On the AdS/dS CFT Correspondence

Workshop on Holography and Topology of Quantum Matters
Pohang, APCTP
August 22, 2016

Chong-Sun Chu
National Center for Theoretical Science NCTS and
National Tsing-Hua University, Taiwan

1604.05452 in collaboration with Dimitrios Giataganas,
plus work in progress with Dimitrios Giataganas and Yoji Koyama.
1608.xxxxx

B AR
KA



© 1. Introduction

© 2. AdS/dS CFT Correspondence

© 3. Conformal field theory in dS space
© 4. 2-point function in dS CFT

© 5. Wilson Loop

@ 6. Discussion



1. Introduction

Outline

© 1. Introduction



1. Introduction

1.1. Motivation: physics of dS QFT

Quantum theories on curved spacetime are of immense physical
importance. e.g.predictions of inflation or semiclasscial physics of
blackholes; studies of phase transitions;

1. The definition of Hamiltonian and particles for a QFT is generally
difficult in a generic curved spacetime. In some case like deSitter,
this can be solved partially use perturbation theory. But one may
expect new phenomena in the strongly coupled regime.

2. For example, for dS space, there are infrared divergences (log a(t))",
leading to large secular effects which break down the perturbative
theory at late times. The understanding of the late time secular
effects in de Sitter space is an important problem.

Polyakov speculated that the IR effect to be the key to resolve the
cosmological constant problem.
This calls for a treatment beyond the usual perturbation scheme.

Holographic correspondence may help, especially for the strongly coupled
non-perturbative regime of dS QFT.



1. Introduction

1.1. Motivation: dS CFT/QFT as hologram

@ It is known that AdS space can be sliced in different ways, with the
geometry on each slices described by a Minkowski space, de Sitter
space, or anti-de Sitter space. This has been used in brane world
construction.

@ In the standard AdS/CFT correspondence, Poincare coordination is
used and the boundary is given by Minkowski space. The hologram
is a conformal field theory on Minkowski space.

o If we use different slicing, e.g. de Sitter slicing, presumably we would
get conformal field theory on dS space as the hologram. This is
interesting.



1. Introduction

o Gauge/gravity dual for de Sitter space has been studied in the
literature,
e.g. Entanglement of entropy for strongly coupled field theories on
de Sitter space with a gravity dual was computed;
e.g. Evidence of dynamical phase transition for confining gauge
theory on de Sitter space was found in the strongly coupled regime
of some QFT on dS

o Neverteless, in all previous studies, the gauge/gravity
correspondence was only needed to be considered in the generic
sense without having to precisely spell out the involved string theory
and boundary field theory.

@ |t would be interesting to have a concrete duality so that one can
ask other more precise dynamical questions.



1. Introduction

1.1.

Motivation: dS superconformal Yang-Mills theory

@ The construction of global supersymmetric field theory in four
dimensional de Sitter spacetime is impossible due to a lack of
Majorana Killing spinor on de Sitter spacetime; and the lack of
unitary representation for the de Sitter superalgebra.

@ Nevertheless, it is possible if we use conformal Killing spinor (CKS)

(Du - iw@)s =0

instead of Killing spinor, since CKS is is compatible with the
Majorana condition on spinor, and a Yang-Mills theory with N = 4
superconformal symmetries on dS; has been constructed.

@ The studies of the properties of this maximal superconformal
Yang-Mills theory should be interesting. e.g. is it exact
superconformal? strong-weak duality? integrability?



1.2. The statement

Combining these observations, we propose a holographic duality with dS
hologram:

Type 1B string theory on AdSs x S® is equivalent to the
N = 4 superconformal Yang-Mills theory on dS,.
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2. AdS/dS CFT Correspondence

2.1. dS slicing of AdS

@ AdSg441 is a maximally symmetric space with negative cosmological
constant defined by the embedding

XX XE X3, =12

in flat R“"2 with the metric nyy = diag(—1, 14, —1). Here L is the
radius of the AdS space and the cosmological constant is

d(d—-1)
N=—""—"+—+.
0 212
AdSg41 is invariant under the group SO(2, d).
@ de Sitter space dS is a maximally symmetric space with positive

cosmological constant defined by
—YZH Y4+ Y2=12,
in the flat space R¥*1 with the metric nyy = diag(—1,14). The
cosmological constant is
_(d-1)(d-2)
- 212 ’
and dS, has the symmetry group SO(1, d).

A



2. AdS/dS CFT Correspondence

@ In the standard application of AdS/CFT correspondence, one uses
the Poincare coordinates

2_t2 L2 Li
Xo—r[l_|_x2+}7 X;:—X, i=1,---d—1,
2 r r
r x2—t2— |2 Lt
Xd—2|:1+2:|a Xit1 = —,
r r

in which case the AdS metric takes the form
L2
ds? = —2(dr2 —df? + dx,-2), r>0.
r

It is clear that each constant r-slice describes a copy of Minkowski
space.

@ Note that a boundary Minkowski space has been created at r =0
with this choice of coordination of the AdS space.
This fact has been of crucial importance in the prescription of
GKPW for the realization of the holography of gravity in AdS space.



2. AdS/dS CFT Correspondence

@ The (d + 1)-dimensional Anti-de Sitter space AdSy41 also admit a
coordinate patch with d-dimensional de Sitter space dSy slicing:

Xd+1:LCOSh%7 XM:YHSinhia /1/:0717"'ad7

with Y}, describes de Sitter space dS4. In this coordinate patch, the
AdS metric takes the form

ds® = dz* + sinh2(%) dsis, z>0.

