
Bosonization and Mirror Symmetry

Shamit Kachru (Stanford)

(based on arXiv:1608.05077 with Mulligan, Torroba, Wang; see
also our earlier paper arXiv:1506.01376)

Monday, August 22, 16



I.  Introduction

Duality in quantum field theory has been a powerful tool
in many contexts.

Since the mid-1990s, studies of duality in particle theory
focused on supersymmetric QFTs.

* mirror symmetry of 2d sigma models

SU(Nc), Nf flavors $ SU(Nf �Nc) Nf flavors + meson

A Calabi-Yau
and its mirror

* Seiberg duality of 4d N=1 gauge theories
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However, the subject predates fancy constructions in
string theory and supersymmetric QFT.

Kramers-Wannier duality of the Ising model and many
other examples arise in condensed matter physics. 

(More relevant to talk: bosonization/Luttinger liquid). 

Today, I’ll give a very brief description of a derivation of a
duality of interest in condensed matter, starting from

a classic example of mid 1990s supersymmetric dualities.

The duality I’ll be focusing on relates a theory of free 
fermions to a scalar QED3 theory.
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One place where such dualities may be relevant is in
understanding the fractional quantum Hall effect.

Electrons moving in a magnetic field
can be dressed by a certain number of

flux quanta each.  The resulting quasiparticle
 sees different flux density and in general has 

different statistics, which can be helpful.

* Can map FQHE to IQHE
* Can map 1/2 - filled LL to (non)-Fermi liquid (?)
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In fact our work was motivated by duality conjectures 
made roughly in that context, by D.T. Son and by

Metlitski, Senthil, Vishwanath, and Wang.

II.  Mirror symmetry of 3d N=4 gauge theories

We will start with a well studied and (fairly) rigorously
understood duality from high-energy physics,

the mirror symmetry of 3d N=4 gauge theories.

These can be thought of as the dimensional reductions
of (perhaps more familiar) 4d N=2 theories.

c.f. Senthil, Seiberg,
Witten, Wang;

Karch, Tong
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Hypermultiplet : (q, q), (q̃, q̃)

The two types of supermultiplets that arise are:

N=4 theories have moduli spaces of vacua whose basic
structure is:

Higgs and Coulomb branches,
which are hyperKahler manifolds.
We will not have mixed branches

today.

Vectormultiplet : (Aµ,�,�), (�, �)
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Mirror symmetry is a symmetry of pairs of 3d N=4 gauge 
theories A and B, where

Higgs(A) = Coulomb(B)

Higgs(B) = Coulomb(A)

Example:

We will be satisfied today with using just the simplest,
prototypical example of 3d mirror symmetry.

Theory A:  Free hypermultiplet
Theory B:  QED with one charged hyper

Intriligator,
Seiberg
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The Lagrangian of theory A is 

system using our weakly-coupled dual.

The remainder of this paper is organized as follows. In §2, we review the relevant aspects
of mirror symmetry. In §3, we deform mirror symmetry by the addition of a magnetic field,
and describe its application to the half-filled zeroth Landau level problem of Dirac fermions.
In §4, we study the low-energy dynamics of theory B, set up a renormalization group analysis,
and determine the nature of the superconducting interaction. We conclude in §5 and provide
an Appendix that elaborates upon some aspects of the formalism used in the main text.

2 Mirror symmetry in 2 + 1 dimensions

We begin by reviewing mirror symmetry for D = 2 + 1 dimensional supersymmetric theo-
ries [42, 43, 47]. For our purpose, it will be su�cient to consider the simplest mirror pair,
namely U(1) supersymmetric QED (SQED) with one flavor, and the theory of a free hyper-
multiplet; we follow mostly the analysis of Kapustin and Strassler [47]. We then describe
how to include electromagnetism.

2.1 Theory A

“Theory A” (sometimes also called the magnetic theory), which will be identified below with
the elementary electrons of the quantum Hall system, is the theory of a free hypermultiplet
with N = 4 supersymmetry (i.e., 8 supercharges). Each conserved supercharge is a fermionic
operator that commutes with the Hamiltonian and together generate the supersymmetry
algebra. In N = 2 notation, this is given by two chiral multiplets (V

+

, V�), each of which
contains a complex scalar v± and a 3D Dirac fermion  ±. A crucial role will be played by a
U(1)J global symmetry, under which the supermultiplets V± have charges±1. This symmetry
will be identified with 3 + 1 dimensional electromagnetism. The theory has nonabelian
SU(2)L⇥SU(2)R R-symmetries, under which (v

+

, v

⇤
�) and ( 

+

, ⇤
�) transform as (2, 1) and

(1, 2), respectively. This is summarized in (2.1).

SU(2)L SU(2)R U(1)J

(v
+

, v

⇤
�) 2 1 1

( 
+

, ⇤
�) 1 2 1

(2.1)

The Lagrangian is simply that of free fields,

L

(A) =
X

±

⇣

|@µv±|2 + i ̄± 6@ ±

⌘

, (2.2)

4The +/- labels the charge under an important symmetry.
A table of the fields and their transformations under the

various symmetries is:

Because theory A is free, these symmetries are exact. (The R-symmetries do not commute

with SUSY since SU(2)L and SU(2)N act separately on the bosons and fermions.)

The Cartan subgroup of the global symmetry is U(1)L ⇥ U(1)N ⇥ U(1)J . It will be

convenient to consider the following linear combination of symmetries: U(1)R ⌘ U(1)L and

U(1)A ⌘ U(1)N � U(1)L (the linear combination U(1)A commutes with SUSY). The charge

assignments for the fields under U(1)R ⇥ U(1)A ⇥ U(1)J are given in (2.12).

U(1)R U(1)A U(1)J

v+ 1 -1 1

v� 1 -1 -1

 + 0 -1 1

 � 0 -1 -1

(2.12)

In the presence of a background N = 4 vector superfield7 V̂J for the U(1)J symmetry,

the lagrangian of theory A is

L(A)(Q, V̂J) = LH(Q, V̂J) =

Z
d4✓

⇣
V †
+e

2V̂JV+ + V †
�e

�2V̂JV�
⌘
+

Z
d2✓

p
2i�̂JV+V� + h.c.

(2.13)

This defines a partition function

Z(A)[V̂J ] =

Z
DQ exp

✓
i

Z
d3xL(A)(Q, V̂J)

◆
. (2.14)

Theory B is N = 4 SUSY QED3 with a single charged hypermultiplet. Mirror symmetry

says that this theory has the non-interacting description provided by theory A. Our notation

for the matter content of theory B is as follows. The N = 4 vector multiplet contains a N = 2

vector multiplet V = (aµ, �,�) and a N = 2 neutral chiral multiplet � = (�, �). Here � is

a real scalar, � is a complex scalar, and � and  � are two-component Dirac fermions. The

N = 4 charged hypermultiplet contains N = 2 chiral multiplets U± = (u±, ±) of opposite

charge under aµ. The U(1)J global symmetry of theory B arises from dualizing the field

strength,

Jµ =
1

2⇡
✏µ⌫⇢@

⌫a⇢ , (2.15)

whose conservation law is equivalent to the Bianchi identity for the emergent gauge field. It

acts as a shift on the dual photon �, where fµ⌫ = @µa⌫ � @⌫aµ = ✏µ⌫⇢@
⇢�. Mirror symmetry

7We denote background non-dynamical fields with ‘hats’.

