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- constantly curved space with a negative cosmological constant 

Using this, an induced metric on the hypersurface is reduced to

ds2 = � r2

R2
f1(r)dt

2 + r2d⌦2
d�1 +

R2

r2f1(r)
dr2, (33)

where d⌦2
d�1 = du2+sin2 ud⌦2

d�2 with 0  u < ⇡ indicates the metric of a (d� 1)-dimensional sphere

with a unit radius. Similarly, we can take the following parametrization for k = �1

y�1 = r coshu , y0 =
p
r2 �R2 sinh

✓
t

R

◆
, yd =

p
r2 �R2 cosh

✓
t

R

◆
,

y1 = r sinhu cos�1 , y2 = r sinhu sin�1 cos�2 , · · ·
yd�1 = r sinhu sin�1 sin�2 · · · sin�d�2. (34)

Then, the resulting AdSd+1 metric becomes

ds2 = � r2

R2
f�1(r)dt

2 + r2dH2
d�1 +

R2

r2f�1(r)
dr2, (35)

with

dH2
d�1 = du2 + sinh2 u d⌦2

d�2 (36)

where dH2
d�1 implies the metric of a (d � 1)-dimensional hyperbolic space with a unit radius. These

AdS metrics with di↵erent topologies appear as a vacuum solution of a gravity theory with a negative

cosmological constant

S =
1

16⇡G

Z
dd+1x

p�g (R� 2⇤) , (37)

where

⇤ = �d(d� 1)

2R2
. (38)

3.2 Black hole thermodynamics with di↵erent boundary topolgies

It is worth noting that there exist another vacuum solution. Suppose that there is a matter localized

at the center of the AdS space. Then the outside, where the matter is absent, should be described

by a di↵erent vacuum solution known as a black hole solution. The black hole metric has the same

metric form in (27) with a black hole factor. If we denote the mass density of the localized matter as

m, the general black hole geometry depending on k can be classified by

ds2 = �r2fk(r)

R2
dt2 + r2

⇣
du2 + ⇢2k(u) d⌦

2
d�2

⌘
+

R2

r2fk(r)
dr2 (39)

with the following black hole factor

fk(r) = 1 + k
R2

r2
� m

rd
. (40)
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which is invariant under the SO(2, d) Lorentz symmetry. In the ambient space, the AdSd+1 geometry

appears as the hypersurface satisfying the following constraint

�y2�1 � y20 + y21 + · · ·+ y2d = �R2, (26)

where R indicates the AdS radius. Since this constraint does not break the Lorentz symmetry of the

ambient spacetime, the resuting geometry also preserves the SO(2, d) symmetry which is nothing but

the isometry of the AdSd+1 spacetime. Due to this reason, the AdSd+1 geometry together with dSd+1

and (d + 1)-dimensional flat space is called a maximally symmetric spacetime which does not break

the Lorentz symmetry of the ambient space.

In order to get the AdSd+1 metric, we need to rewrite the metric of the ambient space in terms

of coordinates of the AdSd+1 spacetime. There exist various coordinatizations which allow di↵erent

boundary topologies. One of the well-known AdSd+1 metric is given as

ds2 = �r2fk(r)

R2
dt2 + r2d⌃2

k +
R2

r2fk(r)
dr2, (27)

where fk(r) is given by

fk(r) = 1 + k
R2

r2
, (28)

and k is either 0 or ±1 relying on the boundary topology. For k = 0, d⌃2
k represents the metric of a

(d� 1)-dimensional flat space, Rd�1, while d⌃2
k is the metric of a unit sphere, Sd�1, for k = 1 or that

of a hyperbolic space denoted by Hd�1 for k = �1.

For more concreteness, let us further consider the explicit representation of AdSd+1. For k = 0

one can use the following coordinatization

y�1 + yd = R2r and yµ =
r

R
xµ (µ = 0, 1, · · · , d� 1). (29)

From the constraint, one can easily find

y�1 � yd =
1

r
+

r

R4
⌘µ⌫x

µx⌫ , (30)

where ⌘µ⌫ denotes a d-dimensional Mikowski metric. Substituting these relations into the metric of

the ambient space, we finally obtain

ds2 = � r2

R2
dt2 + r2

�
du2 + u2d⌦2

d�2

�
+

R2

r2
dr2, (31)

where u is dimensionless and the bulk spacetime is foliated with slices corresponding to the flat d-

dimensional Minkowki spacetime. In the asymptotic region (r ! 1), the boundary metric is given

by a d-dimensional Minkowki metric up to the conformal factor, r2/R2. For k = 1, the constraint can

be satisfied by the following coordinatization

y�1 =
p
r2 +R2 cos

✓
t

R

◆
y0 =

p
r2 +R2 sin

✓
t

R

◆
,

y1 = r cosu , y2 = r sinu cos ✓1 , · · ·
yd = r sinu sin ✓1 · · · sin ✓d�2. (32)
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where

AdS geometry



- can be is defined as a hypersurface in an one-dimensional higher flat 

space denoted by 

that there still exist non-vanishing thermal energies even at zero temperature. This statement seems

not to make sense. Therefore, these shift energies should be removed by adding appropriate energies

to get reasonable thermodynamic energies. Another ambiguity occurs for m = 0 (or rh =
p
m�).

