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One of the most remarkable successes in the AdS/CFT correspondence is the microscopic 

derivation of the Bekenstein-Hawking entropy for a BPS black hole

This idea relates the gravitational entropy to the degeneracy of the dual quantum field

theory with its microscopic description.

On the other hand, there exists a different kind of entropy called the entanglement 

entropy in quantum mechanical systems which measures the entanglement between 

quantum states. 

Motivation

Ryu and Takayanagi proposed the formula following the black hole entropy

The goal of this work is to figure out the entanglement entropy in the strong coupling 
regime following the AdS/CFT correspondence. 
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Brief review on the holographic entanglement entropy

holographic entanglement entropy (hEE)

S =
Area of �

4G

In the AdS/CFT context,

the entanglement entropy is geometrized as the area of a co-dimension 2 minimal

surface.

Chanyong Park (APCTP) Holographic entanglement entropy in a deformed CFT



Review of the holographic entanglement entropy 

The entanglement entropy measures 

how closely and quantumly a given wave function is entangled.

Definition of EE (entanglement entropy)

- Divide a quantum system into two parts, A and B. 

- Reduced density matrix of the subsystem A : 

- The entanglement entropy (EE) 

Brief review on the holographic entanglement entropy

The entanglement entropy measures how closely and quantumly a given ground state

wave function is entangled.

Definition of entanglement entropy (EE)

Divide a quantum system into two parts, A and B

Reduced density matrix of the subsystem A

⇢B = TrA⇢tot

The entanglement entropy (Von Neumann entropty)

SB = �TrB⇢B log ⇢B
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Reduced density matrix of the subsystem A

⇢B = TrA⇢tot

The entanglement entropy (Von Neumann entropty)

SB = �TrB⇢B log ⇢B
Chanyong Park (APCTP) Holographic entanglement entropy in a deformed CFTwhich is proportional to the area of the entangling surface (     ) @A (1)
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describes the quantum entanglement detected by an observer who is only 
accessible to the subsystem B and can not receive any signal from A. 

Brief review on the holographic entanglement entropy

SB describes the quantum entanglement detected by an observer, who is only

accessible to the subsystem B and can not receive any signals from A.

This is similar to the Bekenstein-Hawking entropy of the black hole.

Since an observer sitting in the outside of the horizon, B, can not receive any

information from A, we can regard A as a black hole and the boundary of A as the

black hole horizon.

Due to this similarity to the black hole, Ryu and Takayanagi [2006] proposed the

holographic entanglement entropy (hEE) following the AdS/CFT correspondence

the EE of a d-dimensional CFT can be evaluated by

an area of the minimal surface in the d+1-dimensional dual gravity

Chanyong Park (APCTP) Holographic entanglement entropy in a deformed CFT

This is similar to the Bekenstein-Hawking entropy of the black hole.
Since an observer sitting in the outside of the horizon, B, can not receive any 

information from A, we can regard A as a black hole and the boundary of A as the 

black hole horizon. 

A

B

2.  The entanglement entropy is utilized to figure 
out the black hole entropy

1.  The area law of the entanglement entropy is 
also similar to that of the black hole entropy



Due to the similarity to the black hole, 
Ryu and Takayanagi [2006] proposed the holographic entanglement entropy (hEE) 

following the AdS/CFT correspondence 

the EE of a d-dimensional CFT can be evaluated by the area of the minimal 
surface in the d+1-dimensional dual AdS gravity 
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FIG. 1: (a) AdS3 space and CFT2 living on its boundary
and (b) a geodesics γA as a holographic screen.

of A) and (ii) SA1
+ SA2

≥ SA1∪A2
(subadditivity) are

satisfied.
We can also define the entanglement entropy at finite

temperature T = β−1. E.g. in a 2D CFT on a infinitely
long line, it is given by replacing L in Eq. (1.3) with iβ
[10]. We argue that Eq. (1.5) still holds in T > 0 cases.
Note that SA = SB is no longer true if T > 0 since ρ
is in a mixed state generically. At high temperature, we
will see that this occurs due to the presence of black hole
horizon in the dual gravity description.

II. ENTANGLEMENT ENTROPY IN AdS3/CFT2

Let us start with the entanglement entropy in 2D
CFTs. According to AdS/CFT correspondence, gravi-
tational theories on AdS3 space of radius R are dual to
(1+1)D CFTs with the central charge [14]

c =
3R

2G(3)
N

. (2.1)

The metric of AdS3 in the global coordinate (t, ρ, θ) is

ds2 = R2
(

− coshρ2dt2 + dρ2 + sinh ρ2dθ2
)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
is identified with the static geodesic that connects the
boundary points θ = 0 and 2πl/L with t fixed, traveling
inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
above, the geodesic distance LγA is given by

cosh

(

LγA

R

)

= 1 + 2 sinh2 ρ0 sin2 πl

L
. (2.4)

Assuming the large UV cutoff eρ0 ≫ 1, the entropy
(1.5) is expressed as follows, using Eq. (2.1)

SA≃ R

4G(3)
N

log

(

e2ρ0 sin2 πl

L

)

=
c

3
log

(

eρ0 sin
πl

L

)

. (2.5)

This entropy precisely coincides with the known CFT
result (1.3) after we remember the relation Eq. (2.3).

This proposed relation (1.5) suggests that the geodesic
(or minimal surface in the higher dimensional case) γA is
analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows

A = {x|x ∈ [r1, s1] ∪ [r2, s2] ∪ · · · ∪ [rN , sN ]}, (2.6)

where 0 ≤ r1 < s1 < r2 < s2 < · · · < rN < sN ≤ L. In
the dual AdS3 description, the region (2.6) corresponds
to θ ∈ ∪N

i=1[
2πri

L , 2πsi

L ] at the boundary. In this case it
is not straightforward to determine minimal (geodesic)
lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
in the AdS3 language, the following expression of SA

SA =

∑

i,j Lrj ,si−
∑

i<j Lrj ,ri−
∑

i<j Lsj ,si

4G(3)
N

, (2.7)

where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L ≪ 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
BTZ black hole [17] with the metric given by

ds2 = (r2 − r2
+)dτ2 +

R2

r2 − r2
+

dr2 + r2dϕ2. (2.8)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to
obtain a smooth geometry in addition to the periodicity
ϕ ∼ ϕ+2π. Looking at its boundary, we find the relation
β
L = R

r+
≪ 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ϕ = 0, 2πl/L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiv-
alent to the thermal AdS3 at temperature 1/TBTZ. This
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2-dim. CFT result [Calabrese-Cardy, 2004]

It is known that the entanglement entropy of the 2-dim CFT is given by

where l and L are the length of the subsystem A and the total system. 

is a UV cutoff (lattice spacing) and c is the central charge of the CFT.

Away from criticality (fixed point), the entanglement entropy is replaced by

where   is the correlation length and   is the number of the boundary points of A  
(                           ). 
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Holographic Derivation of Entanglement Entropy from AdS/CFT

Shinsei Ryu and Tadashi Takayanagi
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

(Dated: February 1, 2008)

A holographic derivation of the entanglement entropy in quantum (conformal) field theories is
proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement
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arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement
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A holographic derivation of the entanglement entropy in quantum (conformal) field theories is
proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement
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FIG. 1: (a) AdS3 space and CFT2 living on its boundary
and (b) a geodesics γA as a holographic screen.

of A) and (ii) SA1
+ SA2

≥ SA1∪A2
(subadditivity) are

satisfied.
We can also define the entanglement entropy at finite

temperature T = β−1. E.g. in a 2D CFT on a infinitely
long line, it is given by replacing L in Eq. (1.3) with iβ
[10]. We argue that Eq. (1.5) still holds in T > 0 cases.
Note that SA = SB is no longer true if T > 0 since ρ
is in a mixed state generically. At high temperature, we
will see that this occurs due to the presence of black hole
horizon in the dual gravity description.

