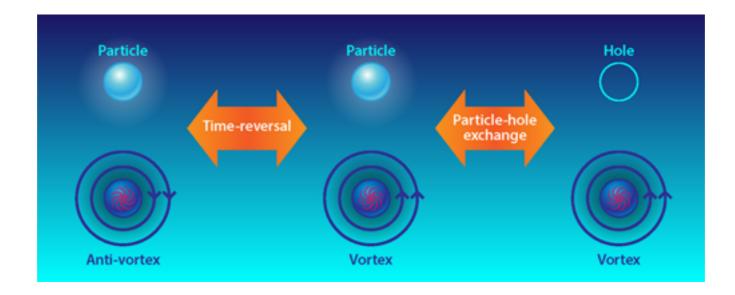
Bosonization and Mirror Symmetry



Shamit Kachru (Stanford)

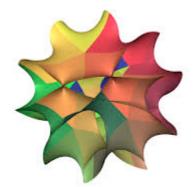
(based on arXiv:1608.05077 with Mulligan, Torroba, Wang; see also our earlier paper arXiv:1506.01376)

I. Introduction

Duality in quantum field theory has been a powerful tool in many contexts.

Since the mid-1990s, studies of duality in particle theory focused on supersymmetric QFTs.

* mirror symmetry of 2d sigma models



A Calabi-Yau and its mirror



* Seiberg duality of 4d N=1 gauge theories

 $SU(N_c), N_f$ flavors $\leftrightarrow SU(N_f - N_c) N_f$ flavors + meson

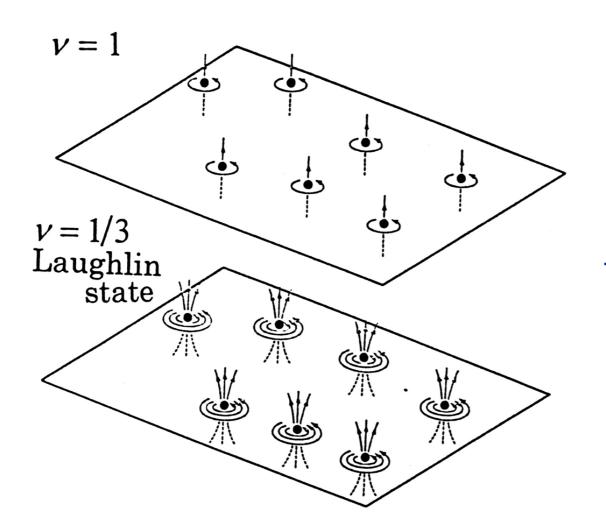
However, the subject predates fancy constructions in string theory and supersymmetric QFT.

Kramers-Wannier duality of the Ising model and many other examples arise in condensed matter physics. (More relevant to talk: bosonization/Luttinger liquid).

Today, I'll give a very brief description of a derivation of a duality of interest in condensed matter, starting from a classic example of mid 1990s supersymmetric dualities.

The duality I'll be focusing on relates a theory of free fermions to a scalar QED3 theory.

One place where such dualities may be relevant is in understanding the fractional quantum Hall effect.



Electrons moving in a magnetic field can be dressed by a certain number of flux quanta each. The resulting quasiparticle sees different flux density and in general has different statistics, which can be helpful.

* Can map FQHE to IQHE * Can map I/2 - filled LL to (non)-Fermi liquid (?)

In fact our work was motivated by duality conjectures made roughly in that context, by D.T. Son and by Metlitski, Senthil, Vishwanath, and Wang. ^{c.f. Senthil, Seiberg,} Witten, Wang; Karch, Tong

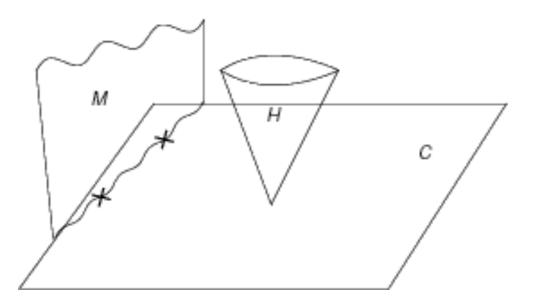
II. Mirror symmetry of 3d N=4 gauge theories

We will start with a well studied and (fairly) rigorously understood duality from high-energy physics, the mirror symmetry of 3d N=4 gauge theories.