First, one can naively expect that (22) in the m ! 0 limit reduces to the results, (15) and (16), for

m = 0. However, this is not true. In (22) the internal energy becomes zero at rh ! p
m�, while the

internal energy studied in the previous section with m = 0 does not vanish, E = 3⇡3V
2G T 4

H . Why does

this discrepancy occurs in spite of the fact that m and rh are continuos parameters? In the subsequent

sections, we clarify why such a discrepancy happens.

Lastly, there exists another way to understand physics of the dual QFT following the AdS/CFT

correspondence. The holographic renormalization technique is a good tool to extract many important

information about the dual QFT. For a SAdS black hole with a planar boundary, it has been well

known that the holographic renormalization leads to the exact same results obtained from the black

hole thermodynamics. However, it does not always give rise to the same result of the black hole

thermodynamics in more general cases. This is also true for the above black hole composed of two

matters. The internal energy derived from the holographic renormalization is given by (see the details

in the subsequent sections)

E =
3
⇣
4m+m2

�

⌘

64⇡G
. (24)

Comparing it with the black hole thermodynamic result in (22), one can easily see that the black hole

thermodynamics and the holographic renormalization lead to di↵erent results. We clarify why this

discrepancy occurs in the next sections.

3 AdS black holes with di↵erent boundary topologies

In this section, we will investigate AdS black hole with a nontrivial boundary topology. Intriguingly,

an AdS black hole with a hyperbolic boundary topology, which is called a topological black hole, also

shows the same problems discussed in the previous section although the origin of them are di↵erent.

In this section, we first try to clarify the similar problems of the AdS black hole with a nontrivial

boundary topology.

3.1 AdS geometries with di↵erent boundary topologies

The AdSd+1 geometry, which is a negatively curved spacetime, is defined as a hypersurface in an

one-dimensional higher flat spacetime denoted by R2,d. The proper distance in the ambient flat space

is described by

ds2 = �dy2�1 � dy20 + dy21 + · · ·+ dy2d, (25)
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Proper distance in the (d+2)-dimensional ambient flat space
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which is invariant under the SO(2,d) Lorentz transformation 

Then, the          geometry appears as the hypersurface satisfying
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which is invariant under the SO(2, d) Lorentz symmetry. In the ambient space, the AdSd+1 geometry

appears as the hypersurface satisfying the following constraint

�y2�1 � y20 + y21 + · · ·+ y2d = �R2, (26)

where R indicates the AdS radius. Since this constraint does not break the Lorentz symmetry of the

ambient spacetime, the resuting geometry also preserves the SO(2, d) symmetry which is nothing but

the isometry of the AdSd+1 spacetime. Due to this reason, the AdSd+1 geometry together with dSd+1

and (d + 1)-dimensional flat space is called a maximally symmetric spacetime which does not break

the Lorentz symmetry of the ambient space.

In order to get the AdSd+1 metric, we need to rewrite the metric of the ambient space in terms

of coordinates of the AdSd+1 spacetime. There exist various coordinatizations which allow di↵erent

boundary topologies. One of the well-known AdSd+1 metric is given as

ds2 = �r2fk(r)

R2
dt2 + r2d⌃2

k +
R2

r2fk(r)
dr2, (27)

where fk(r) is given by

fk(r) = 1 + k
R2

r2
, (28)

and k is either 0 or ±1 relying on the boundary topology. For k = 0, d⌃2
k represents the metric of a

(d� 1)-dimensional flat space, Rd�1, while d⌃2
k is the metric of a unit sphere, Sd�1, for k = 1 or that

of a hyperbolic space denoted by Hd�1 for k = �1.

For more concreteness, let us further consider the explicit representation of AdSd+1. For k = 0

one can use the following coordinatization

y�1 + yd = R2r and yµ =
r

R
xµ (µ = 0, 1, · · · , d� 1). (29)

From the constraint, one can easily find

y�1 � yd =
1

r
+

r

R4
⌘µ⌫x

µx⌫ , (30)

where ⌘µ⌫ denotes a d-dimensional Mikowski metric. Substituting these relations into the metric of

the ambient space, we finally obtain

ds2 = � r2

R2
dt2 + r2

�
du2 + u2d⌦2

d�2

�
+

R2

r2
dr2, (31)

where u is dimensionless and the bulk spacetime is foliated with slices corresponding to the flat d-

dimensional Minkowki spacetime. In the asymptotic region (r ! 1), the boundary metric is given

by a d-dimensional Minkowki metric up to the conformal factor, r2/R2. For k = 1, the constraint can

be satisfied by the following coordinatization

y�1 =
p
r2 +R2 cos

✓
t

R

◆
y0 =

p
r2 +R2 sin

✓
t

R

◆
,

y1 = r cosu , y2 = r sinu cos ✓1 , · · ·
yd = r sinu sin ✓1 · · · sin ✓d�2. (32)
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Since this constraint does not break the Lorentz symmetry of the ambient 

space, the resulting geometry also preserves the SO(2, d) symmetry which 
is nothing but the isometry of the          space. 
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AdS(1,d) geometry



Using different coordinate, different AdS metrics can be obtained

which is invariant under the SO(2, d) Lorentz symmetry. In the ambient space, the AdSd+1 geometry

appears as the hypersurface satisfying the following constraint

�y2�1 � y20 + y21 + · · ·+ y2d = �R2, (26)

where R indicates the AdS radius. Since this constraint does not break the Lorentz symmetry of the

ambient spacetime, the resuting geometry also preserves the SO(2, d) symmetry which is nothing but

the isometry of the AdSd+1 spacetime. Due to this reason, the AdSd+1 geometry together with dSd+1

and (d + 1)-dimensional flat space is called a maximally symmetric spacetime which does not break

the Lorentz symmetry of the ambient space.