II. ENTANGLEMENT ENTROPY IN AdS3/CFT2

Let us start with the entanglement entropy in 2D
CFTs. According to AdS/CFT correspondence, gravi-
tational theories on AdS3 space of radius R are dual to
(1+1)D CFTs with the central charge [14]

c =
3R

2G(3)
N

. (2.1)

The metric of AdS3 in the global coordinate (t, ρ, θ) is

ds2 = R2
(

− coshρ2dt2 + dρ2 + sinh ρ2dθ2
)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
is identified with the static geodesic that connects the
boundary points θ = 0 and 2πl/L with t fixed, traveling
inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
above, the geodesic distance LγA is given by

cosh

(

LγA

R

)

= 1 + 2 sinh2 ρ0 sin2 πl

L
. (2.4)

Assuming the large UV cutoff eρ0 ≫ 1, the entropy
(1.5) is expressed as follows, using Eq. (2.1)

SA≃ R

4G(3)
N

log

(

e2ρ0 sin2 πl

L

)

=
c

3
log

(

eρ0 sin
πl

L

)

. (2.5)

This entropy precisely coincides with the known CFT
result (1.3) after we remember the relation Eq. (2.3).

This proposed relation (1.5) suggests that the geodesic
(or minimal surface in the higher dimensional case) γA is
analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows

A = {x|x ∈ [r1, s1] ∪ [r2, s2] ∪ · · · ∪ [rN , sN ]}, (2.6)

where 0 ≤ r1 < s1 < r2 < s2 < · · · < rN < sN ≤ L. In
the dual AdS3 description, the region (2.6) corresponds
to θ ∈ ∪N

i=1[
2πri

L , 2πsi

L ] at the boundary. In this case it
is not straightforward to determine minimal (geodesic)
lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
in the AdS3 language, the following expression of SA

SA =

∑

i,j Lrj ,si−
∑

i<j Lrj ,ri−
∑

i<j Lsj ,si

4G(3)
N

, (2.7)

where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L ≪ 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
BTZ black hole [17] with the metric given by

ds2 = (r2 − r2
+)dτ2 +

R2

r2 − r2
+

dr2 + r2dϕ2. (2.8)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to
obtain a smooth geometry in addition to the periodicity
ϕ ∼ ϕ+2π. Looking at its boundary, we find the relation
β
L = R

r+
≪ 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ϕ = 0, 2πl/L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiv-
alent to the thermal AdS3 at temperature 1/TBTZ. This

Then, on the gravity side, the static minimal surface      with the same boundary     

is given by a geodesic curve in AdS(3).   
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proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement
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I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement
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FIG. 1: (a) AdS3 space and CFT2 living on its boundary
and (b) a geodesics γA as a holographic screen.

of A) and (ii) SA1
+ SA2

≥ SA1∪A2
(subadditivity) are

satisfied.
We can also define the entanglement entropy at finite

temperature T = β−1. E.g. in a 2D CFT on a infinitely
long line, it is given by replacing L in Eq. (1.3) with iβ
[10]. We argue that Eq. (1.5) still holds in T > 0 cases.
Note that SA = SB is no longer true if T > 0 since ρ
is in a mixed state generically. At high temperature, we
will see that this occurs due to the presence of black hole
horizon in the dual gravity description.

II. ENTANGLEMENT ENTROPY IN AdS3/CFT2

Let us start with the entanglement entropy in 2D
CFTs. According to AdS/CFT correspondence, gravi-
tational theories on AdS3 space of radius R are dual to
(1+1)D CFTs with the central charge [14]

c =
3R

2G(3)
N

. (2.1)

The metric of AdS3 in the global coordinate (t, ρ, θ) is

ds2 = R2
(

− coshρ2dt2 + dρ2 + sinh ρ2dθ2
)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
is identified with the static geodesic that connects the
boundary points θ = 0 and 2πl/L with t fixed, traveling
inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
above, the geodesic distance LγA is given by

cosh

(

LγA

R

)

= 1 + 2 sinh2 ρ0 sin2 πl

L
. (2.4)

Assuming the large UV cutoff eρ0 ≫ 1, the entropy
(1.5) is expressed as follows, using Eq. (2.1)

SA≃ R

4G(3)
N

log

(

e2ρ0 sin2 πl

L

)

=
c

3
log

(

eρ0 sin
πl

L

)

. (2.5)

This entropy precisely coincides with the known CFT
result (1.3) after we remember the relation Eq. (2.3).

This proposed relation (1.5) suggests that the geodesic
(or minimal surface in the higher dimensional case) γA is
analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows

A = {x|x ∈ [r1, s1] ∪ [r2, s2] ∪ · · · ∪ [rN , sN ]}, (2.6)

where 0 ≤ r1 < s1 < r2 < s2 < · · · < rN < sN ≤ L. In
the dual AdS3 description, the region (2.6) corresponds
to θ ∈ ∪N

i=1[
2πri

L , 2πsi

L ] at the boundary. In this case it
is not straightforward to determine minimal (geodesic)
lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
in the AdS3 language, the following expression of SA

SA =

∑

i,j Lrj ,si−
∑

i<j Lrj ,ri−
∑

i<j Lsj ,si

4G(3)
N

, (2.7)

where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L ≪ 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
BTZ black hole [17] with the metric given by

ds2 = (r2 − r2
+)dτ2 +

R2

r2 − r2
+

dr2 + r2dϕ2. (2.8)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to
obtain a smooth geometry in addition to the periodicity
ϕ ∼ ϕ+2π. Looking at its boundary, we find the relation
β
L = R

r+
≪ 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ϕ = 0, 2πl/L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiv-
alent to the thermal AdS3 at temperature 1/TBTZ. This
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FIG. 1: (a) AdS3 space and CFT2 living on its boundary
and (b) a geodesics γA as a holographic screen.

of A) and (ii) SA1
+ SA2

≥ SA1∪A2
(subadditivity) are

satisfied.
We can also define the entanglement entropy at finite

temperature T = β−1. E.g. in a 2D CFT on a infinitely
long line, it is given by replacing L in Eq. (1.3) with iβ
[10]. We argue that Eq. (1.5) still holds in T > 0 cases.
Note that SA = SB is no longer true if T > 0 since ρ
is in a mixed state generically. At high temperature, we
will see that this occurs due to the presence of black hole
horizon in the dual gravity description.

II. ENTANGLEMENT ENTROPY IN AdS3/CFT2

Let us start with the entanglement entropy in 2D
CFTs. According to AdS/CFT correspondence, gravi-
tational theories on AdS3 space of radius R are dual to
(1+1)D CFTs with the central charge [14]

c =
3R
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. (2.1)

The metric of AdS3 in the global coordinate (t, ρ, θ) is

ds2 = R2
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)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
is identified with the static geodesic that connects the
boundary points θ = 0 and 2πl/L with t fixed, traveling
inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
above, the geodesic distance LγA is given by
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. (2.4)

Assuming the large UV cutoff eρ0 ≫ 1, the entropy
(1.5) is expressed as follows, using Eq. (2.1)
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analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows
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L ] at the boundary. In this case it
is not straightforward to determine minimal (geodesic)
lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
in the AdS3 language, the following expression of SA
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∑
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∑

i<j Lrj ,ri−
∑
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, (2.7)

where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L ≪ 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
BTZ black hole [17] with the metric given by

ds2 = (r2 − r2
+)dτ2 +
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The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to
obtain a smooth geometry in addition to the periodicity
ϕ ∼ ϕ+2π. Looking at its boundary, we find the relation
β
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≪ 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ϕ = 0, 2πl/L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiv-
alent to the thermal AdS3 at temperature 1/TBTZ. This
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A holographic derivation of the entanglement entropy in quantum (conformal) field theories is
proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement
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Even in higher dimensions and in the strong coupling regime,

is given by a co-dimension 2 surface

one can easily apply the Ryu-Takayanagi formula

In the AdS/CFT context,
the entanglement entropy is geometrized as a minimal surface area.  



Aspects of the holographic entanglement entropy

GENERAL PROPERTIES OF THE ENTANGLEMENT ENTROPY

1) Area law of the entanglement entropy 

The leading term of the entanglement entropy is provided by the short distance 
interaction between two subsystems near the boundary. In the continuum limit, this term 

causes a UV divergence and its coefficient is proportional to the area of the entangling 

surface     (UV cutoff sensitive, regularization scheme dependent).
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Holographic Derivation of Entanglement Entropy from AdS/CFT

Shinsei Ryu and Tadashi Takayanagi
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

(Dated: February 1, 2008)

A holographic derivation of the entanglement entropy in quantum (conformal) field theories is
proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement
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2) Subleading finite terms

There exists the terms not relying on a UV cutoff, which can provide an important 
physical information associated with the long range correlations. 