8

(there are really two SU(2)s,
but only the Cartan properties 

matter for us)
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The Lagrangian and table of symmetries of theory B:The Lagrangian of theory B is fixed by the symmetries and is nontrivial due to the
interactions between the charged hypermultiplet and the emergent vector multiplet:

L

(B) = LV (V) + LH(Q,V), (2.7)

where the kinetic terms for the vector superfield are

LV (V) = 1

g

2

✓

�1

4
f

2

µ⌫ +
1

2
(@µ�ij)

2 + i�̄ia 6@�ia + 1

2
D

2

(ab)

◆

(2.8)

and the hypermultiplet part of the Lagrangian reads

LH(Q,V) = |Dµua|2 + i ̄i 6D i ��

2

ij|ua|2 ��ij ̄i j +
p
2(i�iau

⇤
a i +h.c.)+D

(ab)u
⇤
aub . (2.9)

Here Dµ = @µ+ iq±aµ and D

(ab) are the auxiliary fields from the vector multiplet; integrating
them out leads to a quartic potential V = g2

2

(u⇤
aub)2 for the hypermultiplet scalars.

2.3 Mirror symmetry

In 2 + 1 dimensions the gauge interaction is classically relevant; as a result, theory B flows
to strong coupling at low energies. Mirror symmetry states that the low energy limit of
theory B admits a dual description as the model of a free hypermultiplet given by theory
A. This can be proved by a formal path integral calculation in the limit g2 � E [47]. More
physically, theory A arises as the low energy description of theory B along the “Coulomb
branch” of its moduli space where the emergent gauge field is deconfined; the power of
supersymmetry here is that such an e↵ective theory is one loop exact – both perturbatively
and nonperturbatively.

Theory A has a “Higgs branch”,2 a moduli space of vacua parametrized by the complex
fields v±. Such moduli spaces are protected by supersymmetry, but will be shortly lifted
by the addition of a magnetic field to realize the Landau levels. On the other hand, theory
B has a Coulomb branch where the triplet of scalars �ij, together with the dual photon
�, have nonzero expectation values. Along these directions, the U(1) gauge symmetry is
preserved, and the charged hypermultiplet fields become massive. The duality maps the
Coulomb branch of theory B to the Higgs branch of theory A; note that there is no Higgs
branch for theory B due to the constraints Dab = 0 which give the absolute minimum of the
potential.

An explicit derivation of theory A from theory B may be obtained as follows [53]. Away
from the origin �ij = 0 of the Coulomb branch, we may integrate out the heavy hypermulti-
plets of theory B to obtain a nonlinear sigma model for (�ij, �). Due to nonrenormalization

2
This nomenclature is related to the fact that in generalizations of mirror symmetry to many flavors, this

is a branch along which gauge symmetries are spontaneously broken.
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identifies the global symmetries of both theories. The gauge field then arises from dualizing

the U(1)J current of theory A. The rest of the fields are neutral under U(1)J . On the other

hand, the symmetries SU(2)L ⇥ SU(2)N act as (3, 1) on the triplet of scalars (�,�), �, �

are in the bifundamental, (u+, u
⇤
�) transform as (1, 2), and ( +, 

⇤
�) are in the (2, 1). This

is summarized in (2.16).

SU(2)L SU(2)N U(1)J

e2⇡i�/g
2

1 1 1

�ij ⌘ (�,�) 3 1 0

�ia ⌘ (�, �) 2 2 0

ua ⌘ (u+, u
⇤
�) 1 2 0

 i ⌘ ( +, 
⇤
�) 2 1 0

(2.16)

The charges of the fields under the global abelian U(1)R ⇥ U(1)A ⇥ U(1)J and gauge

U(1)a symmetries are given in (2.17).

U(1)R U(1)A U(1)J U(1)a

u+ 0 1 0 1

u� 0 1 0 -1

 + -1 1 0 1

 � -1 1 0 -1

e2⇡i�/g
2

0 0 1 0

� 0 0 0 0

� 2 -2 0 0

� 1 0 0 0

 � 1 -2 0 0

(2.17)

The lagrangian of theory B is fixed by the symmetries and is nontrivial due to the

interactions between the charged hypermultiplet and the emergent vector multiplet:

L(B)(U ,V , V̂J) = LV(V) + LH(U ,V) � LN=4
BF (V , V̂J) . (2.18)

9

fµ⌫ ⌘ ✏µ⌫⇢@
⇢�

JU(1)J
µ ⌘ 1

2⇡
@µ⌫⇢@

⌫a⇢

“topological current”
vortices carry charge
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The moduli spaces are quite simple:

The tree level moduli space in theory A is     .
As the theory is free, there are no corrections.

R4

On the other hand, theory B has a Coulomb branch
parametrized by         and the dual photon.  Its

geometry receives quantum corrections.
�,�

In the IR limit where           , there is a symmetry
exchanging these two moduli spaces of vacua. 

g ! 1

Slogan: following         charge, particles of theory A 
are vortices of theory B.

U(1)J
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an N = 2 vector multiplet V and chiral multiplet �. The hypermultiplet lagrangian for a

charged superfield is

LH(U ,V) =
Z

d4✓ (U †
+e

2V U+ + U †
�e

�2V U�) +
Z

d2✓ i
p
2�U+U� + h.c. (2.8)

= |D±au±|2 + ī ± 6D±a ± � (�2 + |�|2)(|u+|2 + |u�|2) � D(|u+|2 � |u�|2) + Fu+u�

� �( ̄+ + �  ̄� �) � � + � � i �(u+ � + u� +) � i�(u†
+ + � u†

� �) + h.c.

The vector-multiplet lagrangian is

LV(V) = 1

4g2

Z
d2✓W 2

↵ + h.c. +
1

g2

Z
d4✓�†� (2.9)

=
1

g2

✓
�1

4
f 2
µ⌫ +

1

2
(@�)2 + |@�|2 + �̄i/@�+  ̄�i/@ � +

1

2
D2 + |F |2

◆
,

where fµ⌫ = @µa⌫ � @⌫aµ. Finally, the N = 4 version of the BF coupling is

LN=4
BF (V (1),V (2)) =

1

2⇡

Z
d4✓ V (1)⌃(2) � 1

2⇡

Z
d2✓�(1)�(2) + h.c. (2.10)

As the above expressions make clear, superspace allows quite simple and compact forms for

component lagrangians that may seem rather involved.

2.2 N = 4 mirror symmetry

The simplest example of N = 4 mirror symmetry is a duality between the following two

theories. We focus exclusively on this particular example.

Theory A is the theory of a free hypermultiplet Q. In N = 2 notation, this is given by two

chiral multiplets (V+, V�), each of which contains a complex scalar v± and a two-component

Dirac fermion  ±. A crucial role will be played by a U(1)J global symmetry, under which

the supermultiplets V± have charges ±1. The theory has nonabelian SU(2)L ⇥ SU(2)N “R-

symmetries,” under which (v+, v⇤�) and ( +, ⇤
�) transform as (2, 1) and (1, 2), respectively.

The field content and charges are summarized in (2.11).

SU(2)L SU(2)N U(1)J

vi ⌘ (v+, v⇤�) 2 1 1

 a ⌘ ( +, ⇤
�) 1 2 1

(2.11)

7

(We note that this is not the representation that obtains from the dimensional reduction

given in Appendix A.)

Chern-Simons and BF terms will also appear in our dualities, so let us review their N = 2

version [64, 65]. The N = 2 BF coupling between two vector multiplets V (1) and V (2) is

LN=2
BF (V (1), V (2)) =

1

2⇡

Z
d4✓ V (1) ⌃(2) (2.5)

=
1

2⇡

✓
✏µ⌫⇢A(1)

µ @⌫A
(2)
⇢ +D(1)�(2) +D(2)�(1) +

1

2
(�̄(1)�(2) + �̄(2)�(1))

◆
,

where ⌃ = D̄↵D↵V (the superspace derivativeD↵ is defined in Appendix A). In this notation,

a SUSY Chern-Simons lagrangian at level k corresponds to

LN=2
CS (V ) = LN=2

BF (V, V ) =
k

4⇡

Z
d4✓ V ⌃ =

k

4⇡

�
✏µ⌫⇢Aµ@⌫A⇢ + 2D� + �̄�

�
. (2.6)

A one-loop calculation shows that integrating out chiral superfields �f of massmf and charge

qfi under U(1)i produces a N = 2 Chern-Simons term:

LN=2
CS =

kij
4⇡

Z
d4✓ Vi ⌃j , kij =

1

2

X

f

qfi q
f
j sgn(mf ) . (2.7)

Our convention for the fermion mass sign is L � �mf  ̄f f .