In order to get the AdSd+1 metric, we need to rewrite the metric of the ambient space in terms

of coordinates of the AdSd+1 spacetime. There exist various coordinatizations which allow di↵erent

boundary topologies. One of the well-known AdSd+1 metric is given as

ds2 = �r2fk(r)

R2
dt2 + r2d⌃2

k +
R2

r2fk(r)
dr2, (27)

where fk(r) is given by

fk(r) = 1 + k
R2

r2
, (28)

and k is either 0 or ±1 relying on the boundary topology. For k = 0, d⌃2
k represents the metric of a

(d� 1)-dimensional flat space, Rd�1, while d⌃2
k is the metric of a unit sphere, Sd�1, for k = 1 or that

of a hyperbolic space denoted by Hd�1 for k = �1.

For more concreteness, let us further consider the explicit representation of AdSd+1. For k = 0

one can use the following coordinatization

y�1 + yd = R2r and yµ =
r

R
xµ (µ = 0, 1, · · · , d� 1). (29)

From the constraint, one can easily find

y�1 � yd =
1

r
+

r

R4
⌘µ⌫x

µx⌫ , (30)

where ⌘µ⌫ denotes a d-dimensional Mikowski metric. Substituting these relations into the metric of

the ambient space, we finally obtain

ds2 = � r2

R2
dt2 + r2

�
du2 + u2d⌦2

d�2

�
+

R2

r2
dr2, (31)

where u is dimensionless and the bulk spacetime is foliated with slices corresponding to the flat d-

dimensional Minkowki spacetime. In the asymptotic region (r ! 1), the boundary metric is given

by a d-dimensional Minkowki metric up to the conformal factor, r2/R2. For k = 1, the constraint can

be satisfied by the following coordinatization

y�1 =
p
r2 +R2 cos

✓
t

R

◆
y0 =

p
r2 +R2 sin

✓
t

R

◆
,

y1 = r cosu , y2 = r sinu cos ✓1 , · · ·
yd = r sinu sin ✓1 · · · sin ✓d�2. (32)
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which is invariant under the SO(2, d) Lorentz symmetry. In the ambient space, the AdSd+1 geometry

appears as the hypersurface satisfying the following constraint

�y2�1 � y20 + y21 + · · ·+ y2d = �R2, (26)

where R indicates the AdS radius. Since this constraint does not break the Lorentz symmetry of the

ambient spacetime, the resuting geometry also preserves the SO(2, d) symmetry which is nothing but

the isometry of the AdSd+1 spacetime. Due to this reason, the AdSd+1 geometry together with dSd+1

and (d + 1)-dimensional flat space is called a maximally symmetric spacetime which does not break

the Lorentz symmetry of the ambient space.

In order to get the AdSd+1 metric, we need to rewrite the metric of the ambient space in terms

of coordinates of the AdSd+1 spacetime. There exist various coordinatizations which allow di↵erent

boundary topologies. One of the well-known AdSd+1 metric is given as

ds2 = �r2fk(r)

R2
dt2 + r2d⌃2

k +
R2

r2fk(r)
dr2, (27)

where fk(r) is given by

fk(r) = 1 + k
R2

r2
, (28)

and k is either 0 or ±1 relying on the boundary topology. For k = 0, d⌃2
k represents the metric of a

(d� 1)-dimensional flat space, Rd�1, while d⌃2
k is the metric of a unit sphere, Sd�1, for k = 1 or that

of a hyperbolic space denoted by Hd�1 for k = �1.

For more concreteness, let us further consider the explicit representation of AdSd+1. For k = 0

one can use the following coordinatization

y�1 + yd = R2r and yµ =
r

R
xµ (µ = 0, 1, · · · , d� 1). (29)

From the constraint, one can easily find

y�1 � yd =
1

r
+

r

R4
⌘µ⌫x

µx⌫ , (30)

where ⌘µ⌫ denotes a d-dimensional Mikowski metric. Substituting these relations into the metric of

the ambient space, we finally obtain

ds2 = � r2

R2
dt2 + r2

�
du2 + u2d⌦2

d�2

�
+

R2

r2
dr2, (31)

where u is dimensionless and the bulk spacetime is foliated with slices corresponding to the flat d-

dimensional Minkowki spacetime. In the asymptotic region (r ! 1), the boundary metric is given

by a d-dimensional Minkowki metric up to the conformal factor, r2/R2. For k = 1, the constraint can

be satisfied by the following coordinatization

y�1 =
p
r2 +R2 cos

✓
t

R

◆
y0 =

p
r2 +R2 sin

✓
t

R

◆
,

y1 = r cosu , y2 = r sinu cos ✓1 , · · ·
yd = r sinu sin ✓1 · · · sin ✓d�2. (32)
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where u is dimensionless and the bulk spacetime is foliated with slices corresponding to the flat d-

dimensional Minkowki spacetime. In the asymptotic region (r ! 1), the boundary metric is given

by a d-dimensional Minkowki metric up to the conformal factor, r2/R2. For k = 1, the constraint can

be satisfied by the following coordinatization

y�1 =
p
r2 +R2 cos

✓
t

R

◆
y0 =

p
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✓
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◆
,

y1 = r cosu , y2 = r sinu cos ✓1 , · · ·
yd = r sinu sin ✓1 · · · sin ✓d�2. (32)
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k is the metric of a unit sphere, Sd�1, for k = 1 or that

of a hyperbolic space denoted by Hd�1 for k = �1.