In        , let us take into account the HEE of a strip (a) and disk (b) 
3

equivalence can be interpreted as a modular transfor-
mation in the CFT side [18]. If we define the new co-
ordinates r = r+ coshρ, r+τ = Rθ, r+ϕ = Rt, then
the metric (2.8) indeed becomes the Euclidean version of
AdS3 metric (2.2). Thus the geodesic distance can be
found in the same way as in Eq. (2.4) : cosh(LγA/R) =

1 + 2 cosh2 ρ0 sinh2
(

πl
β

)

, where the UV cutoff is inter-

preted as eρ0 ∼ β/a. Then the area law (1.5) reproduces
the known CFT result [10]

SA(β) =
c

3
· log

(

β

πa
sinh

(

πl

β

))

. (2.9)

We can extend these arguments to the multi interval
cases and find the same formula (2.7) as before.

It is instructive to repeat the same analysis in the
Poincare metric ds2 = R2z−2(dz2 − dx2

0 + dr2). We de-
fine the subsystem A by the region −l/2 ≤ r ≤ l/2 at
the boundary z = 0. The geodesic line γA is given by

(r, z) =
l

2
(cos s, sin s), (ϵ ≤ s ≤ π − ϵ), (2.10)

where the infinitesimal ϵ is the UV cutoff ϵ ∼ 2a/l (or
equally zUV ∼ a). We obtain the entropy SA as follows

SA =
LγA

4G(3)
N

=
R

2G(3)
N

∫ π/2

ϵ

ds

sin s
=

c

3
log

l

a
. (2.11)

This reproduces the small l limit of Eq. (1.3) [11] .
When we perturb a CFT by a relevant perturbation,

the RG flow generically drives the theory to a trivial IR
fixed point. We denote the correlation length ξ in the
latter theory. In the AdS dual, this massive deformation
corresponds to capping off the IR region, restricting the
allowed values of z to z ≤ ξ. In the large l limit, we find

SA =
1

4G(3)
N

∫ 2ξ/l

ϵ

ds

sin s
=

c

6
log

ξ

a
. (2.12)

This agrees with the CFT result with A = 1 (1.4) [7, 10].

III. HIGHER DIMENSIONAL CASES

Motivated by the success in our gravitational deriva-
tion of the entanglement entropy for d = 1, it is inter-
esting to extend the idea to higher dimensional cases
(d ≥ 2). A natural thing to do is to replace geodesic
lines with minimal surfaces. The computations are anal-
ogous to the evaluation of Wilson loops [19], though the
dimension of relevant minimal surfaces is different.

We will work in the Poincare metric for AdSd+2

ds2 = R2z−2(dz2 − dx2
0 +

d
∑

i=1

dx2
i ). (3.1)

We consider two examples for the shape of A. The first
one is a straight belt AS = {xi|x1 ∈ [−l/2, l/2], x2,3,···,d ∈

z

x1

z

x1

L

xi>1

l

(a) (b) xi>1

l

FIG. 2: Minimal surfaces in AdSd+2: (a) AS and (b) AD.

[−∞,∞]} at the boundary z = 0 (Fig. 2 (a)). In
this case the minimal surface is defined by dz/dx1 =
√

z2d
∗

− z2d/zd, where z∗ is determined by l/2 =
∫ z∗

0 dzzd(z2d
∗

− z2d)−1/2 = z∗
√

πΓ(d+1
2d )/Γ( 1

2d ). The area
of this minimal surface is

AreaAS =
2Rd

d − 1

(

L

a

)d−1

− 2dπd/2Rd

d − 1

(

Γ(d+1
2d )

Γ( 1
2d )

)d
(

L

l

)d−1

,

(3.2)
where L is the length of AS in the x2,3,··· ,d-direction.

The second example is the disk AD defined by AD =
{xi|r ≤ l} (Fig. 2(b)) in the polar coordinate

∑

i dx2
i =

dr2 + r2dΩ2
d−1. The minimal surface is a d dimensional

ball Bd defined by (2.10). Its area is

AreaAD = C

∫ 1

a/l
dy

(1 − y2)(d−2)/2

yd

= p1 (l/a)d−1 + p3 (l/a)d−3 + · · · (3.3)

· · · +
{

pd−1 (l/a) + pd + O(a/l), d: even,
pd−2 (l/a)2 + q log (l/a) + O(1), d: odd,

where C = 2πd/2Rd/Γ(d/2) and p1/C = (d − 1)−1 etc.
For d even, pd/C = (2

√
π)−1Γ

(

d
2

)

Γ
(

1−d
2

)

and for d odd,

q/C = (−)(d−1)/2(d − 2)!!/(d − 1)!!.
From these results, the entanglement entropy can be

calculated by Eq. (1.5). Each of (3.2) and (3.3) has a
UV divergent term ∼ a−d+1 that is proportional to the
area of the boundary ∂A. This agrees with the known
‘area law’ of the entanglement entropy in quantum field
theories [5, 6]. Note that this ‘area law’ is related to ours
Eq. (1.5) via the basic property of holography.

We may prefer a physical quantity that is independent
of the cutoff (i.e. universal). The second term in Eq. (3.2)
has this property. In general, when A is a finite size, there
is a universal and conformal invariant constant contribu-
tion to SA if d is even (see [20] for properties of minimal
surfaces in AdS). In (2+1)D topological field theories the
constant contribution to SA encodes the quantum dimen-
sion and is called the topological entanglement entropy
[8, 9]. If d is odd, the coefficient of the logarithmic term
∼ log(l/a) is universal as in Eq. (1.3).

Let us apply the previous results to a specific string
theory setup. Type IIB string on AdS5 × S5 is dual to

logarithmic corrections can occur in Sec. 4. We finish our work with some concluding remarks

in Sec. 5.
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its analytic form has been known due to the conformal symmetry and modular invariance.

Interestingly, this result has been reproduced from a gravity theory defined on the AdS3 space

and further generalized to higher dimensional cases [9, 10]. We start with summarizing those
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where L and ✏ indicate the size of the total system and a UV cuto↵ respectively. The AdS

radius is denoted by R. From now on, we set R = 1 for simplicity. This result expresses

the entanglement entropy of vacuum states. Above the first term shows the area law of the

entanglement entropy. In general, the entanglement entropy of a thin strip has no logarithmic
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Only for even d, a logarithmic term with a

0 = (�)d/2�1 (d�3)!!
(d�2)!! appears. This term is universal in

that it is independent of the regularization scheme. As shown in the AdS3 example [9, 10], a0

is related to the central charge of the dual CFT. In a higher dimensional CFT, a0 is related to

an A-type central charge. As a consequence, the logarithmic term related to the central charge

crucially depends on the dimensionality and the shape of the entangling surface.

3

In general, the entanglement entropy crucially depends on the shape and size of the 
entangling surface. 
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- This result represents the entanglement entropy of vacuum states.

- There is no logarithmic term except for d=2.
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is related to the central charge of the dual CFT. In a higher dimensional CFT, a0 is related to
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crucially depends on the dimensionality and the shape of the entangling surface.

3

- No logarithmic term

- There exists a constant term, F, which is identified with a free energy of the 

3-dimesional dual CFT for d=3.

- For d=3,

F is the exact same as the free energy of 3-dim. CFT which has been checked by the 

comparison with the localization result. 
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3

- There exists a universal logarithmic term. Its coefficient is universal in that it is 
independent of the regularization scheme.

- The coefficient of the logarithmic term is independent of the entangling surface 
area, which is related to the a-type anomaly. 

- Weyl anomaly of 4-dim. CFT, 

4.2.1 Entanglement Entropy from Weyl Anomaly

Central charges in CFTs can be defined from the Weyl anomaly (or conformal anomaly)

⟨T µ
µ ⟩. Define the energy-momentum tensor T µν in terms of the functional derivative of

the (quantum corrected) action S with respect to the metric gµν

T µν =
4π
√

g

δS

δgµν
. (4.17)

In 2D CFTs, the Weyl anomaly is given by the well-known formula

⟨T µ
µ ⟩ = − c

12
R, (4.18)

where R is the scalar curvature. We can regard this as a definition of the central charge

c in 2D CFTs.

