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|. Introduction

Duality in quantum field theory has been a powerful tool
In Mmany contexts.

Since the mid-1990s, studies of duality in particle theory
focused on supersymmetric QFTs.

* mirror symmetry of 2d sigma models

o

* Seiberg duality of 4d N=1I gauge theories

A Calabi-Yau
and its mirror

SU(N.), Ny flavors <+ SU(Ny — N.) Ny flavors + meson
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However, the subject predates fancy constructions in
string theory and supersymmetric QFT.

Kramers-Wannier duality of the Ising model and many
other examples arise in condensed matter physics.
(More relevant to talk: bosonization/Luttinger liquid).

Today, I'll give a very brief description of a derivation of a
duality of interest in condensed matter, starting from
a classic example of mid 1990s supersymmetric dualities.

The duality I'll be focusing on relates a theory of free
fermions to a scalar QED3 theory.
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One place where such dualities may be relevant is in
understanding the fractional quantum Hall effect.

Electrons moving in a magnetic field
can be dressed by a certain number of
flux quanta each. The resulting quasiparticle
sees different flux density and in general has
different statistics, which can be helpful.

* Can map FQHE to IQHE
* Can map 1/2 - filled LL to (non)-Fermi liquid (?)
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In fact our work was motivated by duality conjectures
made roughly in that context, by D.T. Son and by
Metlitski, Senthil,Vishwanath, and Wang. e seibere

Witten, Wang;
Karch, Tong

ll. Mirror symmetry of 3d N=4 gauge theories

We will start with a well studied and (fairly) rigorously
understood duality from high-energy physics,
the mirror symmetry of 3d N=4 gauge theories.

These can be thought of as the dimensional reductions
of (perhaps more familiar) 4d N=2 theories.




The two types of supermultiplets that arise are:

Vectormultiplet : (AM, o, 0), (A, ¥y)

Hypermultiplet : (q,,), (¢, ¥3)

N=4 theories have moduli spaces of vacua whose basic
structure is:

N , Higgs and Coulomb branches,
/ - // which are hyperKahler manifolds.
/
/
/

We will not have mixed branches
/ today.
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Mirror symmetry is a symmetry of pairs of 3d N=4 gauge
theories A and B, where

Higgs(A) = Coulomb(B)
Higgs(B) = Coulomb(A)

Example:

We will be satisfied today with using just the simplest,
prototypical example of 3d mirror symmetry.

Theory A: Free hypermultiplet
Theory B: QED with one charged hyper




The Lagrangian of theory A is

L =3 (|aﬂvi|2 i @\pi)

+

The +/- labels the charge under an important symmetry.
A table of the fields and their transformations under the
various symmetries is:

Ul)r U(l)a U(1),

vy |1 1 1
(there are really two SU(2)s,
v_ 1 -1 -1 but only the Cartan properties
matter for us)
U, | 0 i 1
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The Lagrangian and table of symmetries of theory B:

L™ = Ly (V) + Lg(Q,V),

Ly (V) = ig (

g

1 1 < 1
—Zfiy T 5(8u¢ij)2 +idia PAia + §D(2ab))

Lu(Q,V) = |Dyug|? +ith; Py — &7 Jual|® — dijibitd; + V2(iNiaui; +h.c.) + Dipyuiug .

Ul)rp UM)a U(), U(l),

™ 0 1 0 1
U_ 0 1 0 -1
b 1 1 0 1 fur = €40,07
W 1 1 0 1

2miry/g*

00 s = Ly e
o 0 0 0 0 " 2T
¢ 2 -2 0 0 “ . ”»

topological current

A 1 0 0 0 vortices carry charge
(9 1 -2 0 0
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Slogan: following U (1), charge, particles of theory A
are vortices of theory B.

The moduli spaces are quite simple:

The tree level moduli space in theory A is R
As the theory is free, there are no corrections.

On the other hand, theory B has a Coulomb branch
parametrized by ¢,¢ and the dual photon. Its
geometry receives quantum corrections.

In the IR limit where g — oo, there is a symmetry
exchanging these two moduli spaces of vacua.
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More formal formulation:

We can promote the topological U(1) to a full
background vector multiplet.

LA, V) =LMQ,V)) = / 40 (vjemw + V1 e—2VJv_) + / d*0/2id V. V_ + h.c.

In theory B, it enters subtly through a BF term:

AN

LEU YV, V) =LYV)+ LU,V — LYV, V).

1
LYZAVD Y@y = — /d49\/1)2 ——/d29q>1>c1> 2 +h.c.
70

CNR VW vy = L / AUSDIS

N
=

_ 6 (euvp AMY,A® 4 DO® 1 PO l(;u) A2 4 3@ A<1>)>
2

N
R
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In this fancier formulation, the formal statement of mirror
symmetry is that

ZAW, = 2B

Our plan now is to consider what happens when we
similarly promote the other U(|) symmetries.

We can then consider perturbations by background
values of their 6, D fields.

