsiomati.&v

(i) for d=odd

- No logarithmic term

- There exists a constant term, F, which is identified with a free energy of the
3-dimesional dual CFT for d=3.

- For d=3,
F is the exact same as the free energy of 3-dim. CFT which has been checked by the ~

aompoxisc:—n with the Llocalization resulk, /

A T )
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\—/ (i) for L=even

- A=0 LT e (! + o)
\ I D @ 105 €

with

1 (d=3)!
a' = (=)? 1Ed—2gu

- There exists a universal logarithmic term. Iks coefficient is universal in that it is
independent of the regularization scheme.

- The coefficient of the logarithmic term is independent of the entangling surface
area, which is related to the a-type anomaly,

- Weyl anomaly of 4-dim. CFT,
C ~

Q Voo a DUV 00
w3 b

1
o> = R, ,.R7% — 2R, R™ + §R2,

Ryype R = Ry R — 4R, R + @2. | S
v ) \
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~ As a consequence, the logarithmic term is related to the anomaly and crucially N
*) degemds on the dimension and shafpe of the entangling surface,
c-theorem by Zamoldchilkkov
When a 2-dim, CFT is deformed bj a relevant operator, it flows a new IR fixed point.
In this case, the central charge, which describes degrees of freedom of a system,
monotonically decreases along the RG flow.
In higher dimensional theory, is there a theorem similar to the C-theorem?
- For d=4, there exists two central charges, a and ¢, It has been believed that the
a-type anomaly satisfies the c-theorem (a-theorem).
=

- For d=3, it has been conjectured that the free energy monoctonically decreases along
the RG ftcm (F=theorem).

N U Y



| \_/ F=theorem in 3-dim. CFT [Jafferis-Klebanov-Pufu-Safdi 2011, Myers-Sinha 2010]

—

oo

RG flow under a relevant deformation

Cuv
RG ﬂOW \
CIR

IR fixed point

UV fixed point

Fuy(S®) > Fr(S*), F=—logZ(S’)

HEE with a spherical entangling surface in a 3-dim. CFT

SEzaé—F(SB)
~Y )

4
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\/ Renormalized entanglement entrqpy [Liu-Mezel 12]

-

~ F = (lg — 1) Sp = —log Z(ren) (S3)
l

Using the strong sub-additivity and Lorentz invariance [Casini-Huerta 12]

itk has been proveci ko be

OF  0*Sg
- = <
Ol l orr — 0

When | increases (from UV ko IR),

the remormalized entanglement emérc:;ﬁj (renormalized free energy oh Q3 )

monotonically decreases (F-theorem),
4
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\/ Additional logarithmic correction to the enfanglement euéro'py

—

N

Recently, it has been argued that if a CFT is deformed by a relevant operator with the

d+2

specific conformal dimension A=——=, an additional Llogarithmic term appears.

Unlike the previous logarithmic term associated with the central charge, it occurs
regardless of the dimension and shape of the entangling surface.

1ks coefficient is proportional to the entangling surface area

S ~ M\ Aslog (A\¥9=2)¢)

where ), Ay and € imply the coupling constant, the entangling surface area and a OV

~/

T b\ J.

cutoff res pectively,

~ NS
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na CFET on a Euclidean space,

- The action is given bj o functional of the metric and fields,

- 1f the system resides in the vacuum state |0),

the reduced densi.&-j moakrix i a su,ijsEem A is represem&ed as
p="Trz [0)(0] =e*,

where K is a Hermikian opera&or called the modular Hamilkonian

- The modular Hamiltonioan plays an important role in studying the entanglement
entropy, becausea unitary operator U(s) = Pt = e K5 generates a symmelry of the

su,bsvsf:em

Tr (p O) =Tr (p U(s)OU(—s))

> o/ o ,\,/\



_ - Usually, the modular Hamiltonian is non-local except several specific cases

2l2— 2
21

Too for a spherical entangling surface

K = QWQQ/ dp p
p<lI

(0. @)
—2m / d9 2y / dx1 x1 Tpg, for a planar entangling surface
5 0

- The entanglement entropy in terms of the modular Hamiltonian

S = —Tr (plogp) = (0|K|0)

- When a CFT is deformed by a relevant operator O,

K:K0+)\OEKO+)\/d4:C O(x),

- If )\ is small, the entanglement entropy change is given bj

55:%((1{0(90)—@@ >A2+---.