For more concreteness, let us further consider the explicit representation of AdSd+1. For k = 0

one can use the following coordinatization

y�1 + yd = R2r and yµ =
r

R
xµ (µ = 0, 1, · · · , d� 1). (29)

From the constraint, one can easily find

y�1 � yd =
1

r
+

r

R4
⌘µ⌫x

µx⌫ , (30)
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✓
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,
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by a d-dimensional Minkowki metric up to the conformal factor, r2/R2. For k = 1, the constraint can

be satisfied by the following coordinatization

y�1 =
p
r2 +R2 cos

✓
t

R

◆
y0 =

p
r2 +R2 sin

✓
t

R

◆
,

y1 = r cosu , y2 = r sinu cos ✓1 , · · ·
yd = r sinu sin ✓1 · · · sin ✓d�2. (32)
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which is invariant under the SO(2, d) Lorentz symmetry. In the ambient space, the AdSd+1 geometry

appears as the hypersurface satisfying the following constraint

�y2�1 � y20 + y21 + · · ·+ y2d = �R2, (26)

where R indicates the AdS radius. Since this constraint does not break the Lorentz symmetry of the

ambient spacetime, the resuting geometry also preserves the SO(2, d) symmetry which is nothing but

the isometry of the AdSd+1 spacetime. Due to this reason, the AdSd+1 geometry together with dSd+1

and (d + 1)-dimensional flat space is called a maximally symmetric spacetime which does not break

the Lorentz symmetry of the ambient space.

In order to get the AdSd+1 metric, we need to rewrite the metric of the ambient space in terms

of coordinates of the AdSd+1 spacetime. There exist various coordinatizations which allow di↵erent

boundary topologies. One of the well-known AdSd+1 metric is given as

ds2 = �r2fk(r)

R2
dt2 + r2d⌃2

k +
R2

r2fk(r)
dr2, (27)

where fk(r) is given by

fk(r) = 1 + k
R2

r2
, (28)

and k is either 0 or ±1 relying on the boundary topology. For k = 0, d⌃2
k represents the metric of a

(d� 1)-dimensional flat space, Rd�1, while d⌃2
k is the metric of a unit sphere, Sd�1, for k = 1 or that

of a hyperbolic space denoted by Hd�1 for k = �1.

For more concreteness, let us further consider the explicit representation of AdSd+1. For k = 0

one can use the following coordinatization

y�1 + yd = R2r and yµ =
r

R
xµ (µ = 0, 1, · · · , d� 1). (29)
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y�1 � yd =
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+

r

R4
⌘µ⌫x

µx⌫ , (30)
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where R indicates the AdS radius. Since this constraint does not break the Lorentz symmetry of the

ambient spacetime, the resuting geometry also preserves the SO(2, d) symmetry which is nothing but

the isometry of the AdSd+1 spacetime. Due to this reason, the AdSd+1 geometry together with dSd+1

and (d + 1)-dimensional flat space is called a maximally symmetric spacetime which does not break

the Lorentz symmetry of the ambient space.

In order to get the AdSd+1 metric, we need to rewrite the metric of the ambient space in terms

of coordinates of the AdSd+1 spacetime. There exist various coordinatizations which allow di↵erent
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k +
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, (28)
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k represents the metric of a

(d� 1)-dimensional flat space, Rd�1, while d⌃2
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of a hyperbolic space denoted by Hd�1 for k = �1.
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AdS/CFT correspondence (symmetry)

Classical SUGRA
on AdS space-time  

Super-CFT at the AdS boundary     
(in a strong coupling regime)1 to 1

AdS/CFT correspondence
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Conformal symmetry on 

R-symmetry of N=4 SUSY 
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Poincare group SO(1,3) + Scaling + Special conformal        SO(2,4)



AdS/CFT correspondence (strong/weak duality)
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Applying the AdS/CFT correspondence to a deformed CFT

Deform the AdS geometry with a massive scalar field which breaks the 

conformal symmetry

If              ,     corresponds to a relevant operator deforming the dual CFT. 
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: conformal dimension of the dual operator

In this case, 

The boundary term of the scalar field reduces to
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1

: dual operator

finite termdivergence

In order to obtain a finite generating functional, we need to add an 

addition counter term.