Let us comment on a subtle point regarding Chern-Simons terms generated by integrating

out a single fermion. This wil also clarify the statement of the dualities in (1.4) and (1.5)

– see [12, 28, 30, 66] for further discussion.6 When a Dirac fermion of mass m is integrated

out, the e↵ective action obtains the correction �S = ⇡sgn(m)
2 ⌘(A, g), where ⌘(A, g) is the

eta-invariant and A and g are the gauge field and metric to which the fermion couples. We

will be exclusively interested in a setting in which the background metric is flat Minkowski

space g = �2,1 so we will not discuss the metric contribution to ⌘(A, g). In our expressions,

we substitute ⇡
2⌘(A, �2,1) =

1
8⇡

R
d3x AdA as short-hand; in general, this equality is only true

mod ⇡Z (see Eq. (2.50 of [28]). Thus, in writing Chern-Simons terms in this paper, it is to be

understood that we have chosen, e.g., a time-reversal invariant Pauli-Villars regularization

of our theories, which in the UV contain an even number of Dirac fermions; without such a

specification, a correct statement requires the eta-invariant.

We now have all the necessary ingredients to discuss N = 4 SUSY theories. The two

multiplets that will be relevant to us are the N = 4 hypermultiplet U , which contains two

N = 2 chiral multiplets U+ and U�, and the N = 4 vector multiplet V , which contains

6We thank N. Seiberg, T. Senthil, and C. Wang for correspondence on this point.
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More formal formulation:

We can promote the topological U(1) to a full 
background vector multiplet. 
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assignments for the fields under U(1)R ⇥ U(1)A ⇥ U(1)J are given in (2.12).

U(1)R U(1)A U(1)J

v+ 1 -1 1

v� 1 -1 -1

 + 0 -1 1
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(2.12)

In the presence of a background N = 4 vector superfield7 V̂J for the U(1)J symmetry,

the lagrangian of theory A is

L(A)(Q, V̂J) = LH(Q, V̂J) =

Z
d4✓

⇣
V †
+e

2V̂JV+ + V †
�e

�2V̂JV�
⌘
+

Z
d2✓

p
2i�̂JV+V� + h.c.

(2.13)

This defines a partition function

Z(A)[V̂J ] =

Z
DQ exp

✓
i

Z
d3xL(A)(Q, V̂J)

◆
. (2.14)

Theory B is N = 4 SUSY QED3 with a single charged hypermultiplet. Mirror symmetry

says that this theory has the non-interacting description provided by theory A. Our notation

for the matter content of theory B is as follows. The N = 4 vector multiplet contains a N = 2

vector multiplet V = (aµ, �,�) and a N = 2 neutral chiral multiplet � = (�, �). Here � is

a real scalar, � is a complex scalar, and � and  � are two-component Dirac fermions. The

N = 4 charged hypermultiplet contains N = 2 chiral multiplets U± = (u±, ±) of opposite

charge under aµ. The U(1)J global symmetry of theory B arises from dualizing the field

strength,

Jµ =
1

2⇡
✏µ⌫⇢@

⌫a⇢ , (2.15)

whose conservation law is equivalent to the Bianchi identity for the emergent gauge field. It

acts as a shift on the dual photon �, where fµ⌫ = @µa⌫ � @⌫aµ = ✏µ⌫⇢@
⇢�. Mirror symmetry

7We denote background non-dynamical fields with ‘hats’.
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In theory B, it enters subtly through a BF term:
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In this fancier formulation, the formal statement of mirror 
symmetry is that

The partition function of the theory is

Z(B)[V̂J ] =

Z
DU DV exp

✓
i

Z
d3xL(B)(U ,V , V̂J)

◆
. (2.19)

Mirror symmetry states that the partition functions of theory A and B are the same:

Z(A)[V̂J ] = Z(B)[V̂J ] . (2.20)

The global symmetries on both sides match8; the moduli space of theory A (the Higgs

branch parametrized by v±) maps to the moduli space of theory B – the Coulomb branch

parametrized by the scalars �, �, �.

2.3 Deformations by U(1)A and U(1)R backgrounds

We now consider an extension of mirror symmetry that includes U(1)A and U(1)R background

deformations. This will be crucial for deriving the bosonization duality below.

We first discuss the simpler case of global non-R-symmetries. The basic observation

is simple: both sides of the mirror pair have a conserved U(1)A current, so the partition

function should agree also in the presence of a background gauge field that couples to the

current. In fact, since U(1)A commutes with SUSY, we can introduce a N = 2 background

vector superfield.

The background vector superfield V̂A contains a scalar �̂A, a gauge field ÂA, a gaugino

�̂A and a D-term D̂A. Taking into account the charges of the elementary fields in (2.12), the

U(1)A background deforms the lagrangian by

L(A)(Q, V̂A) =

Z
d4✓

⇣
V †
+e

2(̂V�V̂A)V+ + V †
�e

�2(V̂+V̂A)V�
⌘
. (2.21)

From (2.17), the background U(1)A couples to the chiral superfields U± and � in theory

B as follows:

L(B)(U ,V , V̂A) =
1

4g2

Z
d2✓W 2

↵ + h.c. +
1

g2

Z
d4✓�†e�4V̂A�

+

Z
d4✓

⇣
U †
+e

2(V+V̂A)U+ + U †
�e

�2(V�V̂A)U�
⌘

� 1

2⇡

Z
d4✓ V ⌃̂ . (2.22)

8Note that we write global symmetries such that the matching is SU(2)
L,N

$ SU(2)
L,N

. This departs

from the standard convention in mirror symmetry works where global symmetries are interchanged SU(2)
L

$
SU(2)

N

.

10

Our plan now is to consider what happens when we
similarly promote the other U(1) symmetries.

We can then consider perturbations by background 
values of their          fields.�̂, D̂

This will lead to supersymmetry breaking, and allow us
to infer a non-supersymmetric duality.
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III.  Perturbations to the basic N=4 duality

A.  Promoting other global symmetries
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a full background multiplet     :
U(1)A

V̂A
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◆
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◆
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Promoting the R-symmetry is a bit harder, because it does 
not commute with supersymmetry.  However, the basic 

elements of the map are easy to infer:

*       couples to      on both sides of the dualityÂR jR

* The coupling to      is more subtle.  Think of the 3d
theory as a dimensional reduction of a 4d theory.  Then
this field is the 4th component of the gauge field, and

couples to the 4th component of the appropriate current.

�̂R
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With this understanding, the mirror duality is promoted to:

With the U(1)J and U(1)A backgrounds turned on, mirror symmetry implies

Z(A)[V̂J , V̂A] = Z(B)[V̂J , V̂A] . (2.23)

Finally, we consider a background superfield coupling to the U(1)R current jRµ and its

SUSY completion. This is a bit more subtle than the previous case because U(1)R does not

commute with SUSY. The superspace structure of the U(1)R symmetry multiplet and its

linearized couplings have been recently worked out in [67, 68] and their results may be used

to map a SUSY background for U(1)R across the duality.

For this work, however, we only need the background gauge field ÂR and its scalar part-

ner �̂R; these can be mapped across the duality without using the full superspace machinery.