~ NS

Nl
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In the weak coupling Limik,

=

— Now, let us consider a 4-dim. free massless fermion theory and deform it by a
fermion mass kerm, A = m and O = Yila relevank operator with the conformal
dimension A =3)

Using the free fermion propagator

R

B O) = 25

where 7, is a Euclidean gamma mabrix and S, denoctes a solid angle.

The small change of the entanglement entropy at second order leads to the

expected logarithmic correction

Ly
0S5 = T Ay log (me)

>~ Ay o ,\,/\
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n the strong coupling Limil ’

Following the AAS/CFT ﬁorreSFomdemce,

o massive bulle scalar field corresponds to a scalar operator whose conformal

dimensional is debermined bj

mézA(A—d)

In the strohg coupling Limil, the dual graviby of the pervious fermion mass deformation
s goverhned bj

s [alav=a [i (R —28) — = (99)? — =m3¢?

w ikl
DR
my = 3.
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Under the following metric ansatz
1

ds® = —
2

f(2) (—di? + di®) + d=* |

Etnstein equation and equation of motion of a massive scalar field become

0 = r'f (3¢ —27¢"”) — 62 (2f" = 3f"),
67 3k?* 24f 2 12
0 = 2 - 2 2 f e

0 = 22°f'¢' + f (3¢ + z(2¢" — 3¢)),

In the asymptotic reqion, the perturbative solubtion is given b
Jmp 3 P 9 Y
“ 1
f(z) = 1-— %mgzz + %6 (/647713 — 9x*mgo — 3k"my log z) z* + O(2°),
1
P(z) = myz+ (0 - g/{ng log z) 2+ O(2).

where m, and 0 = <@E¢> indicate the fermion mass and chiral condensate with A = 3



~—

— 0<p<Il and z=2z(p),

Parmetrizing a spherical entangling surface =

the area of the minimal surface, whose boumd&rj coincides with the entangling

surface, is described by

[ 2
A= 92/0 dp * ;(Z) V(z) + 22

Using dimensionless small parameters, m,l and o3, the deformed minimal surface near

the known solution, 2z(r), can be expanded into
212
z(p) = z0(p) + mgl® z2(p) + -
where 20(p) = /1% — p? represen&s the geodesic of a Fmr?:i.c:te in the ALS space.

YN (U e )
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Near the asymptotic bo»undm*j,

the first correction of the minimal surface deformation reads

/432<l — p)3/2 (—13\@ + 6v/2log 2 — 6\@10g(l —p) + Gﬂlogl)
29 = .
7241

Substituting these solutions into the area formula, the entangling surface area reads

A= Ag+ Ay + Ao

wibkh
Qs Qs [
AO = 262 — 9 10g (E) ‘l‘O(l),
1
Aoy = 6/12m312§2210g(mq6)—|—(”)(1),
1
Aoy = Eli2mgl2ﬂg log (mge) + O(1).

~ N4



\/ Here, A, is associated with the entanglement an&ropj of the undeformed CFT, -/
~ 2T Ao v 1292 v QQ [
So = = — log | - O(1),
. K2 K2€e? k2 OB\ +0)

while A5, and A, LmPLv the contributions from the metric and minimal surface

deformation, respectively,

As a conseguence,
the Logarithmic correction caused by the relevant deformation becomes in the strong
coupling Limit

2T 7
0S = ? (AQO -+ AQQ) = §mgA§] log (mqe) ;

where the area of the entangling surface is given bj Ay = Z2QQ. "/

This additional Llogarithmic term is proportional to the entangling surface area unlike the  /

> N4

one associated with the central charge,

- ~L J.
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\_/ Thermodynhamics-likce Law of the entanglement entropy -/

~—

~ It has been found that the entanglement entropy of an excited state in a strip region
follows the thermodynamics-like law after defining an appropriate entanglement

temperature tho&f:*f:a&:homvowNoaod«ciw‘fakavomo\gL-qujim, Ro13]

AE =TgAS

In this case, the entanglement temperature has the form

Where )\ is a non-universal constant relying on details of the microscopic theory,
—/

Focusing on the size dependence of the entanglement temperature,
it is proportional to the inverse of the system size, Tp~ 1/1 , regardless of the shape of /
the entangling surface and microscopic details of F:hf. uhderlying theory,

T b\ J.