After the appropriate holographic renormalization,
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with

which corresponds to the generating functional of the dual QFT.
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One-point correlation function from the generating functional 

n-point correlation function can be obtained by applying n-derivatives 

with respect to the source to the above generating functional
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Two-point correlation function

For convenience, introduce a new coordinate, 
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Then, the AdS metric becomes
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As a consequence, the two-point correlation function reads
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Then, the boundary (on-shell) action of matter becomes
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and the free energy, F = E � THSBH , is given by
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which is exactly the two-point function expected in the CFT. 
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AdS BH

AdS space ground state of dual QFT

localized matter in the AdS space

singularity at the center

In order to avoid this singularity,

the black hole geometry is required



Equation of motion for a black hole
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where     is the black hole mass.

which is invariant under the SO(2, d) Lorentz symmetry. In the ambient space, the AdSd+1 geometry

appears as the hypersurface satisfying the following constraint

�y2�1 � y20 + y21 + · · ·+ y2d = �R2, (26)

where R indicates the AdS radius. Since this constraint does not break the Lorentz symmetry of the

ambient spacetime, the resuting geometry also preserves the SO(2, d) symmetry which is nothing but

the isometry of the AdSd+1 spacetime. Due to this reason, the AdSd+1 geometry together with dSd+1

and (d + 1)-dimensional flat space is called a maximally symmetric spacetime which does not break

the Lorentz symmetry of the ambient space.

In order to get the AdSd+1 metric, we need to rewrite the metric of the ambient space in terms

of coordinates of the AdSd+1 spacetime. There exist various coordinatizations which allow di↵erent

boundary topologies. One of the well-known AdSd+1 metric is given as

ds2 = �r2fk(r)

R2
dt2 + r2d⌃2

k +
R2

r2fk(r)
dr2, (27)

where fk(r) is given by

fk(r) = 1 + k
R2

r2
, (28)

and k is either 0 or ±1 relying on the boundary topology. For k = 0, d⌃2
k represents the metric of a

(d� 1)-dimensional flat space, Rd�1, while d⌃2
k is the metric of a unit sphere, Sd�1, for k = 1 or that

of a hyperbolic space denoted by Hd�1 for k = �1.

For more concreteness, let us further consider the explicit representation of AdSd+1. For k = 0

one can use the following coordinatization

y�1 + yd = R2r and yµ =
r

R
xµ (µ = 0, 1, · · · , d� 1). (29)

From the constraint, one can easily find

y�1 � yd =
1

r
+

r

R4
⌘µ⌫x

µx⌫ , (30)

where ⌘µ⌫ denotes a d-dimensional Mikowski metric. Substituting these relations into the metric of

the ambient space, we finally obtain

ds2 = � r2

R2
dt2 + r2

�
du2 + u2d⌦2

d�2

�
+

R2

r2
dr2, (31)

where u is dimensionless and the bulk spacetime is foliated with slices corresponding to the flat d-

dimensional Minkowki spacetime. In the asymptotic region (r ! 1), the boundary metric is given

by a d-dimensional Minkowki metric up to the conformal factor, r2/R2. For k = 1, the constraint can

be satisfied by the following coordinatization

y�1 =
p
r2 +R2 cos

✓
t

R

◆
y0 =

p
r2 +R2 sin

✓
t

R

◆
,

y1 = r cosu , y2 = r sinu cos ✓1 , · · ·
yd = r sinu sin ✓1 · · · sin ✓d�2. (32)
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with

Using this, an induced metric on the hypersurface is reduced to

ds2 = � r2

R2
f1(r)dt

2 + r2d⌦2
d�1 +

R2

r2f1(r)
dr2, (33)

where d⌦2
d�1 = du2+sin2 ud⌦2

d�2 with 0  u < ⇡ indicates the metric of a (d� 1)-dimensional sphere

with a unit radius. Similarly, we can take the following parametrization for k = �1

y�1 = r coshu , y0 =
p
r2 �R2 sinh

✓
t

R

◆
, yd =

p
r2 �R2 cosh

✓
t

R

◆
,

y1 = r sinhu cos�1 , y2 = r sinhu sin�1 cos�2 , · · ·
yd�1 = r sinhu sin�1 sin�2 · · · sin�d�2. (34)

Then, the resulting AdSd+1 metric becomes

ds2 = � r2

R2
f�1(r)dt

2 + r2dH2
d�1 +

R2

r2f�1(r)
dr2, (35)

with

dH2
d�1 = du2 + sinh2 u d⌦2

d�2 (36)

where dH2
d�1 implies the metric of a (d � 1)-dimensional hyperbolic space with a unit radius. These

AdS metrics with di↵erent topologies appear as a vacuum solution of a gravity theory with a negative

cosmological constant

S =
1

16⇡G

Z
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where

⇤ = �d(d� 1)

2R2
. (38)

3.2 Black hole thermodynamics with di↵erent boundary topolgies

It is worth noting that there exist another vacuum solution. Suppose that there is a matter localized

at the center of the AdS space. Then the outside, where the matter is absent, should be described

by a di↵erent vacuum solution known as a black hole solution. The black hole metric has the same

metric form in (27) with a black hole factor. If we denote the mass density of the localized matter as

m, the general black hole geometry depending on k can be classified by

ds2 = �r2fk(r)
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� m
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From now on, we focus on the case with        for simplicity. 

which is invariant under the SO(2, d) Lorentz symmetry. In the ambient space, the AdSd+1 geometry

appears as the hypersurface satisfying the following constraint

�y2�1 � y20 + y21 + · · ·+ y2d = �R2, (26)

where R indicates the AdS radius. Since this constraint does not break the Lorentz symmetry of the

ambient spacetime, the resuting geometry also preserves the SO(2, d) symmetry which is nothing but

the isometry of the AdSd+1 spacetime. Due to this reason, the AdSd+1 geometry together with dSd+1

and (d + 1)-dimensional flat space is called a maximally symmetric spacetime which does not break

the Lorentz symmetry of the ambient space.