First, ÂR appears through the minimal coupling ÂR,µj
µ
R (plus possible quadratic terms to

ensure gauge invariance), and since jµR is determined by the Noether procedure, it is straight-

forward to map ÂR across the duality. On the other hand, the coupling to �̂R can be obtained

by first working in a 3+1D theory with minimal coupling ÂR,mj
m
R with m = 0, . . . , 3, and

then dimensionally reducing along x2 and identifying �R = iAR,m=2. Thus, �̂R couples to the

extra-dimensional component of the current jm=2
R . This agrees with the analysis in [67, 68].

2.4 General mirror duality

In this way, we arrive at the general statement of mirror symmetry in the presence of back-

grounds,

Z(A)[V̂J , V̂A, V̂R] = Z(B)[V̂J , V̂A, V̂R] . (2.24)

It is important to stress that (2.24) holds as long as the mass scales associated to the

backgrounds are much smaller than the scale g2 ! 1 below which theory B flows to its

interacting fixed point description.

Let us note one immediate consequence of (2.24) that will be important below. Consider

a point in the phase diagram of background couplings where some of the fermionic fields

on both sides are massive. Integrating them out produces Chern-Simons terms for the

background gauge fields as dictated by (2.7). Some of the scalars can also condense, inducing

Higgs masses for certain combinations of the background gauge fields – these combinations

disappear from the low energy theory. Then (2.24) implies that the corresponding matrices

of Chern-Simons levels kMN , projected onto the subspace of massless fields, have to match

between theory A and theory B. This is a direct consequence of the SUSY duality, but it

also holds if SUSY is broken by some of the background D-terms, because even in this case,

11

B.  First step:  a simpler N=2 theory

As the first step on our road to a non-supersymmetric
duality, lets break the N=4 to an N=2 theory with a 

single chiral multiplet.  Looking at the charges:

Because theory A is free, these symmetries are exact. (The R-symmetries do not commute

with SUSY since SU(2)L and SU(2)N act separately on the bosons and fermions.)

The Cartan subgroup of the global symmetry is U(1)L ⇥ U(1)N ⇥ U(1)J . It will be

convenient to consider the following linear combination of symmetries: U(1)R ⌘ U(1)L and

U(1)A ⌘ U(1)N � U(1)L (the linear combination U(1)A commutes with SUSY). The charge

assignments for the fields under U(1)R ⇥ U(1)A ⇥ U(1)J are given in (2.12).

U(1)R U(1)A U(1)J

v+ 1 -1 1

v� 1 -1 -1

 + 0 -1 1

 � 0 -1 -1

(2.12)

In the presence of a background N = 4 vector superfield7 V̂J for the U(1)J symmetry,

the lagrangian of theory A is

L(A)(Q, V̂J) = LH(Q, V̂J) =

Z
d4✓

⇣
V †
+e

2V̂JV+ + V †
�e

�2V̂JV�
⌘
+

Z
d2✓

p
2i�̂JV+V� + h.c.

(2.13)

This defines a partition function

Z(A)[V̂J ] =

Z
DQ exp

✓
i

Z
d3xL(A)(Q, V̂J)

◆
. (2.14)

Theory B is N = 4 SUSY QED3 with a single charged hypermultiplet. Mirror symmetry

says that this theory has the non-interacting description provided by theory A. Our notation

for the matter content of theory B is as follows. The N = 4 vector multiplet contains a N = 2

vector multiplet V = (aµ, �,�) and a N = 2 neutral chiral multiplet � = (�, �). Here � is

a real scalar, � is a complex scalar, and � and  � are two-component Dirac fermions. The

N = 4 charged hypermultiplet contains N = 2 chiral multiplets U± = (u±, ±) of opposite

charge under aµ. The U(1)J global symmetry of theory B arises from dualizing the field

strength,

Jµ =
1

2⇡
✏µ⌫⇢@

⌫a⇢ , (2.15)

whose conservation law is equivalent to the Bianchi identity for the emergent gauge field. It

acts as a shift on the dual photon �, where fµ⌫ = @µa⌫ � @⌫aµ = ✏µ⌫⇢@
⇢�. Mirror symmetry

7We denote background non-dynamical fields with ‘hats’.

8
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we see it will be interesting to consider a perturbation
of the form

the partition functions must still be equal. Our derivation of bosonization will make crucial

use of this fact.

3 Chiral mirror symmetry

As a step towards the bosonization relation (1.4), we first derive a chiral SUSY duality

equating the theory of a free N = 2 chiral superfield to N = 2 SUSY QED3 with a single

chiral superfield. This is a particular case of a family of dualities dervied in [26]. This is

accomplished by turning on backgrounds �̂J and �̂A. The e↵ects of these perturbations are

clear in theory A since it is free. While the theory B description is strongly coupled, SUSY

ensures that our analysis is reliable due to the absence of phase transitions as a function

of the gauge coupling. It will become clear that the chiral mirror duality provides a SUSY

completion for (1.4).

3.1 Chiral theory A

In theory A, let us turn on backgrounds

|�̂A � �̂J | ⌧ �̂A ⇠ �̂J . (3.1)

More precisely, we write

�̂A = �̂0
A + ��̂A , �̂J = �̂0

A + ��̂J , (3.2)

with |��̂A,J | ⌧ �̂0
A. Our goal is to derive an e↵ective theory valid at energy scales E ⌧ �̂0

A.

Within the e↵ective theory, we will denote ��̂A,J = �̂A,J for notational simplicity.

V� receives a large SUSY-preserving mass, while V+ is light. Therefore, theory A reduces

to the model of a free superfield with symmetries given in (3.3).

U(1)R U(1)A U(1)J

V+ 1 -1 1

v+ 1 -1 1

 + 0 -1 1

(3.3)

Note that in this theory the two global symmetries U(1)A and U(1)J act the same way on

the dynamical fields.

12

Since we know that     fields coupled to charged scalars via: �

�2q2|�|2

type couplings, this will give a large mass to       (and 
its superpartner).  The remaining light fields & charges:
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clear in theory A since it is free. While the theory B description is strongly coupled, SUSY

ensures that our analysis is reliable due to the absence of phase transitions as a function

of the gauge coupling. It will become clear that the chiral mirror duality provides a SUSY

completion for (1.4).

3.1 Chiral theory A

In theory A, let us turn on backgrounds
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More precisely, we write
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A.

Within the e↵ective theory, we will denote ��̂A,J = �̂A,J for notational simplicity.

V� receives a large SUSY-preserving mass, while V+ is light. Therefore, theory A reduces

to the model of a free superfield with symmetries given in (3.3).

U(1)R U(1)A U(1)J

V+ 1 -1 1

v+ 1 -1 1

 + 0 -1 1

(3.3)

Note that in this theory the two global symmetries U(1)A and U(1)J act the same way on

the dynamical fields.
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The resulting theory A Lagrangian for light fields is:
At scales E ⌧ �̂0

A, the e↵ective description is

L(A)
chiral = |DÂJ�ÂA+ÂR

v+|2 �
⇣
(�̂J � �̂A + �̂R)

2 + D̂J � D̂A

⌘
|v+|2

+ i ̄+ /DÂJ�ÂA
 + � (�̂J � �̂A) ̄+ + +

1

8⇡
k
(A)
MN ÂMdÂN , (3.4)

where ÂM = (ÂJ , ÂA, ÂR) and the Chern-Simons “K-matrix,”

k
(A)
MN = sgn(�̂0

A)

0

B@
�1 �1 0

�1 �1 0

0 0 0

1

CA , (3.5)

comes from integrating out the  � component of the superfield V�.9 Non-zero D̂J or D̂A

break SUSY. The chiral theory in (3.4) is stable as long as scalar v+ mass-squared is non-

negative:

m2
v+ = (�̂J � �̂A + �̂R)

2 + D̂J � D̂A � 0. (3.6)

Interactions must be included in order to study the regime of parameter space where v+ is

unstable.

