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JdS geometry

—

- Cams&amﬁv curved space with a negative cosmological constant

Action for AdS; 4

1

I= 167G

/ 4 /=5 (R — 2A)

with a negative cosmological constant

d(d—1)
A=—
2R?
. . ] . ., 1
Its equation of motion (Einstein equation), 0="R,, — §9WR+ Agw 5
allows an AAS geometry
2 R? d(d+1
ds® = —%dﬂ + 7 (du2 + u2d§2§_2) + T—erz where R = — ( RJg )



- 4

\/AdS(.Z,d) geometry

—

- can be is defined as a hypersurface in an one-dimensional higher flat

space denocted bj R4

Proper distance in the (d+2)-dimensional ambient flat space

ds® = —dy? | — dy; + dyi + - + dy3

which is invariant under the S0(2,d) Lorentz Eransformation

Then, the AdS;; geomelry appears as the hfjpersurfaae sa&isfvihg

Y2~y Tyl + o +yi = —R?

Since this constraint does not breal the Lorentz symmetry of the ambient

space, the resulting geometry also preserves the S0(2, &) symmetry which
is nothing but the isometry of the AdS;.; space. )

9
N .\

-/
)



=~

~—

Rewriting the metric of the ambient space in terms of coordinates

_  satisfying the constraint

y—l"‘?/d:RQ’r and y“:%xu(uzojljjd—l)

one can reproduce the AdS; ; metric

742 2

ds* —dt* 4+ d7°) + —-dr”

:ﬁ(

Using different coordinate, different AAS metrics can be obtained
r? fr(r) R?

ds? = ——25 2412 4 r2dX2 + dr?
R? 5 2 (r)
wihere — For k=0, dzz implies the metric of RI1
R2
r — For kL =1, dz,% E,mpu,es the mebric of Sd—1

—_ For k=-1, dzi implies the metric of HI!
S’

S
\J )\
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N
\/qu/CFT corres,paua(ence (sjmmeﬁr\j)

o, \—
N’
Classical SUGRA <e=mp |Super-CET at the AdS boundary
on AdS space-time lto1 (in_a strong coupling regime)
ADS/CFT correspondence
Isometry of AdS; «—— S50(2,4) ——— Conformal symmebry on R
Isometry of &5 «—  SO06) —— R-symmetry of N=4 SUSY
=Y

conformal symmebry in 1+3-dim, Space-time /
by 4 d [ 4

Polncare group S0(1,3) + Scaling + SPQCEQL COV\fOT‘lM?L » SO(2,4)
- \ N
5\
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AdS/CFT correspondence (strong/weak duality)

-

o’
ALS/CFT tmrres?omdanca

Son—shell Zgauge — <€—SC’FT>

Zgra,vity ~e

- this SUGRA solution is valid in the gN — o0 Limik (classical Limil, R <1 )

- large ¢ Hooft coupling » = grulN = gN ‘ nonperturbatvie gauge theory




\/ Applying the ADS/CFT correspondence to a deformed CFT ),

—

—  Deform the A4S geomelry with a massive scalar field which breaks the

conformal symmetry

_ 1 ) — . _E,LW _1 2 2
S—lGWG/d:U\/ g(R 2A 59 0,90, ¢ 2mq§>

I ——<m’<0, ¢ corresponds to a relevant operator deforming the dual CFT.

Near the bouhciarv
o= ¢o

(14 )+%(1+...) with 2<A<d (m2=A(A—4)

=

when 1 — 0, ¢ = 0 which does not affect the UV physics of the dual &FT

(relevank). \/

YN (U e )
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\/ In this case,

) $o : source of the dual operator
O  : dual operator

A : conformal dimension of the dual operator

The holographic renormalization

The boundary term of the scalar field reduces to
Sbd ™~ /d4£€\/—9 9" ¢ 0o

2
~ /d4x<r4qi%A—|—¢00+ A—4+"')

near the boundary (r — 0 ) divergence finite term

In order ko obtain a finite generating functional, we need to add an

addition counker kterm. ~ \/ ,
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—

After the appropriate holographic renormalization,

Z — e_Son—shell

with )
Son—shell — SCFT - /d x¢00

which corresponds to the generating functional of the dual &FT.