These can be thought of as the dimensional reductions of (perhaps more familiar) 4d N=2 theories.

The two types of supermultiplets that arise are: Vectormultiplet : $(A_{\mu}, \sigma, \phi), (\lambda, \psi_{\phi})$ Hypermultiplet : $(q, \psi_q), (\tilde{q}, \psi_{\tilde{q}})$

N=4 theories have moduli spaces of vacua whose basic structure is:



Higgs and Coulomb branches, which are hyperKahler manifolds. We will not have mixed branches today.

Mirror symmetry is a symmetry of pairs of 3d N=4 gauge theories A and B, where

Higgs(A) = Coulomb(B)Higgs(B) = Coulomb(A)

Intriligator, Seiberg

Example:

We will be satisfied today with using just the simplest, prototypical example of 3d mirror symmetry.

Theory A: Free hypermultiplet Theory B: QED with one charged hyper

The Lagrangian of theory A is

$$L^{(A)} = \sum_{\pm} \left(|\partial_{\mu} v_{\pm}|^2 + i \bar{\Psi}_{\pm} \not \partial \Psi_{\pm} \right)$$

The +/- labels the charge under an important symmetry. A table of the fields and their transformations under the various symmetries is:

	$U(1)_R$	$U(1)_A$	$U(1)_J$	
v_+	1	-1	1	
v_{-}	1	-1	-1	(there are really two SU(2) but only the Cartan proper
Ψ_+	0	-1	1	matter for us)
Ψ_{-}	0	-1	-1	

The Lagrangian and table of symmetries of theory B:

$$L^{(B)} = L_V(\mathcal{V}) + L_H(\mathcal{Q}, \mathcal{V}),$$
$$L_V(\mathcal{V}) = \frac{1}{g^2} \left(-\frac{1}{4} f_{\mu\nu}^2 + \frac{1}{2} (\partial_\mu \phi_{ij})^2 + i\bar{\lambda}_{ia} \ \partial \!\!\!/ \lambda_{ia} + \frac{1}{2} D_{(ab)}^2 \right)$$

 $L_H(\mathcal{Q}, \mathcal{V}) = |D_{\mu} u_a|^2 + i\bar{\psi}_i \, D \psi_i - \phi_{ij}^2 |u_a|^2 - \phi_{ij} \bar{\psi}_i \psi_j + \sqrt{2} (i\lambda_{ia} u_a^* \psi_i + \text{h.c.}) + D_{(ab)} u_a^* u_b \,.$

	$U(1)_R$	$U(1)_A$	$U(1)_J$	$U(1)_a$
u_+	0	1	0	1
u_{-}	0	1	0	-1
ψ_+	-1	1	0	1
ψ	-1	1	0	-1
$e^{2\pi i\gamma/g^2}$	0	0	1	0
σ	0	0	0	0
ϕ	2	-2	0	0
λ	1	0	0	0
ψ_{ϕ}	1	-2	0	0

Slogan: following $U(1)_J$ charge, particles of theory A are vortices of theory B.

The moduli spaces are quite simple:

The tree level moduli space in theory A is \mathbb{R}^4 . As the theory is free, there are no corrections.

On the other hand, theory B has a Coulomb branch parametrized by σ, ϕ and the dual photon. Its geometry receives quantum corrections.

In the IR limit where $g \to \infty$, there is a symmetry exchanging these two moduli spaces of vacua.