3.2 Chiral theory B

Consider next the e↵ect of

�̂A � �̂J ⌧ �̂A ⇠ �̂J ⌧ g2 ! 1 (3.7)

in theory B. As before, we write the backgrounds as a large �̂0
A plus fluctuations that we

denote by �̂A,J within the e↵ective theory. Since the background axial mass �̂A appears in

combination with the Coulomb branch scalars as � ± �̂A, only one chiral multiplet can be

light at a time, i.e., for a given value of �. We will now show, in fact, that a SUSY-preserving

vacuum for ±�̂A > 0 requires that the U± multiplet is massive.

To see this, let us integrate out both charged scalars u± under the assumption that both

scalars are massive, � ± �̂A 6= 0. This produces a new contribution to the potential that

mixes the auxiliary D-field with �± �̂A. The terms that contribute to the e↵ective potential

are

Ve↵ = � 1

2g2e↵
D2 +

1

2⇡
D�̂J � 1

4⇡
D (|�̂A + �| � |�̂A � �|) . (3.8)

9The SUSY completion of the CS term will not play a role in what follows so it is not written.
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 + � (�̂J � �̂A) ̄+ + +

1

8⇡
k
(A)
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2g2e↵
D2 +

1

2⇡
D�̂J � 1

4⇡
D (|�̂A + �| � |�̂A � �|) . (3.8)

9The SUSY completion of the CS term will not play a role in what follows so it is not written.
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The k-matrix arises from integrating out the 
fermion      ; in general integrating out a fermion induces 

a change in the k-matrix

(We note that this is not the representation that obtains from the dimensional reduction

given in Appendix A.)

Chern-Simons and BF terms will also appear in our dualities, so let us review their N = 2

version [64, 65]. The N = 2 BF coupling between two vector multiplets V (1) and V (2) is

LN=2
BF (V (1), V (2)) =

1

2⇡

Z
d4✓ V (1) ⌃(2) (2.5)

=
1

2⇡

✓
✏µ⌫⇢A(1)

µ @⌫A
(2)
⇢ +D(1)�(2) +D(2)�(1) +

1

2
(�̄(1)�(2) + �̄(2)�(1))

◆
,

where ⌃ = D̄↵D↵V (the superspace derivativeD↵ is defined in Appendix A). In this notation,

a SUSY Chern-Simons lagrangian at level k corresponds to

LN=2
CS (V ) = LN=2

BF (V, V ) =
k

4⇡

Z
d4✓ V ⌃ =

k

4⇡

�
✏µ⌫⇢Aµ@⌫A⇢ + 2D� + �̄�

�
. (2.6)

A one-loop calculation shows that integrating out chiral superfields �f of massmf and charge

qfi under U(1)i produces a N = 2 Chern-Simons term:

LN=2
CS =

kij
4⇡

Z
d4✓ Vi ⌃j , kij =

1

2

X

f

qfi q
f
j sgn(mf ) . (2.7)

Our convention for the fermion mass sign is L � �mf  ̄f f .

Let us comment on a subtle point regarding Chern-Simons terms generated by integrating

out a single fermion. This wil also clarify the statement of the dualities in (1.4) and (1.5)

– see [12, 28, 30, 66] for further discussion.6 When a Dirac fermion of mass m is integrated

out, the e↵ective action obtains the correction �S = ⇡sgn(m)
2 ⌘(A, g), where ⌘(A, g) is the

eta-invariant and A and g are the gauge field and metric to which the fermion couples. We

will be exclusively interested in a setting in which the background metric is flat Minkowski

space g = �2,1 so we will not discuss the metric contribution to ⌘(A, g). In our expressions,

we substitute ⇡
2⌘(A, �2,1) =

1
8⇡

R
d3x AdA as short-hand; in general, this equality is only true

mod ⇡Z (see Eq. (2.50 of [28]). Thus, in writing Chern-Simons terms in this paper, it is to be

understood that we have chosen, e.g., a time-reversal invariant Pauli-Villars regularization

of our theories, which in the UV contain an even number of Dirac fermions; without such a

specification, a correct statement requires the eta-invariant.

We now have all the necessary ingredients to discuss N = 4 SUSY theories. The two

multiplets that will be relevant to us are the N = 4 hypermultiplet U , which contains two

N = 2 chiral multiplets U+ and U�, and the N = 4 vector multiplet V , which contains

6We thank N. Seiberg, T. Senthil, and C. Wang for correspondence on this point.

6

Under further perturbations, vacuum stability of this
theory will require

At scales E ⌧ �̂0
A, the e↵ective description is

L(A)
chiral = |DÂJ�ÂA+ÂR

v+|2 �
⇣
(�̂J � �̂A + �̂R)

2 + D̂J � D̂A

⌘
|v+|2

+ i ̄+ /DÂJ�ÂA
 + � (�̂J � �̂A) ̄+ + +

1

8⇡
k
(A)
MN ÂMdÂN , (3.4)

where ÂM = (ÂJ , ÂA, ÂR) and the Chern-Simons “K-matrix,”

k
(A)
MN = sgn(�̂0

A)

0

B@
�1 �1 0

�1 �1 0

0 0 0

1

CA , (3.5)

comes from integrating out the  � component of the superfield V�.9 Non-zero D̂J or D̂A

break SUSY. The chiral theory in (3.4) is stable as long as scalar v+ mass-squared is non-

negative:

m2
v+ = (�̂J � �̂A + �̂R)

2 + D̂J � D̂A � 0. (3.6)

Interactions must be included in order to study the regime of parameter space where v+ is

unstable.

3.2 Chiral theory B

Consider next the e↵ect of

�̂A � �̂J ⌧ �̂A ⇠ �̂J ⌧ g2 ! 1 (3.7)

in theory B. As before, we write the backgrounds as a large �̂0
A plus fluctuations that we

denote by �̂A,J within the e↵ective theory. Since the background axial mass �̂A appears in

combination with the Coulomb branch scalars as � ± �̂A, only one chiral multiplet can be

light at a time, i.e., for a given value of �. We will now show, in fact, that a SUSY-preserving

vacuum for ±�̂A > 0 requires that the U± multiplet is massive.

To see this, let us integrate out both charged scalars u± under the assumption that both

scalars are massive, � ± �̂A 6= 0. This produces a new contribution to the potential that

mixes the auxiliary D-field with �± �̂A. The terms that contribute to the e↵ective potential

are

Ve↵ = � 1

2g2e↵
D2 +

1

2⇡
D�̂J � 1

4⇡
D (|�̂A + �| � |�̂A � �|) . (3.8)

9The SUSY completion of the CS term will not play a role in what follows so it is not written.
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We can map over the perturbation to theory B as well.
The analysis is a bit more involved, but in the end the

light fields are the             multiplet along with a (shifted)
sigma field.  The effective Lagrangian is:

u�, �

smaller than the (e↵ective) UV cuto↵ �̂0
A. Keeping the auxiliary D-field explicit, we find

L(B)
chiral =

1

2g2e↵

�
(@�̃)2 +D2

�
+ |D�a+ÂA

u�|2 +  ̄�i /D�a+ÂA�ÂR
 � � ((�̃ � �̂A)

2 � D + D̂A)|u�|2

� 8⇡ ̄� �|u�|2 � (��̃ + �̂A � �̂R) ̄� � +
1

8⇡
(a+ ÂA � ÂR)d(a+ ÂA � ÂR)

+
1

4⇡
(�̃ + �̂A)(D + D̂A) � 1

8⇡
ÂRdÂR � 1

8⇡
(2ÂA � ÂR)d(2ÂA � ÂR)

� 1

2⇡

⇣
ÂJda+ D̂J �̃ +D�̂J

⌘
. (3.16)

As before, there is a slight abuse of notation here: the background values �̂A and �̂J are

small deviations from �̂0
A that were turned on in the UV. The last terms of the second line

and first terms of the third line contain the Chern-Simons terms generated by integrating

out  +, the gaugino, and  �. The remaining terms in the fourth line are the BF couplings

to the background U(1)J fields. It is now straightforward to integrate out D, yielding the

e↵ective potential for the scalar fields,

V chiral
e↵ = (�̃2 + D̂A)|u�|2 + g2e↵

2

✓
|u�|2 + 1

4⇡
(�̃ + �̂A � 2�̂J)

◆2

. (3.17)

3.3 Moduli space and “charge attachment”

By deforming mirror symmetry, we have obtained the new SUSY duality (3.14). We will

now perform various checks on this, beginning with a matching of the moduli space of both

theories.