\_/rhe similar universal structure also occurs in blacie hole physics,

—

Belenstein bound

Through a thought experiment for black hole Ehermodjmami,as, the Belewnstein
bound has been proposed as a universal bound of the thermal entropy in fLak space.

When an object is absorbed into a black hole, the entropy of an object increases the
black hole area due to the generalized second law of thermodynamics. The increased

entropy is bounded by the absorbed energy
AS < MAE,

where [and A are a bypical size of the system and a non-universal numerical factor of

order owne.
"/

The Bekenstein bound is universal in that it is independent of the microscopic detail up J

ko ).
A e



‘—/— The entanglement eV\EroFs:j has been F?roposed as the origin of black hole em&ropj.

~—

~

=~ = Let us try to understand the Belkenstein bound from the entanglement entropy bound
which is applicable not only a thermal system but also to a quantum system.

Relakive en&ropy

- When two states are in the same Hilbert space, the relative entropy gives rise to a

fundamental statistical measure of their distance,

- If two reduced density matrices are denocted bj p1 and pg, the relakive entropy S(p;|po)
is defined as
S(p1lpo) = Tr (p11og p1) — Tr (p1 log po).
=
Here we can Ldeh&&fj PO with the reduced density makbrix of a ground or thermal state, \/
while p1 is the one for a gquantumly or thermally excited state,

YN (U e )



\/ 1f there exists a parameter connecting two reduced density matrices such that p1 = pi(X)

~—

and pg = p1(0) , the relative entropy usually has a non-negativity value

S(polpo) =0 and S(p1|po) > 0 for po # p1.

Thus, po corresponds to a minimum point,

Using the definition of the entanglement entropy, the relative entropy can be reexpressed as
S(p1lpo) = AK — AS,
where variations of the modular Hamiltonian and entanglement entropy are given by

AK =Tr(p1K) —Tr(ppK) and AS = S5(p1)— S(po).

The non-negativity of the relative entropy leads to the following relation ~/

AK > AS, \/

which is a generalized Bekenstein bound holding for any region in &FT.

YN (U e )
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\/ Universality of the entanglement temperature W,

Following the simple dimension counting of a relativistic &FT, we can guess that the

increased modular Hamiltonian is proportional to the increased energy

g

AK = \IAFE

with a non-universal numerical factor ).

Substituting this relation into the entanqglement entropy bound,
we fiv\attv arrive ab the Bekenstein bound working in a QFT.

When the entanglement entropy bound is saturaked, AK = AS, we can reinterpret it as
the thermodynamics-Like Law. In this case, the entanglement temperature founded by

Bhattacharya, Nozaki, Takayanagi and Ugajin naturally appears

BEAT TN Y\ 0 )



Notice

A general modular Hamillonian s otk khowin exc:e.p?: several simpte cases,

~—

One of them is the case with a spherical entangling surface.

Now, we check that the modular Hamiltonian is related to the energy, AK = \IAE,
i a nontrivial but physically interesting theory,

A charged dilatonic black brane geometry, whose dual &FT has a Fermi sea and

massless fluctuations on the Fermi surface, is described by [Gubser-Rocha, 2009 ]

1 1
5 = 40 2 L 2¢ —4¢
S=55 [ duy= [R A B Y — 120,000 + — (86 + 4e )} |

If there exists a nontrivial ¢ approaching to zero at the asymptotic boundary, there
exists an asymplotic AdS solution.

YN (U >
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-, The charged dilatonic black brane solution "’
N’ 2B(r)
ds? = r2e240) (= f(r)dt* + d7?) + ;f(r) dr?,
A = Audt,
wikh
o(r) = 11 1+ Q"
T 6 °6 8mr2 )’
1 Q?
A = =1 1
(r) 3o ( i 8mr2> ’
2 Q?
B = ——1 1
(r) 395 ( * 8mr2) ’
£(r) : m where m, p, and Q ndicate the charged
ry = 1— ,
A (1 4 Q22>2 black brane's mass, chemical potenkial,
8mr t
0 and charqge density, respectively, =
Ay = 26%u—