Now we move on to 4D CFTs. In our normalization of (4.17), the Weyl anomaly can

be written as

⟨T α
α ⟩ = − c

8π
WµνρσW µνρσ +

a

8π
R̃µνρσR̃µνρσ. (4.19)

in a curved metric background gµν , where W and R̃ are the Weyl tensor and the dual of

the curvature tensor. Notice that the second term is the Euler density. In terms of the

ordinary curvature tensor, we can express the curvature square terms in (4.19) as follows

WµνρσW µνρσ = RµνρσRµνρσ − 2RµνR
µν +

1

3
R2,

R̃µνρσR̃µνρσ = RµνρσRµνρσ − 4RµνR
µν + R2. (4.20)

The coefficients c and a in (4.19) are called12 the central charges of 4D CFTs [48, 49,

50]. This is the original definition of the central charges in 4D CFTs. The central charge

a is believed to decrease monotonically under the renormalization group (RG) flow, while

for c this is not true and indeed counter examples are known; these properties of the

central charges a and c are confirmed in many supersymmetric examples e.g. [50].

To compute the entanglement entropy, we first consider the partition function Zn on

the d + 1 dimensional n-sheeted manifold Mn. Then we find the trace of ρn reduced to

the subsystem A is given by the formula (4.1). The entanglement entropy can be found

by taking the derivative of n with the n → 1 limit. If we define the length scale of the

manifold A by l, then the scaling of l is related to the Weyl scaling. They should be the
12The central charge a should not be confused with a UV cutoff. To avoid confusion, acutoff is used

to denote the UV cutoff in this subsection.

20

4.2.1 Entanglement Entropy from Weyl Anomaly

Central charges in CFTs can be defined from the Weyl anomaly (or conformal anomaly)

⟨T µ
µ ⟩. Define the energy-momentum tensor T µν in terms of the functional derivative of

the (quantum corrected) action S with respect to the metric gµν

T µν =
4π
√

g

δS

δgµν
. (4.17)

In 2D CFTs, the Weyl anomaly is given by the well-known formula

⟨T µ
µ ⟩ = − c

12
R, (4.18)

where R is the scalar curvature. We can regard this as a definition of the central charge

c in 2D CFTs.

Now we move on to 4D CFTs. In our normalization of (4.17), the Weyl anomaly can

be written as

⟨T α
α ⟩ = − c

8π
WµνρσW µνρσ +

a

8π
R̃µνρσR̃µνρσ. (4.19)

in a curved metric background gµν , where W and R̃ are the Weyl tensor and the dual of

the curvature tensor. Notice that the second term is the Euler density. In terms of the

ordinary curvature tensor, we can express the curvature square terms in (4.19) as follows

WµνρσW µνρσ = RµνρσRµνρσ − 2RµνR
µν +

1

3
R2,

R̃µνρσR̃µνρσ = RµνρσRµνρσ − 4RµνR
µν + R2. (4.20)

The coefficients c and a in (4.19) are called12 the central charges of 4D CFTs [48, 49,

50]. This is the original definition of the central charges in 4D CFTs. The central charge

a is believed to decrease monotonically under the renormalization group (RG) flow, while

for c this is not true and indeed counter examples are known; these properties of the

central charges a and c are confirmed in many supersymmetric examples e.g. [50].

To compute the entanglement entropy, we first consider the partition function Zn on

the d + 1 dimensional n-sheeted manifold Mn. Then we find the trace of ρn reduced to

the subsystem A is given by the formula (4.1). The entanglement entropy can be found

by taking the derivative of n with the n → 1 limit. If we define the length scale of the

manifold A by l, then the scaling of l is related to the Weyl scaling. They should be the
12The central charge a should not be confused with a UV cutoff. To avoid confusion, acutoff is used

to denote the UV cutoff in this subsection.

20

with



As a consequence, the logarithmic term is related to the anomaly and crucially 
depends on the dimension and shape of the entangling surface.

c-theorem by Zamoldchikov

When a 2-dim. CFT is deformed by a relevant operator, it flows a new IR fixed point.

In this case, the central charge, which describes degrees of freedom of a system, 

monotonically decreases along the RG flow. 

In higher dimensional theory, is there a theorem similar to the C-theorem?

- For d=4, there exists two central charges, a and c. It has been believed that the 
a-type anomaly satisfies the c-theorem (a-theorem).

- For d=3, it has been conjectured that the free energy monotonically decreases along 
the RG flow (F-theorem).



F-theorem in 3-dim. CFTRG flow and c-function

RG flow

UV fixed point

IR fixed point
1/Energy

c

cUV

cIR

c-function can be a measure of degrees of freedom!
[Zamolodchikov 86, Cardy 88, Komargodski-Shwimmer 11]

T.Nishioka (Tokyo) Jan 19-27, 2015 @ Busan 47 / 71

RG flow under a relevant deformation

[Jafferis-Klebanov-Pufu-Safdi 2011, Myers-Sinha 2010] 

C-theorem in 3d?

Thermal c-theorem: Counter example by [Sachdev 93]

FTherm ⇠ cThermT 3

CT -theorem: [Petkou 94]

CT |UV � CT |IR , hTµ⌫(x)T⇢�(0)iCFT = CT
Iµ⌫,⇢�(x)

x6

F -theorem: [Jafferis-Klebanov-Pufu-Safdi 11, Myers-Sinha 10]

FUV(S3) � FIR(S3) , F = � logZ(S3)

T.Nishioka (Tokyo) Jan 19-27, 2015 @ Busan 51 / 71

HEE with a spherical entangling surface in a 3-dim. CFT
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Additional logarithmic correction to the entanglement entropy

Recently, it has been argued that if a CFT is deformed by a relevant operator with the

specific conformal dimension           , an additional logarithmic term appears.

1 Introduction

Recently, an entanglement entropy has been much paid attention to investigate the quantum

phase transition and entanglement of quantum states. In general, it is not an easy work to

evaluate the entanglement entropy of an interacting quantum field theory (QFT). On the other

hand, the AdS/CFT correspondence has shed light on understanding a conformal field theory

(CFT) in a strong coupling regime through its dual gravity [1, 2, 3, 4]. Well-known examples for

the AdS/CFT correspondence are AdS5 ⇥ S

5 dual to the N = 4 SYM theory and AdS4 ⇥CP

3

which is dual to the N = 6 Chern-Simons gauge theory, the so-called Aharony-Bergman-

Ja↵eris-Maldacena model [5]. Thus, it would be interesting to figure out the entanglement

entropy in the strong coupling regime through the AdS/CFT correspondence.

For a 2-dimensional CFT, an exact entanglement entropy has been derived by using a

conformal symmetry and modular invariance [6, 7, 8]. In [9, 10, 11], authors have proposed

how to calculate the holographic entanglement entropy in the dual gravity. In the AdS/CFT

context, the entanglement entropy is geometrized as the area of the minimal surface ending on

the entangling surface of a subsystem

S =
2⇡A



2
. (1)

It has been shown that this holographic entanglement entropy can exactly reproduce the results

obtained in a 2-dimensional CFT. Moreover, since a strongly interacting CFT corresponds to

a weakly curved gravity following the AdS/CFT correspondence, one can easily apply the

holographic method to a higher dimensional CFT even in the strong coupling regime. As a

result, the AdS/CFT correspondence can alleviate our labors to calculate the entanglement

entropy [12]-[29]. The holographic analysis has shown in higher dimensional cases that, when

one consider a disk region as a subsystem, an A-type central charge appears as the coe�cient

of the logarithmic term. This is called universal because it is independent of the regularization

scheme. However, its existence crucially relies on the dimensionality and the shape of the

entangling surface.

Intriguingly, it has been argued that there can exist another logarithmic correction when

we deform a d-dimensional CFT by a relevant deformation operator with a specific conformal

dimension [30]

� =
d+ 2

2
. (2)

Unlike the previous logarithmic term related to the central charge, the additional logarithmic

correction always appears regardless of the shape of the entangling surface and is proportional to

the area of the entangling surface. These facts have been checked in a 4-dimensional free CFT.