When �̂A = �̂J and �̂R = D̂A = D̂J = 0, theory A has a massless field v+, that is charged

under the three U(1) global symmetries. In the absence of SUSY breaking deformations, the

vacuum expectation value (VEV) of v+ parameterizes an exact modulus. An expectation

value hv+i breaks one linear combination of the global symmetries and manifests itself as a

Higgs mass,

L(A) � �|hv+i|2(ÂJ � ÂA + ÂR)
2 . (3.18)

To see the corresponding e↵ect in theory B, let us focus on the dynamics of �̃ for �̂R =

D̂A = D̂J = 0. When �̃ has a nonzero VEV, u� and  � are massive, and integrating them

out produces a one-loop correction similar to (3.8):

Ṽe↵ = � 1

2g̃2e↵
D2 � 1

4⇡
D (�̂A + �̃ � |�̂A � �̃| � 2�̂J) (3.19)

and
1

g̃2eff
=

1

8⇡

✓
1

2�̂0
A + �̂A + �̃

+
1

|�̂A � �̃|

◆
. (3.20)
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single free chiral N=2 superfield, and N=2 QED with

a charged chiral multiplet.
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C.  Breaking supersymmetry

The final step is to break supersymmetry.  We do this
by turning on a       term. D̂J

In theory A,  as       carries positive topological charge,
this results in a massless Fermi theory:

v+

4.1 Theory A: free Dirac fermion

The demonstration of (1.4) proceeds by assuming the hierarchy

(�̂A � �̂J)
2 ⌧ D̂J ⌧ (�̂0

A)
2 . (4.1)

From the quadratic lagrangian in (3.4), v+ is heavy and may be integrated out, but  +

remains as a light field.  + is massless at the critical point and obtains a massm + = �̂J��̂A

away from the critical point. We refer to these two massive phases as the �̂J � �̂A > 0 and

�̂J � �̂A < 0 phases. Neither of these two phases break the U(1)R ⇥ U(1)A ⇥ U(1)J global

symmetry.

The critical theory has the e↵ective description,

L̂(A)
Dirac =  ̄+i /DÂJ�ÂA

 + � m + ̄+ + +
kcrit
MN

8⇡
ÂMdÂN (4.2)

with

kcrit
MN =

0

B@
�1 �1 0

�1 �1 0

0 0 0

1

CA . (4.3)

Setting ÂA = ÂR = 0 and renaming  + =  and ÂJ = Â, we find the left-hand side of (1.4)

at the critical point m + = 0.

The topological response away from the critical point is given by (3.25),

L(A)
CS =

1

8⇡
k
(A)
MN ÂM dÂN (4.4)

with

k
(A)
MN =

0

B@
�1 �1 0

�1 �1 0

0 0 0

1

CA+ sgn(�̂J � �̂A)

0

B@
1 �1 0

�1 1 0

0 0 0

1

CA . (4.5)

We thus arrive at the phase diagram in Fig. 1.

4.2 Theory B: scalar QED3

Let us now consider the e↵ects of the background deformations in Eq. (4.1) on the theory B

side of the dual chiral pair of §3. Duality implies that there is a single critical point as �̂A��̂J

is varied about zero (within the regime of parameter variations we consider) in theory B. We

now show how to uniquely constrain what field must become light at the critical point by

20
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away from the critical point. We refer to these two massive phases as the �̂J � �̂A > 0 and
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symmetry.
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L̂(A)
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MN
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ÂMdÂN (4.2)
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kcrit
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1

CA . (4.3)

Setting ÂA = ÂR = 0 and renaming  + =  and ÂJ = Â, we find the left-hand side of (1.4)

at the critical point m + = 0.

The topological response away from the critical point is given by (3.25),

L(A)
CS =

1

8⇡
k
(A)
MN ÂM dÂN (4.4)

with

k
(A)
MN =

0

B@
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�1 �1 0

0 0 0

1

CA+ sgn(�̂J � �̂A)
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CA . (4.5)

We thus arrive at the phase diagram in Fig. 1.

4.2 Theory B: scalar QED3

Let us now consider the e↵ects of the background deformations in Eq. (4.1) on the theory B

side of the dual chiral pair of §3. Duality implies that there is a single critical point as �̂A��̂J

is varied about zero (within the regime of parameter variations we consider) in theory B. We

now show how to uniquely constrain what field must become light at the critical point by

20
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We can consider varying away from the critical point
by slightly detuning           , giving a mass to the fermion.

The resulting k-matrices are:
�̂A � �̂J

4.1 Theory A: free Dirac fermion

The demonstration of (1.4) proceeds by assuming the hierarchy

(�̂A � �̂J)
2 ⌧ D̂J ⌧ (�̂0

A)
2 . (4.1)

From the quadratic lagrangian in (3.4), v+ is heavy and may be integrated out, but  +

remains as a light field.  + is massless at the critical point and obtains a massm + = �̂J��̂A

away from the critical point. We refer to these two massive phases as the �̂J � �̂A > 0 and

�̂J � �̂A < 0 phases. Neither of these two phases break the U(1)R ⇥ U(1)A ⇥ U(1)J global

symmetry.

The critical theory has the e↵ective description,

L̂(A)
Dirac =  ̄+i /DÂJ�ÂA

 + � m + ̄+ + +
kcrit
MN

8⇡
ÂMdÂN (4.2)

with

kcrit
MN =

0

B@
�1 �1 0

�1 �1 0

0 0 0

1

CA . (4.3)

Setting ÂA = ÂR = 0 and renaming  + =  and ÂJ = Â, we find the left-hand side of (1.4)

at the critical point m + = 0.

The topological response away from the critical point is given by (3.25),
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CS =

1
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(A)
MN ÂM dÂN (4.4)

with
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(A)
MN =

0
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Let us now consider the e↵ects of the background deformations in Eq. (4.1) on the theory B

side of the dual chiral pair of §3. Duality implies that there is a single critical point as �̂A��̂J

is varied about zero (within the regime of parameter variations we consider) in theory B. We

now show how to uniquely constrain what field must become light at the critical point by

20
sign(�̂

A

� �̂
J

)(�̂
A

� �̂
J

)2

D̂
J

III

III

m2
v+

> 0,

m�+ > 0

m2
v+

> 0,

m�+ < 0

Figure 1: Phase diagram of theory A. Phases I-III are separated by second order critical

points (indicated by the solid blue line). Setting ÂA = 0, the transition at �̂A = �̂J represents

the point across which the Chern-Simons level for ÂJ changes by unity. The horizontal axis

at D̂J = 0 is described by the SUSY chiral theory A, while the D̂J > 0 line is controlled by

the free fermion lagrangian in Eq. (4.2). Phase III is unstable because m2
v+ < 0 – see Eq.