In order to get the AdSd+1 metric, we need to rewrite the metric of the ambient space in terms

of coordinates of the AdSd+1 spacetime. There exist various coordinatizations which allow di↵erent

boundary topologies. One of the well-known AdSd+1 metric is given as

ds2 = �r2fk(r)

R2
dt2 + r2d⌃2

k +
R2

r2fk(r)
dr2, (27)

where fk(r) is given by

fk(r) = 1 + k
R2

r2
, (28)

and k is either 0 or ±1 relying on the boundary topology. For k = 0, d⌃2
k represents the metric of a

(d� 1)-dimensional flat space, Rd�1, while d⌃2
k is the metric of a unit sphere, Sd�1, for k = 1 or that

of a hyperbolic space denoted by Hd�1 for k = �1.

For more concreteness, let us further consider the explicit representation of AdSd+1. For k = 0

one can use the following coordinatization

y�1 + yd = R2r and yµ =
r

R
xµ (µ = 0, 1, · · · , d� 1). (29)

From the constraint, one can easily find

y�1 � yd =
1

r
+

r

R4
⌘µ⌫x

µx⌫ , (30)

where ⌘µ⌫ denotes a d-dimensional Mikowski metric. Substituting these relations into the metric of

the ambient space, we finally obtain

ds2 = � r2

R2
dt2 + r2
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du2 + u2d⌦2

d�2

�
+

R2

r2
dr2, (31)

where u is dimensionless and the bulk spacetime is foliated with slices corresponding to the flat d-

dimensional Minkowki spacetime. In the asymptotic region (r ! 1), the boundary metric is given

by a d-dimensional Minkowki metric up to the conformal factor, r2/R2. For k = 1, the constraint can

be satisfied by the following coordinatization

y�1 =
p
r2 +R2 cos

✓
t

R
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y0 =

p
r2 +R2 sin
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R
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,

y1 = r cosu , y2 = r sinu cos ✓1 , · · ·
yd = r sinu sin ✓1 · · · sin ✓d�2. (32)
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AdS black hole geometry



Properties of a black hole

- Black hole horizon,    , where     vanishes

- Bekenstein-Hawking entropy (area law)

- Hawking radiation (Hawking temperature)
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- Black hole physics satisfies the thermodynamic law (macroscopic)



AdS/CFT correspondence of a black hole geometry

Pure AdS space groud state of dual QFT at zero temperature 

AdS black hole dual QFT at finite temperature 

Mystery of black hole

1. Area law of the Bekenstein-Hawking entropy

2, What is the microscopic origin of the Bekenstein-Hawking entropy?

’t Hooft proposed the holographic principle. The AdS/CFT correspondence is 
the realization of the holography 
1. the area can be matched to the volume of the dual QFT (extensive).
2. the Bekenstein-Hawking entropy then counts the degrees of freedom of     

the dual QFT



Black hole thermodynamics

For        and        , 

which is invariant under the SO(2, d) Lorentz symmetry. In the ambient space, the AdSd+1 geometry

appears as the hypersurface satisfying the following constraint

�y2�1 � y20 + y21 + · · ·+ y2d = �R2, (26)

where R indicates the AdS radius. Since this constraint does not break the Lorentz symmetry of the

ambient spacetime, the resuting geometry also preserves the SO(2, d) symmetry which is nothing but

the isometry of the AdSd+1 spacetime. Due to this reason, the AdSd+1 geometry together with dSd+1

and (d + 1)-dimensional flat space is called a maximally symmetric spacetime which does not break

the Lorentz symmetry of the ambient space.

In order to get the AdSd+1 metric, we need to rewrite the metric of the ambient space in terms

of coordinates of the AdSd+1 spacetime. There exist various coordinatizations which allow di↵erent

boundary topologies. One of the well-known AdSd+1 metric is given as

ds2 = �r2fk(r)

R2
dt2 + r2d⌃2

k +
R2

r2fk(r)
dr2, (27)

where fk(r) is given by

fk(r) = 1 + k
R2

r2
, (28)

and k is either 0 or ±1 relying on the boundary topology. For k = 0, d⌃2
k represents the metric of a

(d� 1)-dimensional flat space, Rd�1, while d⌃2
k is the metric of a unit sphere, Sd�1, for k = 1 or that

of a hyperbolic space denoted by Hd�1 for k = �1.

For more concreteness, let us further consider the explicit representation of AdSd+1. For k = 0

one can use the following coordinatization

y�1 + yd = R2r and yµ =
r

R
xµ (µ = 0, 1, · · · , d� 1). (29)

From the constraint, one can easily find

y�1 � yd =
1

r
+

r

R4
⌘µ⌫x

µx⌫ , (30)

where ⌘µ⌫ denotes a d-dimensional Mikowski metric. Substituting these relations into the metric of

the ambient space, we finally obtain

ds2 = � r2

R2
dt2 + r2

�
du2 + u2d⌦2

d�2

�
+

R2

r2
dr2, (31)

where u is dimensionless and the bulk spacetime is foliated with slices corresponding to the flat d-

dimensional Minkowki spacetime. In the asymptotic region (r ! 1), the boundary metric is given

by a d-dimensional Minkowki metric up to the conformal factor, r2/R2. For k = 1, the constraint can

be satisfied by the following coordinatization

y�1 =
p
r2 +R2 cos

✓
t

R

◆
y0 =
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r2 +R2 sin
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t

R
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,
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Holographic renormalization

How can Black hole thermodynamics be identified with that of the dual QFT?
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Now, let us calculate the on-shell gravity action. 

one can evaluate the nonperturbative partition function (or generating 

functional) of the dual QFT and then extract many physical information 
from it 

From the AdS/CFT correspondence

When evaluating the on-shell gravity action, we encounter several problems. 