More formal formulation:

We can promote the topological U(1) to a full background vector multiplet.

$$\mathcal{L}^{(A)}(\mathcal{Q},\hat{\mathcal{V}}_J) = \mathcal{L}^{\mathcal{H}}(\mathcal{Q},\hat{\mathcal{V}}_J) = \int d^4\theta \left(V_+^{\dagger} e^{2\hat{V}_J} V_+ + V_-^{\dagger} e^{-2\hat{V}_J} V_- \right) + \int d^2\theta \sqrt{2}i\hat{\Phi}_J V_+ V_- + \text{h.c.}$$

In theory B, it enters subtly through a BF term:

$$\mathcal{L}^{(B)}(\mathcal{U},\mathcal{V},\hat{\mathcal{V}}_J) = \mathcal{L}^{\mathcal{V}}(\mathcal{V}) + \mathcal{L}^{\mathcal{H}}(\mathcal{U},\mathcal{V}) - \mathcal{L}_{BF}^{\mathcal{N}=4}(\mathcal{V},\hat{\mathcal{V}}_J).$$

$$\mathcal{L}_{BF}^{\mathcal{N}=4}(\mathcal{V}^{(1)},\mathcal{V}^{(2)}) = \frac{1}{2\pi} \int d^4\theta \, V^{(1)} \, \Sigma^{(2)} - \frac{1}{2\pi} \int d^2\theta \, \Phi^{(1)} \Phi^{(2)} + \text{h.c.}$$

$$\mathcal{L}_{BF}^{\mathcal{N}=2}(V^{(1)}, V^{(2)}) = \frac{1}{2\pi} \int d^4\theta \, V^{(1)} \, \Sigma^{(2)}$$
$$= \frac{1}{2\pi} \left(\epsilon^{\mu\nu\rho} A^{(1)}_{\mu} \partial_{\nu} A^{(2)}_{\rho} + D^{(1)} \sigma^{(2)} + D^{(2)} \sigma^{(1)} + \frac{1}{2} (\bar{\lambda}^{(1)} \lambda^{(2)} + \bar{\lambda}^{(2)} \lambda^{(1)}) \right)$$

Monday, August 22, 16

In this fancier formulation, the formal statement of mirror symmetry is that

 $Z^{(A)}[\hat{\mathcal{V}}_J] = Z^{(B)}[\hat{\mathcal{V}}_J].$

Our plan now is to consider what happens when we similarly promote the other U(1) symmetries.

We can then consider perturbations by background values of their $\hat{\sigma}, \hat{D}$ fields.

This will lead to supersymmetry breaking, and allow us to infer a non-supersymmetric duality.

III. Perturbations to the basic N=4 duality

A. Promoting other global symmetries

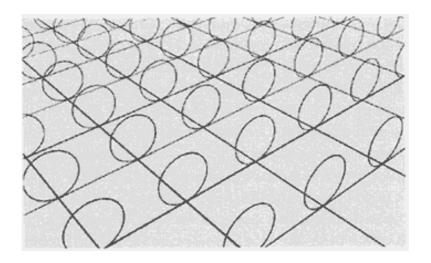
Using the tables of charges, it is straightforward to see what happens when we promote the $U(1)_A$ symmetry to a full background multiplet \hat{V}_A :

$$\mathcal{L}^{(A)}(\mathcal{Q}, \hat{V}_A) = \int d^4\theta \left(V_+^{\dagger} e^{2\hat{(}V - \hat{V}_A)} V_+ + V_-^{\dagger} e^{-2(\hat{V} + \hat{V}_A)} V_- \right)$$

$$\mathcal{L}^{(B)}(\mathcal{U}, \mathcal{V}, \hat{V}_{A}) = \frac{1}{4g^{2}} \int d^{2}\theta W_{\alpha}^{2} + \text{h.c.} + \frac{1}{g^{2}} \int d^{4}\theta \Phi^{\dagger} e^{-4\hat{V}_{A}} \Phi + \int d^{4}\theta \left(U_{+}^{\dagger} e^{2(V+\hat{V}_{A})} U_{+} + U_{-}^{\dagger} e^{-2(V-\hat{V}_{A})} U_{-} \right) - \frac{1}{2\pi} \int d^{4}\theta V \hat{\Sigma} .$$

Promoting the R-symmetry is a bit harder, because it does not commute with supersymmetry. However, the basic elements of the map are easy to infer:

* \hat{A}_R couples to j_R on both sides of the duality



*The coupling to $\hat{\sigma}_R$ is more subtle. Think of the 3d theory as a dimensional reduction of a 4d theory. Then this field is the 4th component of the gauge field, and couples to the 4th component of the appropriate current. With this understanding, the mirror duality is promoted to:

$$Z^{(A)}[\hat{V}_J, \hat{V}_A, \hat{V}_R] = Z^{(B)}[\hat{V}_J, \hat{V}_A, \hat{V}_R].$$