(3.6) – and there are no interactions to stabilize the broken-symmetry vacuum.

using the topological response (3.35) to the background gauge fields in the nearby massive

phases. It is important to stress that the matching of topological responses is a consequence

of the SUSY duality, and remains valid as long as the SUSY breaking scale is below the UV

cuto↵ �̂0
A of the chiral mirrors.

Away from the critical point at �̂A � �̂J = 0, the theory is massive and we may pa-

rameterize via e↵ective masses the topological response lagrangian of theory B as in (3.35).

Matching with (4.5) uniquely determines

m �(�̂J < �̂A) > 0 , m2
u�(�̂J < �̂A) > 0

m �(�̂J > �̂A) > 0 , m2
u�(�̂J > �̂A) < 0 . (4.6)

In particular, the sign of the fermion mass is fixed by requiring that there be no pure BF

21
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Now, we can consider the same perturbation to 
theory B.  This theory is strongly coupled.  But 

we can use macroscopic considerations:

* Duality implies that there is a single critical point as we
vary             in the small range we consider.�̂A � �̂J

* A simple calculation tells one that the k-matrix is:

The expectation value for u� has two e↵ects. First, it produces a Higgs mass for the com-

bination a � ÂA, and so at low energies we should set

a � ÂA = 0 . (3.32)

Furthermore, from the quartic coupling |u�|2 ̄� � (obtained by integrating out the gaugino),

 � becomes massive and integrating it out produces a level-1/2 Chern-Simons term for the

combination �a+ ÂA � ÂR. Adding these to the topological terms in (3.16), we obtain

L(B)
CS = � 1

2⇡
ÂJdÂA , (3.33)

thus matching the K-matrix in Eq. (3.25) for �̂J > �̂A > 0.

This concludes the analysis of the nearby massive phases obtained by SUSY-preserving

deformation in the chiral duality. To end, let us write the general Chern-Simons responses

that must match as a result of the duality.11 In theory A with arbitrary  + and v+ masses,

we have the response,

L(A)
CS =

1

8⇡
sgn(m +)(ÂJ � ÂA)d(ÂJ � ÂA) �⇥(�m2

v+)(ÂJ � ÂA + ÂR)
2

+
1

8⇡

h
�(ÂJ + ÂA)d(ÂJ + ÂA)

i
, (3.34)

where the term proportional to the step function with ⇥(x > 0) = 1 and ⇥(x < 0) = 0 is

short-hand for the e↵ect from Higgsing. In theory B,

L(B)
CS =

1

8⇡
sgn(m �)(�a+ ÂA � ÂR)d(�a+ ÂA � ÂR) �⇥(�m2

u�)(�a+ ÂA)
2

+
1

8⇡

h
(a+ ÂA � ÂR)d(a+ ÂA � ÂR) � 4ÂAdÂA + 4ÂAdÂR � 2ÂRdÂR � 4ÂJda

i
.

(3.35)

This response will be crucial for our study of bosonization in the next section.

4 Free Dirac fermion $ scalar QED3

In this section, we use the SUSY duality of §3 as a starting point to obtain the duality

(1.4) between a Dirac fermion and scalar QED3. The basic strategy is to break SUSY in a

controlled way using a background D̂J perturbation; we will then argue that for set D̂J and

varying �̂A and �̂J , the SUSY duality deforms to (1.4).

11This statement is slightly imprecise: for a given theory, only the fractional part of the level of the Chern-

Simons response is well defined [71]; however, the di↵erence in this response across a phase transition is

physical.

19

* Dual theories must have matching k-matrices!
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The only reasonably parsimonious phase diagram for
theory B is then

sign(�̂
A

� �̂
J

)(�̂
A

� �̂
J

)2

D̂
J

III

m2
u� > 0,

m
�� > 0

m2
u� < 0,

m
�� > 0

III

Figure 2: Phase diagram of theory B. Phases I-III are separated by second order critical

points (indicated by the solid blue line). Setting ÂA = 0, the transition at �̂A = �̂J represents

the point across which the Chern-Simons level for ÂJ changes by unity. The horizontal axis

at D̂J = 0 is described by the SUSY chiral theory B, while the D̂J > 0 line is controlled by

the lagrangian in Eq. (4.7). Phase III cannot be accessed within our framework.

Fisher fixed point and fermionic QED3 (1.5), as well Peskin-Dasgupta-Halperin duality (1.6)

and the topological completion (1.7) of the fermion/fermion conjecture in [36–38].

We end by listing future directions that would be interesting to pursue. First, our methods

may be applied to mirror symmetry when the number of flavors of chiral superfields Nf > 1

and to certain quiver gauge theories. This would lead to a rich structure of bosonization

dualities, which we hope to analyze in the future.

The duality in (1.4) represents the transition point between two massive phases – see

the dual phase diagrams in Figs. 1 and 2 – where the level of the Chern-Simons term for

a background U(1) gauge field changes by unity across the transition. Thus, the critical

point describes an integer quantum Hall plateau transition. At D̂J = 0, this critical point

enjoys N = 2 supersymmetry, while supersymmetry is broken when D̂J > 0. It would

be interesting to include disorder in this system: How do the critical properties depend

23
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The resulting critical theory has:

coupling between a and background gauge fields, and hence no global symmetry breaking.

We conclude that u� is massless at the critical point, while  � is gapped in this region of

the phase diagram and can be integrated out.

The last remaining field to consider is �̃. Recall that in the SUSY theory discussed in

the previous section, there was an identification of the moduli spaces of theory A and theory

B which are (partially) parameterized by h|v+|2i and h�̃i. Because there is no breaking of

the U(1)R ⇥ U(1)A ⇥ U(1)J global symmetry in either phase – h|v+|2i vanishes – we do not

expect h�̃i to be non-zero. The simplest scenario, consistent with broken SUSY, is for �̃

to have a positive mass-squared across the transition. Consequently, we have the e↵ective

description near the critical point,

L(B)
sQED3 =|D�a+AAu�|2 � m2

u� |u�|2 � �u� |u�|4 + 1

4⇡
ada � 1

2⇡
ÂJda � 1

4⇡
ÂAdÂA. (4.7)

The e↵ective mass-squared m2
u� = 0 at the critical point and the quartic |u�|4 interaction

obtains from integrating out massive fields. Setting ÂA = ÂR = 0 and renaming u� = '

and ÂJ = Â, we recover the right-hand side of (1.4).

As required by duality, the phase diagram in Fig. 2 for theory B matches that of theory

A in Fig. 1. Setting ÂA = 0 and identifying ÂJ with electromagnetism, we have an e↵ective

description for an integer quantum Hall plateau transition: the point across which the Chern-

Simons level for ÂJ changes by unity. The two massive phases are determined by the sign

of the fermion mass in theory A, while they are realized via an order-disorder transition of

the scalar in the QED3 theory B.

As recent work [12, 29–31] has shown, if (1.4) is assumed, various additional dualities

can be found upon the application of a modular transformation [32, 33]. For instance, (1.5)

is the S transform of (1.4).

5 Conclusions and future directions

In this work, we have shown how the 2+1-dimensional bosonization duality in (1.4) – relating

the theory of a free Dirac fermion to scalar QED3 – may be obtained by deforming supersym-

metric N = 4 mirror symmetry. We first derived a “chiral” supersymmetric version of the

duality in which the theory of a free superfield is dual to supersymmetric QED3 with a single

charged superfield. We then broke supersymmetry using a background D-term and showed

that the chiral duality flows to the bosonization duality. As mentioned in the introduction,

modular transformations relate (1.4) to a second bosonization duality between the Wilson-
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Setting some of the background fields

coupling between a and background gauge fields, and hence no global symmetry breaking.

We conclude that u� is massless at the critical point, while  � is gapped in this region of

the phase diagram and can be integrated out.