This will lead to supersymmetry breaking, and allow us
to infer a non-supersymmetric duality.
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lll. Perturbations to the basic N=4 duality
A. Promoting other global symmetries

Using the tables of charges, it is straightforward to see
what happens when we promote the U(1)4 symmetry to
a full background multiplet Vy:

LN, V) = / d*0 (Vle2ZV_VA)V+ + V_Te—2<V+VA>V_)

1

LEUV, V) = 172

/d29W2+hc +—/d4 AdteVap

/ d*0 (Uie2 Vo, + Ut e 2V-Va) U_) _ L / POV,

2T
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Promoting the R-symmetry is a bit harder, because it does
not commute with supersymmetry. However, the basic
elements of the map are easy to infer:

* AR couples to Jjr on both sides of the duality

*The coupling to dr is more subtle. Think of the 3d
theory as a dimensional reduction of a 4d theory. Then
this field is the 4th component of the gauge field, and
couples to the 4th component of the appropriate current.
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With this understanding, the mirror duality is promoted to:

Z(A) [‘2]7 VA) VR] — Z(B) [‘A/Ja ‘A/Aa VR] y

B. First step: a simpler N=2 theory

As the first step on our road to a non-supersymmetric
duality, lets break the N=4 to an N=2 theory with a
single chiral multiplet. Looking at the charges:

Ul)r U(L)a U()y

vy |1 1 1
v |1 1 1
U, | 0 1 1
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we see it will be interesting to consider a perturbation
of the form

|5-A—(3-J‘ <<5-AN5-J.
Since we know that ¢ fields coupled to charged scalars via:

o2 q?|p|?

type couplings, this will give a large mass to v_ (and
its superpartner). The remaining light fields & charges:

UM)r U(l)a U(1),
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The resulting theory A Lagrangian for light fields is:

A N N N A A
[’E:hi)ral — DAJ—AA+ARU+‘2 — ((UJ — 04T 03)2 + Dy — DA) \U+|2

= ) = 1 A
+ Z‘I’+¢AJ—AA‘I’+ — (UJ — UA)‘I’+‘I’+ + S—sz(\?z)vAMdAN,
Here,

AM — (AJa AA) AR)

(-1 —10)

k](\?])\, =sgn(6,) | =1 —10

\ 0 0 0/
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The k-matrix arises from integrating out the
fermion ¥_ ;in general integrating out a fermion induces
a change in the k-matrix

Z ¢l qf sgn(my)

Under further perturbations, vacuum stability of this
theory will require

m3+:(6j—5-A+OA-R)2+ﬁJ—bAZO.

Otherwise, v+ will condense and run away to the
cutoff.
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We can map over the perturbation to theory B as well.
The analysis is a bit more involved, but in the end the
light fields are the «_,vy_ multiplet along with a (shifted)
sigma field. The effective Lagrangian is:

B 1 . _ o A
L == (06 + D)+ |D_ s ulP+d il 4, a0 —((6—64)° =D+ Da)u_]|’

_ L 1 A A
— 87T¢_’¢_lu_‘2 — (—(7 + 04 — UR)w—w— + 8—7T(0J—|— Ag — AR)d(a + Aq — AR)
1

87

1 . L~ . A . A .
+7 (6+6A)(D+DA)—8—7TARdAR— (244 — AR)d(2A4 — ARg)

4rr
1
-

The duality we've exhibited here is one between a
single free chiral N=2 superfield,and N=2 QED with
a charged chiral multiplet.
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C. Breaking supersymmetry

The final step is to break supersymmetry. We do this
by turning ona D term.

In theory A, as v, carries positive topological charge,
this results in a massless Fermi theory:

rit
A _ _ et
E](Dil?ac — \P+ZlDAJ_AA\IJ+ — m\p+\Ij+\Ij_|_ | 7 AMdAN
—1-10
Ky =1-1-10

0 00
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We can consider varying away from the critical point
by slightly detuning 4 — 7, giving a mass to the fermion.
The resulting k-matrices are:

~1-10 1 —10
=1 —-1-10]+sgn(6,—64) -1 1 0].
0 00 0 00

my, >0, mz, >0
my, >0 my, <0
Phase 11 I

diagram:

> sign(6a —064)(64 —67)°
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Now, we can consider the same perturbation to
theory B. This theory is strongly coupled. But
we can use macroscopic considerations:

* Duality implies that there is a single critical point as we
vary o4 — 0 in the small range we consider.

* A simple calculation tells one that the k-matrix is:

1 " " " "
L) = osen(my_)(—a+ Ay — Ap)d(—a+ Ay — Ag) — O(~m}

1 " " " A " " " " " " "
- [(a +Ad— Ap)d(a+ Ay — Ap) — 4A4dAL + 4A4dAR — 2ARd AR — 4AJda]
Tr

D(—a+ Ay)’

* Dual theories must have matching k-matrices!
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The only reasonably parsimonious phase diagram for
theory B is then

D,
m2 <0, my_ >0,
My > 0 My > 0
11 I
> sign(64 —65)(64 —67)°
111
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The resulting critical theory has:

Cégﬁm =|D_gia,u_|® —m2 |u_|* — Ay_|u_|* + Eada — %Ajda — —AAdAA

Setting some of the background fields

and doing some re-naming, we have shown:

) 1. 1 1
Wilp ;¥ — —AdA & |D_,0]” — [p|" + —ada — —Ada
ST 4 27T
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This is the promised duality between a free Fermi theory
and scalar QED3.

As argued by Senthil, Seiberg, Witten and Wang,
starting from this duality, and using SL(2,Z)
arguments, one can derive several further dualities:

- 1 .~ - . 1 1 .
’DA¢’2 — |o|* + EACZA & Pil) ) — S—Wada — %Ada.

1 -
Do~ [8]' ¢ [Dagl® — |g|' — 5 Ada,

- Lo 1 1 2 1
\IwaA\If — 8_7TAdA < \Iwa_a\Ij + 8—ﬂada+ %bda—k Ebdb— %Adb
Understanding the derivation of any one is therefore

sufficient.
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