B. First step: a simpler N=2 theory

As the first step on our road to a non-supersymmetric duality, lets break the N=4 to an N=2 theory with a single chiral multiplet. Looking at the charges:

	$U(1)_R$	$U(1)_A$	$U(1)_J$
v_+	1	-1	1
v_{-}	1	-1	-1
Ψ_+	0	-1	1
Ψ_{-}	0	-1	-1

we see it will be interesting to consider a perturbation of the form

$$|\hat{\sigma}_A - \hat{\sigma}_J| \ll \hat{\sigma}_A \sim \hat{\sigma}_J.$$

Since we know that σ fields coupled to charged scalars via:

 $\sigma^2 q^2 |\phi|^2$

type couplings, this will give a large mass to v_{-} (and its superpartner). The remaining light fields & charges:

	$U(1)_R$	$U(1)_A$	$U(1)_J$
V_+	1	-1	1
v_+	1	-1	1
Ψ_+	0	-1	1

The resulting theory A Lagrangian for light fields is:

$$\mathcal{L}_{\text{chiral}}^{(A)} = |D_{\hat{A}_J - \hat{A}_A + \hat{A}_R} v_+|^2 - \left((\hat{\sigma}_J - \hat{\sigma}_A + \hat{\sigma}_R)^2 + \hat{D}_J - \hat{D}_A \right) |v_+|^2 + i \bar{\Psi}_+ \not{D}_{\hat{A}_J - \hat{A}_A} \Psi_+ - (\hat{\sigma}_J - \hat{\sigma}_A) \bar{\Psi}_+ \Psi_+ + \frac{1}{8\pi} k_{MN}^{(A)} \hat{A}_M d\hat{A}_N,$$

Here,

$$\hat{A}_{M} = (\hat{A}_{J}, \hat{A}_{A}, \hat{A}_{R})$$
$$k_{MN}^{(A)} = \operatorname{sgn}(\hat{\sigma}_{A}^{0}) \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

The k-matrix arises from integrating out the fermion Ψ_- ; in general integrating out a fermion induces a change in the k-matrix

$$k_{ij} = \frac{1}{2} \sum_{f} q_i^f q_j^f \operatorname{sgn}(m_f)$$

Under further perturbations, vacuum stability of this theory will require

$$m_{v_+}^2 = (\hat{\sigma}_J - \hat{\sigma}_A + \hat{\sigma}_R)^2 + \hat{D}_J - \hat{D}_A \ge 0.$$

Otherwise, v_+ will condense and run away to the cutoff.

We can map over the perturbation to theory B as well. The analysis is a bit more involved, but in the end the light fields are the u_-, ψ_- multiplet along with a (shifted) sigma field. The effective Lagrangian is:

$$\mathcal{L}_{\text{chiral}}^{(B)} = \frac{1}{2g_{\text{eff}}^2} \left((\partial \tilde{\sigma})^2 + D^2 \right) + |D_{-a+\hat{A}_A} u_-|^2 + \bar{\psi}_- i D_{-a+\hat{A}_A - \hat{A}_R} \psi_- - ((\tilde{\sigma} - \hat{\sigma}_A)^2 - D + \hat{D}_A) |u_-|^2 - (8\pi \bar{\psi}_- \psi_- |u_-|^2 - (-\tilde{\sigma} + \hat{\sigma}_A - \hat{\sigma}_R) \bar{\psi}_- \psi_- + \frac{1}{8\pi} (a + \hat{A}_A - \hat{A}_R) d(a + \hat{A}_A - \hat{A}_R) + \frac{1}{4\pi} (\tilde{\sigma} + \hat{\sigma}_A) (D + \hat{D}_A) - \frac{1}{8\pi} \hat{A}_R d\hat{A}_R - \frac{1}{8\pi} (2\hat{A}_A - \hat{A}_R) d(2\hat{A}_A - \hat{A}_R) - \frac{1}{2\pi} \left(\hat{A}_J da + \hat{D}_J \tilde{\sigma} + D \hat{\sigma}_J \right).$$
(3.16)

The duality we've exhibited here is one between a single free chiral N=2 superfield, and N=2 QED with a charged chiral multiplet.