When we deform a free CFT with a fermion mass term, it generates an expected additional

1

Unlike the previous logarithmic term associated with the central charge, it occurs 
regardless of the dimension and shape of the entangling surface. 

logarithmic correction [31, 32]. In [33, 34, 35], authors have studied a perturbatvie method

for the entanglement entropy with a relevant operator. They have shown that a fermion mass

deformation gives rise to an logarithmic correction at second order perturbation [35]. This is

the story in the weak coupling regime. One can ask whether the similar correction occurs in

the strong coupling regime. Using the holographic method, it is possible to investigate such a

correction in the strong coupling regime [36].

In this paper, we will study an additional logarithmic correction in the strong coupling

regime. In general, a relevant operator of a CFT modifies the IR physics. On the dual gravity

side, such a deformation is realized as the change of the inside metric, which alters the area

of the minimal surface. On the modified geometry, we evaluate an entanglement entropy of a

strongly interacting CFT deformed by a fermion mass for d = 4 and by a Yukawa term for

d = 3. Lastly, we generalize those calculations to more general relevant operators with the

conformal dimension

� =
(2n� 1)d+ 2

2n
, (3)

where n denotes an integer number. The previous cases correspond to the cases with n = 1.

Usually, in a free theory composed of ordinary bosons and fermions there is no such an operator.

Regarding quantum corrections in an interacting CFT, however, the conformal dimension can

shift due to an anomalous dimension. In a strongly interacting CFT which has its dual grav-

ity, this anomalous dimension naturally appears. For various magnon’s and spike’s solutions

having a large conformal dimension, their anomalous dimensions have been studied in various

background geometries [37]-[44]. Due to those quantum corrections, it seems to be natural

to take into account relevant operators with a nontrivial conformal dimension. We show that

these operators generate new logarithmic corrections

�S ⇠ �

2n
A⌃ log

�
�

2n/(d�2)
✏

�
, (4)

where �, A⌃ and ✏ denote the coupling constant, the area of the entangling surface and a

UV cuto↵, respectively. In order to check this result, we carry out an explicit holographic

calculation for n = 2 and d = 4, and show that the expected logarithmic correction really

occurs.

�S ⇠ �

2
A⌃ log

�
�

2/(d�2)
✏

�
, (5)

The rest of this paper is organized as follows: In Sec. 2, we summarize higher dimensional

holographic entanglement entropies and the perturbative method describing a relevant defor-

mation in the weak coupling regime. In the strong coupling regime, we investigate an additional

logarithmic correction defined on a strip and disk in Sec. 3. Results show that even in the

strong coupling regime there exist similar logarithmic corrections, and that the corresponding

operators are given by a fermion mass for d = 4 and by a Yukawa term for d = 3. Finally,

2

Its coefficient is proportional to the entangling surface area

where                imply the coupling constant, the entangling surface area and a UV 
cutoff respectively.
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The rest of this paper is organized as follows: In Sec. 2, we summarize higher dimensional

holographic entanglement entropies and the perturbative method describing a relevant defor-

mation in the weak coupling regime. In the strong coupling regime, we investigate an additional

logarithmic correction defined on a strip and disk in Sec. 3. Results show that even in the

strong coupling regime there exist similar logarithmic corrections, and that the corresponding

operators are given by a fermion mass for d = 4 and by a Yukawa term for d = 3. Finally,
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In a CFT on a Euclidean space,

- The action is given by a functional of the metric and fields. 

- If the system resides in the vacuum state 

the reduced density matrix in a subsystem A is represented as

Recently, it has been discussed that a relevant operator with a specific conformal dimension

can provide an additional logarithmic term [30], which has been checked in a free CFT [31, 32,

33, 34, 35]. In a general QFT on a Euclidean space, the action is given by a functional of the

metric and fields. If the system resides in the vacuum state |0i, the reduced density matrix in

a subsystem A is represented as tracing over its complement denoted by Ā

⇢ = Tr
Ā

|0i h0| ⌘ e

�K

, (8)

where K means a modular Hamiltonian. In general, a modular Hamiltonian is unknown except

a planar entangling surface embedded in a flat space. In known cases, it is proportional to the

Rindler Hamiltonian [33, 34, 35]

K = �2⇡

Z

⌃

d

d�2
x

Z 1

0

dx1 x1 T22, (9)

where ⌃ is the entangling surface. Here, coordinates, x
µ

= {x
a

, y

i

}, indicate transverse and

longitudinal directions along the plane surrounded by the entangling surface. Above x1 and x2

correspond to orthogonal coordinates. In this case, the entanglement entropy is expressed as a

Von-Neumann entropy

S = �Tr (⇢ log ⇢) = h0 |K| 0i . (10)

In this formula, the last term indicates a Euclidean path integral over the entire manifold with

insertion of K [33, 34, 35, 14].

Under the relevant deformation with a small coupling constant (� ⌧ 1)

�O =

Z
d

4
x �O(x), (11)

the derivative of the entanglement entropy with respect to the coupling constant leads at first

order to
@S

@�

= �hKOi+
⌧
@K

@�

�
. (12)

In this case, the last term automatically vanishes due to the normalization, Tr ⇢ = 1. At second

order the following relation is obtained

@

2
S

@�

2
= hKOOi �

⌧
@K

@�

O
�

= hKOOi � hOOi . (13)

These results imply that the variation of the entanglement entropy up to second order can be

written as

�S = �hKOi�+
1

2

⇣
hKOOi � hOOi

⌘
�

2 + · · · . (14)
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where K is a Hermitian operator called the modular Hamiltonian

- The modular Hamiltonian plays an important role in studying the entanglement 
entropy, becausea unitary operator generates a symmetry of the 

subsystem
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1 Introduction

SE ⇠ Area(@A)

✏

d�1
+ subleading finite terms (1)

and the free energy, F = E � THSBH , is given by

Sbd ⇠
Z

d

4
x

Z
d

4
x

0 �0(0, x)�0(0, x
0)

(x� x

0)2�
(2)

The modular Hamiltonian plays an important role in studying the entanglement entropy, because

a unitary operator U(s) = ⇢

is = ✏

�iKs generates a symmetry of the system.

Tr (⇢ O) = Tr (⇢ U(s)OU(�s))

�(z, x) z ! 0
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Deform it by a relevant deformation operator, O, with a small �

K = K0 + �O ⌘ K0 + �

Z
d

4
x O(x),

Under this relevant deformation, the entanglement entropy change is given by

�S =
1

2

⇣
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⌘
�

2 + · · · .
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Using the free fermion propagator

The correlator hT
µ⌫

Oi vanishes for a CFT, so does hKOi because K ⇠ T

µ⌫

[35]. The first

nonvanishing contribution consequently appears at �2 order. When CFT correlation functions

are given as [35, 45, 46]

hO(x2)O(x3)i =
N

(x2 � x3)2�
, (15)

hT
µ⌫

(x1)O(x2)O(x3)i =
1

x

d

12x
2��d

23 x

d

31

t

µ⌫

(X̂23), (16)

where

t

µ⌫

(X̂23) =
d�N

(d� 1)S
d

✓
X̂

µ

X̂

⌫

� 1

d

�

µ⌫

◆
and X23 =

x21

x

2
21

� x31

x

2
31

, (17)

with

X̂

µ

=
X

µp
X

2
, x

ij

= x

i

� x

j

, (18)

their integrals give rise to [35]

hOOi ⌘
Z

d

d

x

Z
d

d

y hO(x)O(y)i

=
N⇡

d/2+1

�� (d� 1)/2

�(�� d/2)A⌃

�(�)

Z
l

�

dx1 x

d�2�+1
1 , (19)

and

hKOOi = (2⇡)2
Z

d

d�2
y

Z 1

0

dx1x1

Z
d

d�2
ȳ

Z 0

�1
dx̄1x̄1

Z
d

d

z hT22(x)O(x̄)O(z)i

=
4d�N⇡

d+1

d(d� 1)(d� 2�)(d� 2�� 1)S
d

�(�� d/2)A⌃

�(�)�(d/2)

Z
l

�

dx1x
d�2�+1
1 , (20)

where l = �

1/(��d) is introduced as an IR cuto↵.