- not well-defined variation

- divergence 



Gibbons-Hawking term

Using this, an induced metric on the hypersurface is reduced to

ds2 = � r2

R2
f1(r)dt

2 + r2d⌦2
d�1 +

R2

r2f1(r)
dr2, (33)

where d⌦2
d�1 = du2+sin2 ud⌦2

d�2 with 0  u < ⇡ indicates the metric of a (d� 1)-dimensional sphere

with a unit radius. Similarly, we can take the following parametrization for k = �1

y�1 = r coshu , y0 =
p

r2 �R2 sinh

✓
t

R

◆
, yd =

p
r2 �R2 cosh

✓
t

R

◆
,

y1 = r sinhu cos�1 , y2 = r sinhu sin�1 cos�2 , · · ·
yd�1 = r sinhu sin�1 sin�2 · · · sin�d�2. (34)

Then, the resulting AdSd+1 metric becomes

ds2 = � r2

R2
f�1(r)dt

2 + r2dH2
d�1 +

R2

r2f�1(r)
dr2, (35)

with

dH2
d�1 = du2 + sinh2 u d⌦2

d�2 (36)

where dH2
d�1 implies the metric of a (d � 1)-dimensional hyperbolic space with a unit radius. These

AdS metrics with di↵erent topologies appear as a vacuum solution of a gravity theory with a negative

cosmological constant

S =
1

16⇡G

Z
dd+1x

p�g (R� 2⇤) , (37)

where

⇤ = �d(d� 1)

2R2
. (38)

3.2 Black hole thermodynamics with di↵erent boundary topolgies

It is worth noting that there exist another vacuum solution. Suppose that there is a matter localized

at the center of the AdS space. Then the outside, where the matter is absent, should be described

by a di↵erent vacuum solution known as a black hole solution. The black hole metric has the same

metric form in (27) with a black hole factor. If we denote the mass density of the localized matter as

m, the general black hole geometry depending on k can be classified by

ds2 = �r2fk(r)

R2
dt2 + r2

⇣
du2 + ⇢2k(u) d⌦

2
d�2

⌘
+

R2

r2fk(r)
dr2 (39)

with the following black hole factor

fk(r) = 1 + k
R2

r2
� m

rd
. (40)
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In the gravity action

the curvature scalar involves
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Although this boundary term does not affect the bulk equation of motion, it 

causes problem for defining the variation of the boundary action.

Contents

1 Introduction 1

2 Discussion 1

1 Introduction

�S = �Sbulk + �Sbd (1)

and the free energy, F = E � THSBH , is given by

F = E � THSBH = � V

16⇡GR2
T 4
H . (2)

r

2 Discussion

Acknowledgement

C. Park was supported by Basic Science Research Program through the National Research Foun-

dation of Korea funded by the Ministry of Education (NRF-2013R1A1A2A10057490) and also by the

Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City.

References

[1] C. Park, Phys. Lett. B 708, 324 (2012) [arXiv:1112.0386 [hep-th]].

[2] B. -H. Lee, S. Mamedov, S. Nam and C. Park, JHEP 1308, 045 (2013) [arXiv:1305.7281 [hep-th]].

[3] B. -H. Lee, C. Park and S. Shin, JHEP 1012, 071 (2010) [arXiv:1010.1109 [hep-th]].

[4] M. Henningson and K. Sfetsos, Phys. Lett. B 431, 63 (1998) [hep-th/9803251]; W. Mueck and

K. S. Viswanathan, Phys. Rev. D 58, 041901 (1998) [hep-th/9804035]; M. Henneaux, In *Tbilisi

1998, Mathematical methods in modern theoretical physics* 161-170 [hep-th/9902137].

[5] R. Contino and A. Pomarol, JHEP 0411, 058 (2004) [hep-th/0406257].

[6] L. Da Rold and A. Pomarol, Nucl. Phys. B 721, 79 (2005) [hep-ph/0501218].

[7] D. K. Hong, T. Inami and H. -U. Yee, Phys. Lett. B 646, 165 (2007) [hep-ph/0609270].

1

equation of motion

To get rid of such a problematic term, one should add a Gibbons-Hawking term

dimensions. In order to clarify the finite temperature field theory dual of the AdS black hole, we use

the Euclidean signature with which the gravity action becomes

SG = � 1

16⇡G

Z

M
d5x

p
g (R� 2⇤) , (55)

where the metric is given by

ds2 =
R2

r2fk(r)
dr2 +

r2

R2

�
fk(r)dt

2 + d⌃2
k

�
. (56)

In general, the variation of the gravity action is not well defined at the boundary, so that the well-

defined variation requires the Gibbons-Hawking term at the boundary

SGB =
1

8⇡G

Z

@M
d4x

p
� K, (57)

where � is an induced metric on the boundary and K indicates the trace of the extrinsic curvature,

Kµ⌫ = �1
2 (rµn⌫ +r⌫nµ), with a unit normal vector nµ. According to the AdS/CFT correspondence,

the on-shell gravity action is identified with the generating functional of the dual quantum field theory.