One-point correlation function from the generating functional

07
9ag ~ \Olao=o

n-point correlation function can be obtained bj applying n-derivakives

with respect to the source to the above generating functional
oz
99y

= {O0")]40=0

> o/ o’ ,\,/\
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\/‘ wo-—-}yoémé correlation function

—

For convenience, introduce a new coordinake, 2z =1/r
N’

Thewn, the AdS metric becomes
dz? — dt? + da?

ds? = S
Z

and the massive scalar field is governed by

1
/ AdS 0= =0, (V=99 0,6(=1,7) ) —mP(=t, 0

Solubion
__________________ oS ¢(Z7 513) ¢(Z7 x) — /d4ZL’/D¢ (Za €L, 07 x/) qu(Oa CC’)

with Bulk-to-boundary propagator

Dy (2,2;0,2') ~ (Z2 S (;_x,)2)A
/ * V(O 9




\/
_\/'Nam' the bcu,ndarv (z—=0),

" the buﬂ«f’-—ﬁo--bouhdarv propagator reduces to

S—

D, (z, x; 0, :13’) ~ @ = zr;’)2A

which leads ko

lim ¢(z,x) = ZA/d4£B/ $0(0, )

2—0 (x — 2')%4

Noting that the asymptotic behavior of ¢(2,7) is given by
¢(z,x) = ¢o(x) A=A (14--)+ O(x) 2R (14---)

we can obkain

O ~ [t 20L)

(:U . 33’)2A



< Then, the boundary (on-shell) action of matter becomes

- 4 4/¢00$¢0(0x)
S [t [ aty 20200,
As a consequence, the two-point correlation function reads
0 1
(0(z)0(")) = O _z-

d90(0,2") D¢ (0, x) (5= ")

which is exactly the two-point function expected in the CFT.
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AdS black hole geometry Q

“
o
AdS space # ground state of dual QFT

AdS
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N
\/Ac(S' black hole geometry

o

4

N’

AdS space - ground state of dual QFT

localized matter in the ALS space

AdS
B) singularity at the center
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\_/ AdS black hole 5)ecpmefry

—

N’

AdS space » ground state of dual QFT

localized matter in the ALS space

B) singularity at the center

In order to avoid this singularity,

the black hole Seome&rv is requ.ired

¥ NS N’ e\
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\_/ AdS black hole geometry

—

Equation of motion for a black hole

1

Black hole geomef:rj

r? fi(r) R?

ds® = — dt® + r2dy? dr?
S R2 +7 kT Tsz(’r) r
wikh B2
mn
fk(T):l—Fer—rd

where m is the black hole mass.

From now oh, we focus on the case with k = 0 for simplicity.

u\/ @)
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~ Properties of a black hole

S

- Black hole horizon, 1}, where g vanishes

- Hawking radiation (Hawking temperature)

_ 1 Ogu
A7 Or

r=rp

TH

- Belkenstein-Hawking entropy (area Law)

A

SBH:E

- Black hole physics sakisfies the thermodynamic Law (macroscopic)

> o/ o’ v
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\/ Mystery of black hole

—

1. Area law of the Bekenstein-Hawking entropy

2, What is the microscopic origin of the Bekenstein-Hawking entropy?
t Hooft proposed the holographic principle. The AAS/CFT correspondence is
the realization of the holography
1. the area can be mabched to the volume of the dual QFT (extensive).
2. the Bekenstein-Hawking entropy then counts the degrees of freedom of
the dual QFT

AdS/CFT correspondence of a black hole geomelry

Pure AdS space — groud state of dual QFT at zero &empera&ur;

AdS black hole > dual @FT at finite temperature \/

N & S
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\/ Black hole Ehermoc(ymaméc:s

—

For k=0 and d=414,

S

m
—1 - —
fo(r) !
- Black hole horizon : 7, =m!/4
. Th
- Hawking temperature : Ty = —3
" . . . V . . 3
- Bekenstein-Hawking eh&ropv : Spy = _4Gr?‘ with V= [d

- The first law of thermodynamics : dE =Ty dSpp

3V 3V
vV
- ‘FT‘QQ. @.V\QT‘Sj . F=FE—-—TygSpy = —mTé

~ N4



/ Holographic renormalization

~—

~

How can Black hole thermodynamics be identified with that of the dual QFT?