Now, let’s consider a CFT as an unperturbed one in a 4-dimensional Euclidean space and

deform it with a fermionic mass term, � = m and O =  ̄ . In this case, the deformation

operator corresponds to a relevant operator with a conformal dimension � = 3. From a

massless fermion two-point function

⌦
 ̄(x) (0)

↵
=

1

S4

�

µ

x

µ

x

4
, (21)

where �
µ

is a Euclidean gamma matrix and S4 denotes a solid angle, the two-point correlation

function of O reads

hO(x)O(0)i = 4

S

2
4

1

x

6
. (22)

Comparing it with (15), the normalization constant is given by N = 4
S

2
4
. In a small mass limit,

this relevant deformation causes a small change of the entanglement entropy following (14).

5

The small change of the entanglement entropy at second order leads to the 
expected logarithmic correction 

Using the above noromalization constant, the small change of the entanglement entropy leads

to the following logarithmic correction at second order [31, 32, 35]

�S =
1

12⇡
m

2
A⌃ log (m✏) . (23)

In sum, the additional logarithmic correction in a d-dimensional CFT occurs at �2 order when

the relevant operator has the conformal dimension � = d+2
2 . It would be interesting to ask

whether the same relevant operator also generate a similar logarithmic correction in the strong

coupling regime. In the next section, we will investigate this issue by using the AdS/CFT

correspondence.

3 Relevant deformation in the strong coupling regime

The relevant operator with a specific conformal dimension, as mentioned before, provides an

additional logarithmic term in the weak coupling limit. In order to understand such a deforma-

tion in the large t’ Hooft coupling regime, we need to take into account the dual gravity theory

according to the AdS/CFT correspondence. In the AdS/CFT context, the relevant deformation

operators can be realized by introducing appropriate massive scalar fields to the AdS geometry.

The action governing such massive scalar fields is

S =

Z
d

d+1
x

p�G


1

22
(R� 2⇤)� 1

2
(@�)2 � 1

2
m

2
�

�

2

�
. (24)

In this case, the gravitational backreaction of the scalar field modifies the inside geometry of

the AdS space, which is associated with the IR deformation of the dual CFT. If the mass of

the scalar field is given by m

�

, the conformal dimension of its dual operator is determined by

m

2
�

= � (�� d) . (25)

When we take m

2
�

= �3 for d = 4, the dual operator represents a scalar operator with � = 3.

Since quark (or fermion) denoted by q has the conformal dimension 3
2 in a 4-dimensional CFT, a

possible candidate isO
q

= q̄q. Its vacuum expectation value (vev) is called the chiral condensate

� = hO
q

i, which has been widely studied in the holographic QCD model to understand the

chiral symmetry breaking e↵ect [47, 48, 49, 50, 51, 52, 53]. For d = 3, on the other hand, we

need to take m2
�

= �5/4 for generating a logarithmic correction because it gives rise to a scalar

operator with � = 5/2. In a 3-dimensional CFT a Yukawa term becomes a plausible candidate.

Assuming that � in (24) depends only on the radial coordinate, then relevant deformation

operators we consider do not a↵ect on the asymptotic geometry. In this case, the scalar field

for d = 4 has the following perturbative solution [52, 53, 54, 55]

�(z) = m

q

z (1 + · · ·) + �z

3 (1 + · · ·) . (26)
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becomes clear when regarding the on-shell action of the scalar field. It gives rise to the vev of
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which is the exactly same as the relevant deformation given in (11). For d = 3, similarly, the

on-shell action leads to the following Yukawa term
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where ' and  are a scalar and fermion field of the dual 3-dimensional CFT and g

Y

denotes

the Yukawa coupling constant.

Let’s first focus on a 4-dimensional CFT and its dual gravity. The gravitational backreac-

tion of the scalar field does not break the Poincare symmetry of the boundary space because

it depends only on the radial coordinate. Therefore, the most general ansatz including the
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From this perturbative solution one can find an exact numerical solution, which generally

yields a singularity at the center, z = 1. This fact indicates that this solution is IR incomplete.

However, since the logarithmic term we are interested in is insensitive to IR details [32, 36],

the above solution is su�cient in studying the logarithmic correction. Nevertheless, it still

remains as an interesting question to figure out the IR physics. One way to get rid of the
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while A20 and A22 imply the contributions from the metric and minimal surface deformation, respec-
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As a consequence, the logarithmic correction caused by the relevant deformation becomes in the
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This additional correction was called a universal logarithmic term in that it is always proportional
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Thermodynamics-like law of the entanglement entropy

It has been found that the entanglement entropy of an excited state in a strip region 
follows the thermodynamics-like law after defining an appropriate entanglement 

temperature [Bhattacharya-Nozaki-Takayanagi-Ugajin, 2013]
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1 Introduction

Recently, it has been found that the entanglement entropy of an excited state in a strip region follows

the thermodynamics-like law after defining an appropriate entanglement temperature [Bhattacharya-

Nozaki-Takayanagi-Ugajin, 2013].

�E = TE�S,

In this case, the entanglement temperature has the form

TE ⌘ �E

�S
=
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�
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l
,

where � is a non-universal constant relying on details of the microscopic theory.

Focusing on the size dependence of the entanglement temperature,

it is proportional to the inverse of the system size, TE ⇠ 1/l, regardless of the shape of the entangling

surface and details of the underlying theory.
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The similar universal structure also occurs in black hole physics.

Bekenstein bound 

Through a thought experiment for black hole thermodynamics, the Bekenstein
bound has been proposed as a universal bound of the thermal entropy in flat space.

When an object is absorbed into a black hole, the entropy of an object increases the 
black hole area due to the generalized second law of thermodynamics.  The increased 

entropy is bounded by the absorbed energy
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• Through a thought experiment for black hole thermodynamics, the Bekenstein bound has been

proposed as a universal bound of the thermal entropy in flat space.

• When an object is absorbed into a black hole, the entropy of an object increases the black hole

area due to the generalized second law of thermodynamics. The increased entropy is bounded

by the absorbed energy

�S  �l�E,

where l and � are a typical size of the system and a non-universal numerical factor of order 1.

• The Bekenstein bound is universal in that it is independent of the microscopic detail up to �.
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- The entanglement entropy has been proposed as the origin of black hole entropy. 

- Let us try to understand the Bekenstein bound from the entanglement entropy bound 
which is applicable not only a thermal system but also to a quantum system.

Relative entropy

- When two states are in the same Hilbert space, the relative entropy gives rise to a 
fundamental statistical measure of their distance. 

- If two reduced density matrices are denoted by the relative entropy 
is defined as
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• The entanglement entropy has been proposed as the origin of black hole entropy.

• Let us try to understand the Bekenstein bound from the entanglement entropy bound which is

applicable not only a thermal system but also to a quantum system.

Relative entropy

• When two states are in the same Hilbert space, the relative entropy gives rise to a fundamental

statistical measure of their distance.

• If two reduced density matrices are denoted by ⇢1 and ⇢0, the relative entropy S(⇢1|⇢0) is defined
as

S(⇢1|⇢0) ⌘ Tr (⇢1 log ⇢1)� Tr (⇢1 log ⇢0).

Here we can identify ⇢0 with the reduced density matrix of a ground or thermal state, while ⇢1

is one for a quantumly or thermally excited state.
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as
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• If there exists a parameter connecting two reduced density matrices such that ⇢1 = ⇢1(�) and

⇢0 = ⇢1(0), the relative entropy usually has a non-negativity value

S(⇢0|⇢0) = 0 and S(⇢1|⇢0) > 0 for ⇢0 6= ⇢1.

Thus, ⇢0 corresponds to a minimum point.

• Using the definition of the entanglement entropy, the relative entropy can be reexpressed as

S(⇢1|⇢0) = �K ��S,

where variations of the modular Hamiltonian and entanglement entropy are given by

�K = Tr (⇢1K)� Tr (⇢0K) and �S = S(⇢1)� S(⇢0).

• The non-negativity of the relative entropy leads to the following relation
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which has been regarded as a generalized Bekenstein bound holding for any region in QFT.
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1 Introduction

• Following the simple dimension counting of a relativistic QFT, we can guess that the increased

modular Hamiltonian is proportional to the increased energy

�K = � l�E

with a non-universal numerical factor �.

• Substituting this relation into the entanglement entropy bound, we finally arrive at the Beken-

stein bound working in a QFT.