The last remaining field to consider is �̃. Recall that in the SUSY theory discussed in

the previous section, there was an identification of the moduli spaces of theory A and theory

B which are (partially) parameterized by h|v+|2i and h�̃i. Because there is no breaking of

the U(1)R ⇥ U(1)A ⇥ U(1)J global symmetry in either phase – h|v+|2i vanishes – we do not

expect h�̃i to be non-zero. The simplest scenario, consistent with broken SUSY, is for �̃
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L(B)
sQED3 =|D�a+AAu�|2 � m2

u� |u�|2 � �u� |u�|4 + 1

4⇡
ada � 1

2⇡
ÂJda � 1

4⇡
ÂAdÂA. (4.7)

The e↵ective mass-squared m2
u� = 0 at the critical point and the quartic |u�|4 interaction

obtains from integrating out massive fields. Setting ÂA = ÂR = 0 and renaming u� = '

and ÂJ = Â, we recover the right-hand side of (1.4).

As required by duality, the phase diagram in Fig. 2 for theory B matches that of theory
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As recent work [12, 29–31] has shown, if (1.4) is assumed, various additional dualities

can be found upon the application of a modular transformation [32, 33]. For instance, (1.5)

is the S transform of (1.4).

5 Conclusions and future directions

In this work, we have shown how the 2+1-dimensional bosonization duality in (1.4) – relating

the theory of a free Dirac fermion to scalar QED3 – may be obtained by deforming supersym-

metric N = 4 mirror symmetry. We first derived a “chiral” supersymmetric version of the

duality in which the theory of a free superfield is dual to supersymmetric QED3 with a single

charged superfield. We then broke supersymmetry using a background D-term and showed

that the chiral duality flows to the bosonization duality. As mentioned in the introduction,

modular transformations relate (1.4) to a second bosonization duality between the Wilson-
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and doing some re-naming, we have shown:

proposals are not yet rigorously established, in the sense of [4], despite their successful

application to a variety of condensed matter systems [6]. Recently, there has been substantial

progress in motivating a large class of new bosonization dualities [7–9]. Aharony [10] (see

also [11, 12]) has clarified the basic structure of these conjectured dualities (indicated by $):

Nf fermions coupled to SU(k)�N+
Nf
2

$ Nf scalars coupled to U(N)k,k; (1.1)

Nf scalars coupled to SU(N)k $ Nf fermions coupled to U(k)�N+
Nf
2 ,�N+

Nf
2

; (1.2)

Nf fermions coupled to U(k)�N+
Nf
2 ,�N⌥k+

Nf
2

$ Nf scalars coupled to U(N)k,k±N . (1.3)

The two-component Dirac fermions and scalar bosons transform in the fundamental repre-

sentation of the gauge group. The subscripts give the levels of Chern-Simons terms with

U(N)k,l ⌘ (SU(N)k ⇥U(1)Nl)/ZN . (1.1) - (1.3) have been validated in the large N ’t Hooft

limit in which the ratio N/k is held fixed [7–9]. At finite N , evidence has come in the form of

consistency checks wherein conjectured dual pairs have matching phase structure [9] or may

be obtained upon deformation of better-understood supersymmetric (SUSY) parent theories

[13, 14].

In this paper, we derive the Nf = N = k = 1 versions of (1.1) and (1.2) and find that

they are realized via the 2+1D e↵ective lagrangians,1

 ̄i /DÂ � 1

8⇡
ÂdÂ $ |D�a'|2 � |'|4 + 1

4⇡
ada � 1

2⇡
Âda, (1.4)

|DÂ�|2 � |�|4 + 1

4⇡
ÂdÂ $  ̄i /Da � 1

8⇡
ada � 1

2⇡
Âda. (1.5)

In the above relations, Â represents a background U(1) gauge field, while a is a dynamical

2+1D U(1) gauge field.2 (1.4) relates a two-component Dirac fermion to three-dimensional

quantum electrodynamics (QED3) with a single scalar boson and a level-1 Chern-Simons

term for the dynamical gauge field. The left-hand side of (1.5) is simply the O(2)-symmetric

Wilson-Fisher critical point, while the right-hand side is QED3 with a single Dirac fermion

and a level-1/2 Chern-Simons term for the dynamical gauge field. In both dualities, there

are important Chern-Simons terms for and BF couplings to Â that ensure their validity.

Prior work studying proposals closely related to (1.4) and (1.5) includes [15–18].

Our approach to establishing (1.4) and (1.5) is to deform the SUSY duality known as

mirror symmetry [19–24]. This is motivated by our previous work [25] which used mirror

1Explanation of the precise meaning of the level-1/2 Chern-Simons terms is provided in §2.1.
2Our conventions for writing Chern-Simons and BF terms for gauge fields A = A

µ

and B = B
µ

is the

following: AdB ⌘ ✏µ⌫⇢A
µ

@
⌫

B
⇢

with µ, ⌫, ⇢ 2 {t, x, y} and ✏txy = 1. The covariant derivative with respect to

±A is denoted by D±A

⌘ @
µ

⌥ iA
µ

. Hats are used to indicate background fields.
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symmetry to relate the half-filled Landau level with two flavors to a composite fermion theory

with an emergent gauge field. We focus on the simplest example that equates a free N = 4

hypermultiplet – theory A – to a N = 4 hypermultiplet interacting via a N = 4 vector

multiplet with U(1) gauge group – theory B. Our first step in §2 is to review this duality and

show how to map various N = 2 SUSY-preserving deformations across the duality. These

deformations enable us to show in §3 the equivalence of a single free N = 2 chiral multiplet

and N = 2 SUSY QED3 with a single chiral multiplet as first obtained in [26]. The chiral

duality of §3 provides a minimal SUSY generalization of (1.4) and (1.5).

In §4, we present the main result of the work: we show that a specific SUSY-breaking

perturbation of the chiral duality results in (1.4). Because theory A is free, the e↵ects of

the deformations we consider are easily understood: we show that there exist two distinct

massive phases in a particular parameter regime that are separated by a single critical point

whose lagrangian description is that of a free Dirac fermion, i.e., the left-hand side of (1.4).

Mirror symmetry dictates identical phase structure as parameters are varied in theory B:

there must be a single critical point (within the neighborhood of variations we consider)

and a matching of the e↵ective actions for various background gauge fields in the nearby

massive phases.3 These two requirements uniquely constrain what field must become light

at the critical point in the theory B description and allow us to deduce the right-hand side

of (1.4). Our arguments are rather general and help us temper the interesting, but subtle,

strong dynamics of the theory B description.

We note that this approach is purely 2+1D in nature. We do not consider theories arising

on surfaces of higher-dimensional spaces, e.g., surface phases of a topological insulator, whose

proper regularization is provided by the higher-dimensional bulk [27, 28].

The derivation of this bosonization duality has far-reaching consequences. As recent work

[12, 29–31] has shown, if (1.4) (or (1.5)) is assumed, a large web of dualities can be found

through a sequence of modular transformations [32, 33]. In particular, the Peskin-Dasgupta-

Halperin duality [34, 35],

|DÂ�|2 � |�|4 $ |Da'|2 � |'|4 � 1

2⇡
Âda, (1.6)

and the “topological completion” of a recent “fermion/fermion” duality conjecture [36–38]

 ̄i /DÂ � 1

8⇡
ÂdÂ $  ̄i /D�a +

1

8⇡
ada+

1

2⇡
bda+

2

4⇡
bdb � 1

2⇡
Âdb . (1.7)

3More precisely, duality requires that the di↵erences of the theory A and theory B e↵ective actions across

the phase transition must match. In this way, regularization-dependent counterterms cancel out.
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Understanding the derivation of any one is therefore 
sufficient.
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