C. Breaking supersymmetry

The final step is to break supersymmetry. We do this by turning on a \hat{D}_J term.

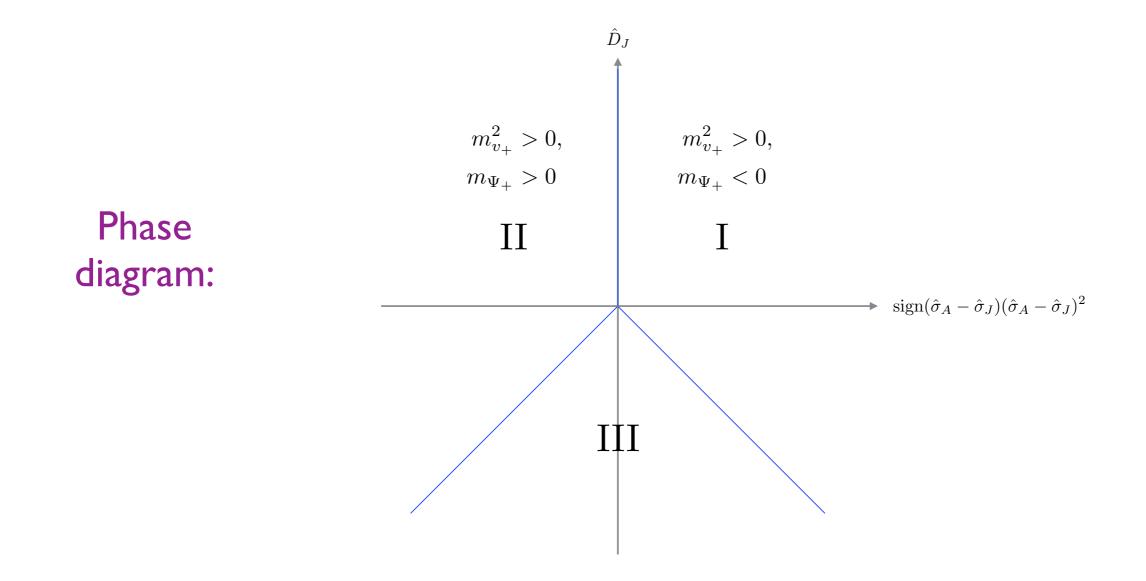
In theory A, as v_+ carries positive topological charge, this results in a massless Fermi theory:

$$\hat{\mathcal{L}}_{\text{Dirac}}^{(A)} = \bar{\Psi}_{+} i \not{\!\!\!D}_{\hat{A}_{J} - \hat{A}_{A}} \Psi_{+} - m_{\Psi_{+}} \bar{\Psi}_{+} \Psi_{+} + \frac{k_{MN}^{\text{crit}}}{8\pi} \hat{A}_{M} d\hat{A}_{N}$$

$$k_{MN}^{\text{crit}} = \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

We can consider varying away from the critical point by slightly detuning $\hat{\sigma}_A - \hat{\sigma}_J$, giving a mass to the fermion. The resulting k-matrices are:

$$k_{MN}^{(A)} = \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \operatorname{sgn}(\hat{\sigma}_J - \hat{\sigma}_A) \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$