• When the entanglement entropy bound is saturated, �K = �S, we can reinterpret it as the

thermodynamics-like law. In this case, the entanglement temperature founded by Bhattacharya,

Nozaki, Takayanagi and Ugajin naturally appears

TE ⌘ �E

�S
=

1

�l
. (1)

2 Discussion

Acknowledgement

C. Park was supported by Basic Science Research Program through the National Research Foun-

dation of Korea funded by the Ministry of Education (NRF-2013R1A1A2A10057490) and also by the

Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City.

References

[1] C. Park, Phys. Lett. B 708, 324 (2012) [arXiv:1112.0386 [hep-th]].

[2] B. -H. Lee, S. Mamedov, S. Nam and C. Park, JHEP 1308, 045 (2013) [arXiv:1305.7281 [hep-th]].

1

with a non-universal numerical factor

Contents

1 Introduction 1

2 Discussion 1

1 Introduction

• Following the simple dimension counting of a relativistic QFT, we can guess that the increased

modular Hamiltonian is proportional to the increased energy

�K = � l�E

with a non-universal numerical factor �.

• Substituting this relation into the entanglement entropy bound, we finally arrive at the Beken-

stein bound working in a QFT.

• When the entanglement entropy bound is saturated, �K = �S, we can reinterpret it as the

thermodynamics-like law. In this case, the entanglement temperature founded by Bhattacharya,

Nozaki, Takayanagi and Ugajin naturally appears

TE ⌘ �E

�S
=

1

�l
. (1)

2 Discussion

Acknowledgement

C. Park was supported by Basic Science Research Program through the National Research Foun-

dation of Korea funded by the Ministry of Education (NRF-2013R1A1A2A10057490) and also by the

Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City.

References

[1] C. Park, Phys. Lett. B 708, 324 (2012) [arXiv:1112.0386 [hep-th]].

[2] B. -H. Lee, S. Mamedov, S. Nam and C. Park, JHEP 1308, 045 (2013) [arXiv:1305.7281 [hep-th]].

1

Substituting this relation into the entanglement entropy bound, 
we finally arrive at the Bekenstein bound working in a QFT. 

When the entanglement entropy bound is saturated, , we can reinterpret it as 
the thermodynamics-like law. In this case, the entanglement temperature founded by 

Bhattacharya, Nozaki, Takayanagi and Ugajin naturally appears

Contents

1 Introduction 1

2 Discussion 1

1 Introduction

• Following the simple dimension counting of a relativistic QFT, we can guess that the increased

modular Hamiltonian is proportional to the increased energy

�K = � l�E

with a non-universal numerical factor �.

• Substituting this relation into the entanglement entropy bound, we finally arrive at the Beken-

stein bound working in a QFT.

• When the entanglement entropy bound is saturated, �K = �S, we can reinterpret it as the

thermodynamics-like law. In this case, the entanglement temperature founded by Bhattacharya,

Nozaki, Takayanagi and Ugajin naturally appears

TE ⌘ �E

�S
=

1

�l
. (1)

2 Discussion

Acknowledgement

C. Park was supported by Basic Science Research Program through the National Research Foun-

dation of Korea funded by the Ministry of Education (NRF-2013R1A1A2A10057490) and also by the

Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City.

References

[1] C. Park, Phys. Lett. B 708, 324 (2012) [arXiv:1112.0386 [hep-th]].

[2] B. -H. Lee, S. Mamedov, S. Nam and C. Park, JHEP 1308, 045 (2013) [arXiv:1305.7281 [hep-th]].

1

Contents

1 Introduction 1

2 Discussion 1

1 Introduction

• Following the simple dimension counting of a relativistic QFT, we can guess that the increased

modular Hamiltonian is proportional to the increased energy

�K = � l�E

with a non-universal numerical factor �.

• Substituting this relation into the entanglement entropy bound, we finally arrive at the Beken-

stein bound working in a QFT.

• When the entanglement entropy bound is saturated, �K = �S, we can reinterpret it as the

thermodynamics-like law. In this case, the entanglement temperature founded by Bhattacharya,

Nozaki, Takayanagi and Ugajin naturally appears

TE ⌘ �E

�S
=

1

�l
. (1)

2 Discussion

Acknowledgement

C. Park was supported by Basic Science Research Program through the National Research Foun-

dation of Korea funded by the Ministry of Education (NRF-2013R1A1A2A10057490) and also by the

Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City.

References

[1] C. Park, Phys. Lett. B 708, 324 (2012) [arXiv:1112.0386 [hep-th]].

[2] B. -H. Lee, S. Mamedov, S. Nam and C. Park, JHEP 1308, 045 (2013) [arXiv:1305.7281 [hep-th]].

1



Notice
A general modular Hamiltonian is not known except several simple cases. 

One of them is the case with a spherical entangling surface. 

Now, we check that the modular Hamiltonian is related to the energy, 
in a nontrivial but physically interesting theory.
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1 Introduction

Note that

a general modular Hamiltonian is not known except several simple cases. One of them is the case with

a spherical entangling surface.

Now, we check that the modular Hamiltonian is related to the energy, �K = � l�E, in a nontrivial

but physically interesting theory.

A charged dilatonic black brane geometry, whose dual QFT has a Fermi sea and massless fluctua-

tions on the Fermi surface, is described by [Gubser-Rocha, 2009]
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If there exists a nontrivial � approaching to zero at the asymptotic boundary, there exists an

asymptotic AdS solution.

2 Discussion

Acknowledgement

C. Park was supported by Basic Science Research Program through the National Research Foun-

dation of Korea funded by the Ministry of Education (NRF-2013R1A1A2A10057490) and also by the

Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City.

References

[1] C. Park, Phys. Lett. B 708, 324 (2012) [arXiv:1112.0386 [hep-th]].

[2] B. -H. Lee, S. Mamedov, S. Nam and C. Park, JHEP 1308, 045 (2013) [arXiv:1305.7281 [hep-th]].

[3] B. -H. Lee, C. Park and S. Shin, JHEP 1012, 071 (2010) [arXiv:1010.1109 [hep-th]].

1

A charged dilatonic black brane geometry, whose dual QFT has a Fermi sea and 
massless fluctuations on the Fermi surface, is described by [Gubser-Rocha, 2009]

Contents

1 Introduction 1

2 Discussion 1

1 Introduction

Note that

a general modular Hamiltonian is not known except several simple cases. One of them is the case with

a spherical entangling surface.

Now, we check that the modular Hamiltonian is related to the energy, �K = � l�E, in a nontrivial

but physically interesting theory.

A charged dilatonic black brane geometry, whose dual QFT has a Fermi sea and massless fluctua-

tions on the Fermi surface, is described by [Gubser-Rocha, 2009]

S =
1

22

Z
d

5
x

p
�g


R� 1

4
e

4�
Fµ⌫F

µ⌫ � 12@µ�@
µ
�+

1

R

2

⇣
8e2� + 4e�4�

⌘�
.

If there exists a nontrivial � approaching to zero at the asymptotic boundary, there exists an

asymptotic AdS solution.

2 Discussion

Acknowledgement

C. Park was supported by Basic Science Research Program through the National Research Foun-

dation of Korea funded by the Ministry of Education (NRF-2013R1A1A2A10057490) and also by the

Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City.

References

[1] C. Park, Phys. Lett. B 708, 324 (2012) [arXiv:1112.0386 [hep-th]].

[2] B. -H. Lee, S. Mamedov, S. Nam and C. Park, JHEP 1308, 045 (2013) [arXiv:1305.7281 [hep-th]].

[3] B. -H. Lee, C. Park and S. Shin, JHEP 1012, 071 (2010) [arXiv:1010.1109 [hep-th]].

1

If there exists a nontrivial approaching to zero at the asymptotic boundary, there 
exists an asymptotic AdS solution.

Contents

1 Introduction 1

2 Discussion 1

1 Introduction

Note that

a general modular Hamiltonian is not known except several simple cases. One of them is the case with

a spherical entangling surface.

Now, we check that the modular Hamiltonian is related to the energy, �K = � l�E, in a nontrivial

but physically interesting theory.

A charged dilatonic black brane geometry, whose dual QFT has a Fermi sea and massless fluctua-

tions on the Fermi surface, is described by [Gubser-Rocha, 2009]

S =
1

22

Z
d

5
x

p
�g


R� 1

4
e

4�
Fµ⌫F

µ⌫ � 12@µ�@
µ
�+

1

R

2

⇣
8e2� + 4e�4�

⌘�
.