2T2 (1 + 87?7;2) N

"N &S



‘_/ Using the holographic renormalization, -
" the grand potential of the grand canonical ensemble becomes
4
Ve 10
0 =— 5 23 Té — 2%2/{2‘/3T1%,u2 — ?/{6V3u4,
K :

other Ehermodvnamit quantities sa&isfvjms the first Law of Eharmodjmamif:s are given bj

37T4V3 14

E = 52 Té + 67r2/£2V3T13,u2 + ERG‘/&LLZL,
P = QW—;Té, + 271'2/432T}2[,u2 + %Oﬁﬁ/fl,
Spy = 27:12‘/3 TI% + 47r2/<;2V3TH,u2,
% = Am?RATEu+ 4—30116,113, &
where E P, Spy and N/V; indicate the energy, pressure, enltropy and charge dehsi?:j \_/
respectively, o \J

N g\ ).
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/ 1f the quantum state is excited without the change of the chemical potential,

- the wiodular Hamilkonian is associaked with the previou,s skress kewnsor

l2 2
2

21

K’u — 27TQ2/p<ldeO Tool,,

where Ty, indicates the energy de.nsi&v at a given 1 and Qy is the solid angle of the
spherical entangling surface,

Sihece Tjy is uniform in this model, the modular Hamiltonian can be rewritten as

2T
K’ﬂ: ?l E‘M’

where the energy contained in the batt-—shayed reqgion is given bv E|, = Q fp < dp p? Too L

- This relation shows how the modular Hamiltonian is related to the energy over the
iaterior of the sphere. U
= This is the expected form and shows that the entanglement entropy bound is
equivalent to the Bekenstein bound except that the former is working even in a \/

qu.an&um s:js?:em. L) / O) /

\
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/ When [t is fixed, the increased modular Hamiltonian becomes

~—

7T5Z4QQ
5K?

47T3/£4Z4Q2
HK? KT

AK‘MEK(THMM)_K(O?M): TI%T_F

Using the holographic technique, the HEE becomes

wl?Qs 7 € (o
S (THa :LL) — /43262 =+ K,2 log (?) (
K2 45K2 Sk2

which is the entanglement entropy of the excited state with the chemical potential.

(7T2TI2{ + 2/4;4,u2)2 :

At a given chemical potential,
the increased entanglement entropy up to [* order is given bj

574 3,414
72l QQ 42 K[ QQ

which is the exactk same as the erevi,ous inereased modular Hamilkonian,

YN (U >

AS‘MES(THau)_S(Oaﬂ) -



- N

\/ y
When higher order corrections are ignored,

the saturated entanglement entropy bound leads to the thermodynamics-like Law

N

~—r’
1
AK|M = AS|M = Tw AE|M,
wikh
L - =

B onl
Recently, it has been shown that the Linearized Einstein equalion of the AdS geomelry
can be reproduced from the entanglement entropy’s thermodynamics-like Law of the
dual QFT [Raamsdonk and ekal, 2013],

2 l2 - p2 dld—?)
K|, = 2mfy /pgl dp p 9] Tool, 0 (Tyw) = 167TG%(LC’Z/) : linearized Einstein equation
S 1 Holographi*enomalization =

d? —1 0SE

= im 228 , 2-1__ 550

— d
ut boosting Q | 2184_o 1—0

~r
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J Under the global quench

g

Suppose that K is the modular Hamiltonian of the undeformed theory Then, the
reduced density matrix is given by

e Ko

PO = My =Ko

in a bai.i.--shapec&. region, the modular Hamiltonian is related to the energy, Ko= %

Now, let us deform this theory by a relevant number operator, N,

K=K,—“EN
1Tg

where the entanglement chemical potential, g, accounts for how the global quench
modifies the modular Hamiltonian and entanglement entropy.

~ N/ ) ,\A/\



Then, the reduced density matrix of the deformed theory becomes

~—

—K

' (&

p= Tre K~

The non-negativity of the relative entropy gives rise to a generalized entanglement
entropy bound

_AE ke >AS or AE>TgAS + ugAN.

AK
Ty, Tk

When the generalized entanglement entropy bound is saturated,
the entanglement entropy satisfies a generalized thermodynamics-like Law

dE) = TrdSE + ppdN
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