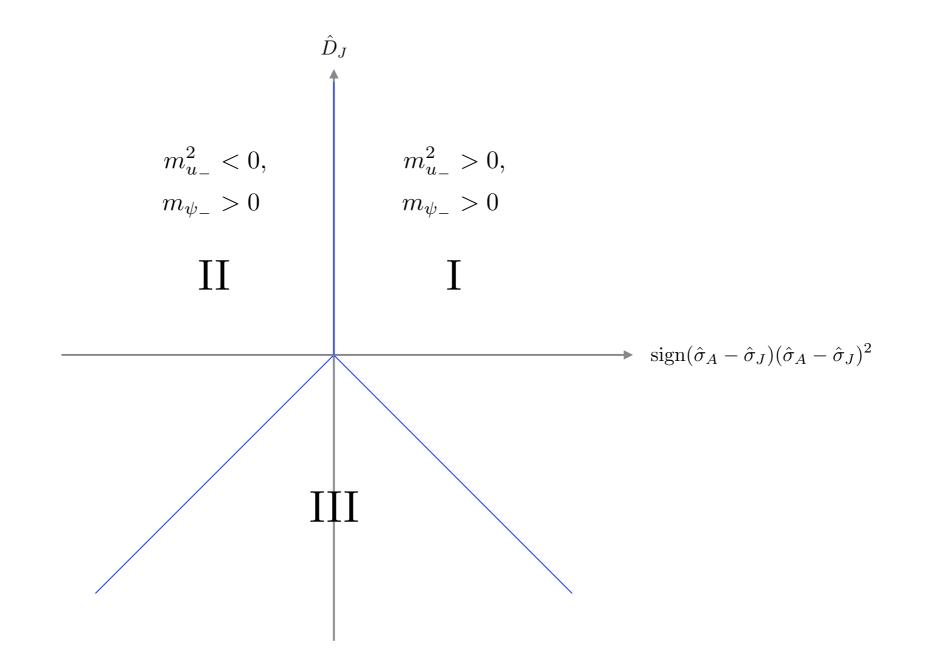
Now, we can consider the same perturbation to theory B. This theory is strongly coupled. But we can use macroscopic considerations:

- * Duality implies that there is a single critical point as we vary $\hat{\sigma}_A \hat{\sigma}_J$ in the small range we consider.
- * A simple calculation tells one that the k-matrix is:

$$\mathcal{L}_{CS}^{(B)} = \frac{1}{8\pi} \operatorname{sgn}(m_{\psi_{-}})(-a + \hat{A}_{A} - \hat{A}_{R})d(-a + \hat{A}_{A} - \hat{A}_{R}) - \Theta(-m_{u_{-}}^{2})(-a + \hat{A}_{A})^{2} + \frac{1}{8\pi} \left[(a + \hat{A}_{A} - \hat{A}_{R})d(a + \hat{A}_{A} - \hat{A}_{R}) - 4\hat{A}_{A}d\hat{A}_{A} + 4\hat{A}_{A}d\hat{A}_{R} - 2\hat{A}_{R}d\hat{A}_{R} - 4\hat{A}_{J}da \right]$$

* Dual theories must have matching k-matrices!

The only reasonably parsimonious phase diagram for theory B is then



The resulting critical theory has:

$$\mathcal{L}_{\text{sQED3}}^{(B)} = |D_{-a+A_A}u_-|^2 - m_{u_-}^2 |u_-|^2 - \lambda_{u_-}|u_-|^4 + \frac{1}{4\pi}ada - \frac{1}{2\pi}\hat{A}_Jda - \frac{1}{4\pi}\hat{A}_Ad\hat{A}_A.$$

Setting some of the background fields

$$\hat{A}_A = \hat{A}_R = 0$$

and doing some re-naming, we have shown:

$$\bar{\Psi}iD_{\hat{A}}\Psi - \frac{1}{8\pi}\hat{A}d\hat{A} \leftrightarrow |D_{-a}\varphi|^2 - |\varphi|^4 + \frac{1}{4\pi}ada - \frac{1}{2\pi}\hat{A}da$$

This is the promised duality between a free Fermi theory and scalar QED3.

As argued by Senthil, Seiberg, Witten and Wang, starting from this duality, and using SL(2,Z) arguments, one can derive several further dualities:

$$\begin{split} |D_{\hat{A}}\phi|^2 - |\phi|^4 + \frac{1}{4\pi}\hat{A}d\hat{A} \leftrightarrow \bar{\psi}i \not\!\!\!D_a \psi - \frac{1}{8\pi}ada - \frac{1}{2\pi}\hat{A}da. \\ \hat{D}_{\hat{A}}\phi|^2 - |\phi|^4 \leftrightarrow |D_a\varphi|^2 - |\varphi|^4 - \frac{1}{2\pi}\hat{A}da, \end{split}$$

Understanding the derivation of any one is therefore sufficient.