S—

From the ALS/CFT aorre_spm\ciem:e 7 = ¢ Pon—shell — <e—SCFT>

one can evaluate the MahperEurbaﬁive partition function (or generating
functional) of the dual &FT and then extract many physical information

from it

Now, let us calculate the on-shell gravi&j action,

When evaluating the on-shell 91‘&\/&&3 action, we encounter several probtems.

- not well-defined variation

- divergence
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\/ Gibbons-Hawlking term

=

In the gravity action

1
S = 60 /ddﬂx\/—g (R —2A)
the curvakure scalar tvolves

R = (0 gw) + -+ 049" g

S—

Although this boundary term does not affect the bullk equation of motion, it

causes problem for defining the variation of the boundary action.

0SS = %-I- 0Spy

equation of motion
~’

To get rid of such a problematic term, one should add a Gibbons-Hawking term

1 \/
Se = —— d*z\/y K
~ L/

87TG OM

- ~L ).
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\/ Counter terms

—
“Although the Gibbons-Hawking term leads to a well-defined action variation,
the on-shell gravity action usually diverges at the boundary due to the
integration over 7
4 =4 (
S‘leG/d / dr/ ; 2A)
4
= 167G / d*z / dr r ( )
On the dual QFT, the previous divergence correspoids to the UV divergence
which should be removed by adding appropriate counter terms similar to the

renormalization procedure of an ordinary QFT. W Holographic renormalization

YN (U e )
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\/C 5

ounter terms for the AdS geometry

—

1 3 R
S =— [ d* 24 2R®
- t 87TG OM xﬁ (R + 4

R&Y : inbrinsic curvature of the bow\darv space

The renormalized on-shell 37’&\/::5:; ackion
Sre = BF =S¢ + Sgu + St

Energy-momentum tensor of the dual QFT

2 §F 1

Ty = ——— ==
H VY oHr 8wl

3 R
_IC/M/ + VMV’C + E/V,uu — 5 (R(4) - 57 R(4>)]

uu ®



\'/Duat QFT of the ALS black hole for k=0 -

—

thermodynamic quantities derived from the holographic renormalization

F = Sre = — 4 m
B 16nGR?
3V
B — 3 00
/ oy T = e ™
| ) 14
Pt = — | d° T = ———5
/d Y 167GR2

which perfectly matches with the black hole thermodynamics (m = Ty).

- the above resulks consistent with the black hole Ehermodvnamaﬁ Law

-~ the thermal em&ropv exac:&i.j concides wikth the Belkenstein-Hawking eh&rom ot

~/

YN (U e )
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\/Li.ue.ar response !:kearj

—

~ In the Low energy Limit,

after applying a time varying source, we can investigate the Linear

response of the medium

(O)qrT = —XOtPo(t)

Transport coefficients

- bypical parameters of an effective low energy description

- Once they are specified, they completely determine the macroscopic

behavior of the medium

K e \ \J/
N’ 3\




-\/Ex) Transport coefficient of the electromaqgnetic theory

@ appijihg a kime cle?enciemﬁ veckor Em?:e.m&mt in x-direcktion to conductor

Jp =0 O Ax(t) o : conductivity
(= E.,)

In general, the exact microscopic theory of the AAS/CFT correspondence is not

khowh except several cases (N=4 SYM, ABIM, and their deformations).

In such a situation, macroscopic properties governed by thermodynamics and
Linear response Ekeorj do not reL:j on the microscopic details and become ()
helpful to understand the dual QFT.