If there exists a nontrivial � approaching to zero at the asymptotic boundary, there exists an

asymptotic AdS solution.

2 Discussion

Acknowledgement

C. Park was supported by Basic Science Research Program through the National Research Foun-

dation of Korea funded by the Ministry of Education (NRF-2013R1A1A2A10057490) and also by the

Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City.

References

[1] C. Park, Phys. Lett. B 708, 324 (2012) [arXiv:1112.0386 [hep-th]].

[2] B. -H. Lee, S. Mamedov, S. Nam and C. Park, JHEP 1308, 045 (2013) [arXiv:1305.7281 [hep-th]].

[3] B. -H. Lee, C. Park and S. Shin, JHEP 1012, 071 (2010) [arXiv:1010.1109 [hep-th]].

1



The charged dilatonic black brane solution 

Contents

1 Introduction 1

2 Discussion 1

1 Introduction
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where m, µ, and Q indicate the charged black brane’s mass, chemical potential, and charge density,

respectively.
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1 Introduction

Using the holographic renormalization, the grand potential of the grand canonical ensemble becomes

⌦ = �⇡4V3

22
T 4
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3
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other thermodynamic quantities satisfying the first law of thermodynamics are given by
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where E, P , SBH and N/V3 indicate the energy, pressure, entropy and charge density respectively.
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1 Introduction

If the quantum state is excited without the change of the chemical potential, the modular Hamiltonian

is associated with the stress tensor

K|µ = 2⇡⌦2

Z

⇢l
d⇢ ⇢2

l2 � ⇢2

2l
T00|µ

where T00|µ indicates the energy density at a given µ and ⌦2 is the solid angle of the spherical

entangling surface.
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1 Introduction

Since T00 is uniform in our model, the modular Hamiltonian can be rewritten as

K|µ =
2⇡

5
l E|µ , (1)

where the energy contained in the ball-shaped region is given by E|µ = ⌦2
R
⇢l d⇢ ⇢2 T00|µ.

• This relation shows how the modular Hamiltonian is related to the energy over the interior of

the sphere.

• This is the expected form and shows that the entanglement entropy bound is equivalent to the

Bekenstein bound except that the former is also working in a quantum system.

When µ is fixed, the increased modular Hamiltonian becomes

�K|µ ⌘ K (TH , µ)�K (0, µ) =
⇡5l4⌦2

52
T 4
H +

4⇡34l4⌦2

52
µ2T 2

H . (2)
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1 Introduction

When µ is fixed, the increased modular Hamiltonian becomes

�K|µ ⌘ K (TH , µ)�K (0, µ) =
⇡5l4⌦2

52
T 4
H +

4⇡34l4⌦2

52
µ2T 2

H . (1)

Using the holographic technique, the hEE becomes

S (TH , µ) =
⇡l2⌦2

2✏2
+

⇡⌦2

2
log
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l

⌘
� ⇡⌦2
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(1 + 2 log 2)

+
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32
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452
8µ4 +

⇡l4⌦2

52
�
⇡2T 2

H + 24µ2
�2

,

which is the entanglement entropy of the excited state with the chemical potential.

At a given chemical potential, the increased entanglement entropy up to l4 order is given by

�S|µ ⌘ S (TH , µ)� S (0, µ) =
⇡5l4⌦2

52
T 4
H +

4⇡34l4⌦2

52
µ2T 2

H , (2)

which is the exact same as the previous increased modular Hamiltonian.
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When higher order corrections are ignored, the saturated entanglement entropy bound leads to the

thermodynamics-like law

�K|µ = �S|µ =
1

TE
�E|µ , (1)

with

TE =
5

2⇡l
. (2)

Recently, it has been shown that the linearized Einstein equation of the AdS geometry can be

reproduced from the entanglement entropy’s thermodynamics-like law of the dual QFT [Raamsdonk

and et.al, 2013].
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If the quantum state is excited without the change of the chemical potential, the modular Hamiltonian

is associated with the stress tensor

K|µ = 2⇡⌦2

Z

⇢l
d⇢ ⇢2

l2 � ⇢2

2l
T00|µ

where T00|µ indicates the energy density at a given µ and ⌦2 is the solid angle of the spherical

entangling surface.
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1

which yields

δEB(R,x0)
R→0−−−→ 2π δ⟨Ttt(x0)⟩

∫

|x|≤R

dd−1x
R2 − x⃗2

2R
=

2πRdΩd−2

d2 − 1
δ⟨Ttt(x0)⟩ (4.2)

where Ωd−2 is the volume of a unit (d− 2)-sphere. Now using the CFT relation δEB = δSB ,

we find

δ⟨Ttt(x0)⟩ =
d2 − 1

2πΩd−2
lim
R→0

(

1

Rd
δSB(R,x0)

)

. (4.3)

The meaning of this equation is the following: SB is a bulk Wald functional that depends

on a small metric perturbation hab, as well as the radius R and center x0 of the entangling

surface. The above equation tells us that SB[h]/Rd cannot be arbitrary, but rather it must

have a finite limit as R → 0.

Repeating the same calculation for a frame of reference defined by some proper d-velocity

uµ, we find

uµuν δ⟨Tµν(x0)⟩ =
d2 − 1

2πΩd−2
lim
R→0

(

1

Rd
δS(u)

B(R,x0)

)

, (4.4)

where δS(u)
B(R,x0)

is the variation of the entanglement entropy for a ball of radius R, centered

at x0 on a spatial slice in the frame of reference of an observer moving with the d-velocity

uµ. From the result (4.4), it is clear that given the bulk prescription for calculating δSB , this

formula provides us the holographic dictionary for the stress tensor.

Example: theories with entropy equal to area

As an example, consider a d-dimensional field theory for which the entanglement entropy is

computed by the Ryu-Takayanagi prescription [1] in the dual (d+ 1)-dimensional bulk

Sgrav
B =

AB̃

4GN

. (4.5)

We consider a small metric perturbation hab of the AdS metric (2.12), chosen to be in radial

gauge,

hzµ = hzz = 0 . (4.6)

The change in the entanglement entropy of the ball due to this bulk perturbation is

δSgrav
B =

Rℓd−3

8GN

∫

|x⃗−x⃗0|≤R
dd−1x z2−d

(

δij −
1

R2
(xi − xi0)(x

j − xj0)

)

hij(z, t0, x⃗) . (4.7)

In the limit R → 0, we can replace hij(z, xµ) by hij(z, x
µ
0 ) under the integral sign. To compute

the R-scaling of the entropy and check whether it can satisfy (4.3), it is useful to define the

rescaled variables

x̂i =
xi − xi0

R
, ẑ =

z

R
(4.8)
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Suppose that is the modular Hamiltonian of the undeformed theory. Then, the 
reduced density matrix is given by

Contents

1 Introduction 1

2 Discussion 1

1 Introduction

• Suppose that K0 is the modular Hamiltonian of the undeformed theory. Then, the reduced

density matrix is given by

⇢0 =
e�K0

Tr e�K0
. (1)

In a ball-shaped region, the modular Hamiltonian is related to the energy, K0 =
E
TE

.

• Now, let us deform this theory by a relevant number operator, N ,

K = K0 �
µE

TE
N, (2)

where the entanglement chemical potential, µE , accounts for how the global quench modifies the

modular Hamiltonian and entanglement entropy.

• The reduced density matrix of the deformed theory becomes

⇢ =
e�K

Tr e�K
. (3)

The non-negativity of the relative entropy gives rise to a generalized entanglement entropy
bound

�K =
�E

TE
� µE

TE
�N � �S or �E � TE�S + µE�N. (4)

• The previous result, dE = THdSBH , corresponds to a specific case with �N = 0.

• When the generalized entanglement entropy bound is saturated, the entanglement chemical
potential is given by

µE = �
51/6l⌦2

p
32⇡6V 4

3 T
6
H + 45N2

32V 1/3
3 (32⇡6V 4

3 T
6
H + 45N2)

⇥

h⇣p
160⇡6V 4

3 T
6
H + 225N2 + 15N

⌘
4/3 � 8 21/352/3⇡4V 8/3

3 T 4
H

i

⇣
2
p
160⇡6V 4

3 T
6
H + 225N2 + 30N

⌘
2/3

,

where µE  0.
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