Since the on-shell gravity action usually diverges at the asymptotic boundary, we need additional

boundary terms called the counterterms, which get rid of the divergences of the on-shell gravity

action,

Sct =
1

8⇡G

Z

@M
d4x

p
�

✓
3

R
+

R

4
R(4)

◆
, (58)

where R(4) means the intrinsic curvature scalar of the four-dimensional boundary. As a consequence,

the renormalized action Sre is given by
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Counter terms

On the dual QFT, the previous divergence corresponds to the UV divergence 

which should be removed by adding appropriate counter terms similar to the 
renormalization procedure of an ordinary QFT. Holographic renormalization
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1

- the above results consistent with the black hole thermodynamic law

- the thermal entropy exactly coincides with the Bekenstein-Hawking entropy



after applying a time varying source, we can investigate the linear 

response of the medium

In the low energy limit,

Transport coefficients 

linear response theory

- typical parameters of an effective low energy description

- Once they are specified, they completely determine the macroscopic 

behavior of the medium 



Ex) Transport coefficient of the electromagnetic theory 

applying a time dependent vector potential in x-direction to conductor

: conductivity

In general, the exact microscopic theory of the AdS/CFT correspondence is not 

known except several cases (N=4 SYM, ABJM, and their deformations). 

In such a situation, macroscopic properties governed by thermodynamics and 
linear response theory do not rely on the microscopic details and become 
helpful to understand the dual QFT.



Two-point function at finite temperature

We can also apply the holographic technique to obtain a two-point 

function at zero temperature. In this case, it should be notee that the 
existence of a black hole requires a different boundary condition 

(incomng boundary condition) unlike the zero temperature case.

in-coming

out-going
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1

i) The same as in the Euclidean case.

ii) In Minkowski space one has to specify the boundary condition at the horizon in
addition to that at the boundary u = 0. We impose the incoming-wave boundary
condition (waves are only absorbed by the black branes but not emitted from

there) for all Fourier components φq with timelike q. For spacelike q’s, we require
regularity at the horizon.

iii) The retarded thermal Green’s function is

GR(q) = A(u)f−q(u)∂ufq(u)|u→0 . (4.5)

Choosing the outgoing-wave condition at the horizon would yield the advanced Green’s

function GA instead. The sign in eq. (4.5) corresponds to the standard convention of
the retarded and advanced Green’s functions,

GR(ω, q) = −i

∫

d4x e−iq·x θ(t)⟨[Ô(x), Ô(0)]⟩ ,

GA(ω, q) = i

∫

d4x e−iq·x θ(−t)⟨[Ô(x), Ô(0)]⟩ .
(4.6)

In ref. [16] we verify that the three steps outlined above indeed give the correct
retarded Green’s functions in several cases where independent verification is possible.
Admittedly, this three-step prescription is aesthetically unsatisfactory: it cannot be

formulated as succinctly as eq. (4.1). Nevertheless, it does seem to work. One can
hope that our prescription can be embedded in future general framework which allows

the calculation of higher-point Green’s functions as well. Despite the shortcomings, the
prescription at hand is sufficient for the purpose of this paper.

5. Thermal R-current correlators in N = 4 SYM and R-charge

diffusion

To compute the current correlators, we use an approach similar to the one taken at
zero temperature [13, 14], the only difference being that we work in Minkowski rather

than in the Euclidean space and use the non-extremal supergravity background. Our
starting point is the five-dimensional Maxwell action in the background (3.4),

S = − 1

4g2
SG

∫

d5x
√
−g F a

µνF
µν a , (5.1)

where gSG = 4π/N is the effective coupling constant fixed in [13]. Reinstating powers
of R, we have g2

SG = 16π2R/N2.
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Transport coefficients of the dual QFT

Turn on the U(1) vector fluctuations on the AdS black hole background

After taking the          gauge and the following Fourier mode expansions

the  equations of motion can be divided into two parts: the longitudinal and 

transverse one

with



- Longitudinal modes

- Transverse mode

In the hydrodynamic limit (                     ),  we can solve these 

equations perturbatively



Boundary conditions

The retarded Green function of  longitudinal modes

- Incoming  BC at the horizon, which breaks the unitarity of  the dual QFT.

- Dirichlet BC at the asymptotic boundary, which fixes the source of dual QFT.

in the low frequency and low momentum limit (hydrodynamic limit), 

the retarded Green functions become 

The longitudinal Green function has a 

charge diffusive pole governed by the 

following dispersion relation

with



the charge diffusion constant

- The charge diffusion constant implies that the quasi normal mode 

(charge current of the dual QFT) eventually diffuses away back into the 
thermal equilibrium with a half-life time

The retarded Green function of  transverse mode

- There is no pole.

- The DC conductivity is given by



Ratio between Shear viscosity and entropby

Important holographic results

In RHIC experiment, quark-gluon plasma showed a very small ratio between

the shear viscosity and thermal entropy.

Intriguingly, the holographic calculation leads to such a small ratio



Conclusions

- The AdS/CFT correspondence provides a new way to understand a strongly 

interacting QFT.

- Although the microscopic details of the dual QFT are not known, many 

macroscopic properties can be understood by the holographic methods.

- It would be helpful to understand various macroscopic properties of the 

real physical systems in nuclear and condensed matter physics.
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