> o - ,\A/\
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\\\/Twc:«-;poémé function at finite temperature

~  We can also apply the holographic technique to obtain a two-point
function ab zero temperature. In this case, it should be notee that the
existence of a black hole requires a different boundary condition

(incomng boundary condition) unlike the zero temperature case.

b — ¢(zn) _|_¢(out)

. plout) (¢<in>) ’ (unitary)

&
<«

-coming In-coming bc)mr\darj condition o) = (o

breaks khe umi&ar&j (leads to clissiya&iom) \/

YN (U e )




\ g

\/Greeh function
- Gunz’tary — Gadv ced T Gretarded
—

G, q) = —i / 'z e 07 (1) ([O(x), O(0)])

G w,q) = i [ d'z e 6(~){[O(x), O(O))).

Transport coefficient

Im [Gretarded] 1

X = > — " (00)
wikh 2
OpoOeo
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\_/T{aw«s ?o;& coefficients of the dual G&FT

o, N’
~ Turn on the U(1) vector fluctuations on the AdS black hole background
Y ]' /
5_,\[ — _4g2 /(Pl\/—QF‘“ FNV
4
After taking the A, =0 gauge and the following Fourier mode expansions
dwd? v R
Ai(t,x,r) = / (QW):?C—Z(“_Q"‘)A,-(@'.q, r)
wikh the momentum only along y direction like q = (0, q)
&

the equations of motion can be divided into two parts: the longitudinal and /

Eransverse owne

~ N\
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\/» Longitudinal modes 4; and 4,

L 0 = bzwA; + qu;
. | 1 .
0 = b2A} + 200 A, — E(qwr‘ly + g% Ay)
1 .
0 = gA)+g'A,+ E(qut +w?A,),

0 — A F'(z) A" A2 52 _ B()a2] Al
= O A R A gy - P A

- Transverse mode A:

d 1 . .
0= A" + %A; += [wz _ qZ%] A,

P

In the hydrodynamic Limit ( & <<1and P <<1), we can solve these

equations per&urba&&veij
Al(z) = (1= 2YG(),

G(2) = Go(2) + @G (2) + ¢°Ga(2) + 0@ Ga(2) + - - -

N’
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\

/ )
4 Boundary conditions
- Incoming BC at the horizown, which breaks the unitarity of the dual QFT.
- Dirichlet BC at the asymptlotic boundary, which fixes the source of dual &FT.

The retarded Green function of Llongitudinal modes
tn the low fraqueha:j and Low momentum Limit (kjdrod-jvmmit: Limik),

the retarded Grreen functions become
The longitudinal Green function has a

charge diffusive pole governed by the

following dispersion relation

Q,ft — ) ) ;\ 5 ?
% liw - (1) 2]
- 2 - '
w = —iDk?, k=k,

C 1 w
Yyy 2| 51
94 | 1w — (T}T) (12_
with
1 w A ' | PAY
Oyt = —= - . L_A (=N @+
94 W — (Tﬁ) q- Ty 16Ty 4 — 772 . A
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\_/ the charge diffusion constant

- The charqge diffusion constant implies that the quasi hormal mode

S’

(charge current of the dual QFT) eventually diffuses away back into the

thermal equilibrium with a half-life time

te gy =
1/2 D 42

The retarded Grreen function of Ekransverse mode

C 1|, A 5
Yo =— =5 | W — p=— q-
gl Ty

- There is no [mte..

- The DC -couc\u,&ivi&j s given bj

o= hmRe( ,“) = —
w—0 w g3 & /
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Important holographic results

4

N/

In RHIC experimem&, quark-gluon piasma showed a very small ratio between

the shear visa:osi,&j and thermal eh&ropj.

Intriguingly, the holographic calculation leads to such a small ratio

-

\_

Ratio between Shear viscosity and entropby
1 1
Y s




\/ Conclusions )

—

g

- The ALS/CFT Corres!ﬁ»ov\d@\te Provicies a hew way ko understand a sErougij

interacting QFT.

- Although the microscopic details of the dual QFT are not known, many

YMACTOSCOPLE properties can Pe uhnderstoo e holoqgraphic wethods,
FFF@E b d&dbj&hhts Pk thod

- It would be hetpful to understand various macroscopic properties of the

real Ph-jsicai Sjs?:ems i nuclear and condensed makker Fhvsics.

> o - ,\A/\
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