@ This metric describes a portion of the AdS space with boundary
consisting of a copy of the de Sitter space dSy at z = oo , together
with a single point at z = 0. An explicit description of the dS part is
given by

inh Ht 1 hHt 1
Yo= TECHeTM Y = e vy = S Hke
with H=1/Land i=1,--- ,d—1.
@ This gives the dSy4 metric in terms of the planar coordinates (t, x):

dsis = —dt? + e 2Mdx? .




2. AdS/dS CFT Correspondence

@ Geodesic distance D between any two points in the AdS or dS can
be obtained in terms of the choral distance between two points X
and X’ in the ambient space

; XMx /N
P(X,X') = N2 —

o For AdSy41, P is given by Pags(X,X’) = f% , Where

P42+ (x — x[)? = (t—t')?

5_1 = ooy , in the Poincare coordinates,
rr
¢ 1 = cosh Hz cosh Hz' — sinh Hz sinh Hz' x Pys(x*, x'"),
in the dS planar coordinates,
Here

e H(t+t")

Pgs := cosh H(t — t') — 5



2. AdS/dS CFT Correspondence

@ Note that Pys = 1 for coincident points. More convenient to use the
geodesic distance of dSy:

~coshH(t—t') -1

o?(x,x') = e_H(t“/)(x,- - x-/)2

! H2/2
In general it is
Pis—1 1,
T %
@ o2 approaches its Minkowski limit when H — 0,
02 = |x = X2 i=—(t - t')* 4 (x — x)2

@ In terms of the conformal time x° = H~! exp(Ht), the dS metric can
be written as

ds® = —dx§ + dx})

1
e
0
and it is o
0_2 _ (X# B X,u)
H2x0x;



2. AdS/dS CFT Correspondence

2.2. N = 4 superconformal Yang-Mills theory

@ Killing spinor equation )
i
D,e = —~,€
TR

has no real solution.

@ However, the conformal Killing spinor (CKS) defined by the equation

1
(Du - 4’Y;LD>€ =0
is compatible with the Majorana condition on spinor. This can be

solved and one obtain the conformal Killing spinors on dSy

1
— i
e(x) = =500+ x"yum) ,

where 19,71 are arbitrary Majorana spinors. This gives NV =1
superconformal symmetry in dS4 and corresponds to a basis of 8 real
supercharges.



2. AdS/dS CFT Correspondence

o The A/ = 4 maximal superconformal Yang-Mills theory on dS4
contains the gauge potentials A%, four Majorana gauginos A3 and
six real scalars X7, where the indices a is in the adjoint of the gauge
group SU(N).

@ The Lagrangianis L= Lo+ L3+ L4

1 Saa 1
L, = _h,::ypwa_,_)\a YD PN, + EDMX,?D“’X,-‘?—F H>X2X?|
1 — ~—b«
1 abc ra’b’'c’ yybycyb yc
Ly = _Zf f XinXi XJ :

Here P r = chiral projectors, C; = 't Hooft instanton matrices:
— 0 01 _ 0 —03 _ i0'2 0
G = (01 o) = (03 0 > 6= ( 0 /'02> ’
(0 o _ (0 1 _ . (—ic2 O
G = ’<ia2 0)’ Cs = ’<—1 0)’ Co = ’(o i02>

and o; = Pauli matrices. Note C; 3 are real, (456 are imaginary.



2. AdS/dS CFT Correspondence

@ The action admits an SU(4) R-symmetry and the superconformal

symmetry:
6AZ = —EQ’VMPL)\Z — Ea’yuPRAaa 5
6X7 = —EaPLCP A5 — *PrCiag)™” |
1
N = 57 Fiuen - YD X?(PLC e + PrCiape”)

1 a «@
—5X7 (PR ?Pes + PiCiapDes)
1 abc c «
—5f XPXFI(CiG) sPre” + (CiG)a” Pres]

where Ppe,, Pre® are an SU(4) quartet of Majorana CKS. Here
(GiG)*s = G Gy and (G G)a” = Ciar G,

@ Due to its large amount of superconformal symmetry, the theory is
expected to be UV and IR finite. Hence the theory is expected to
enjoy exact SU(2,2|4) supersymmetry.

o Adding a 6-term, one also expect the theory to enjoy exact SL(2, Z)
strong-weak duality, just as the type |IB superstring theory does.



2. AdS/dS CFT Correspondence

2.3 Proposal of AdS/dS CFT correspondence

We propose that:

Type 1B string theory on AdSs x S® is equivalent to the
N = 4 superconformal Yang-Mills theory on dS;.

with the relation of parameters:

gaM = &8s
L4
AT\ = W’ A= gsNa
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3. Conformal field theory in dS space

3.1. Conformal field theory in dS space: general

@ The SO(1, d) isometries of dS, is generated by the generators:
0 0
—_yB_—_
oYB YA’
which acts linearly on the de Sitter hyperboloid. In terms of the dS
conformal coordinates, they acts as:

LAB:YA AaB:O715"'ad7

Spatial Rotation J; = —ilj = —i(xi0; — x;0;), i=1,---,d—1
Dilation D = —ilgg = —ix"0,,,
Spatial Translation P; = —i(Liy + Lo;) = —iH 10,
Special Conformal Transf K; = i(Lig — Lo;) = —2iHx; x*0,, — iHx?9;.
The corresponding finite transformations are:
x = Nx;, A € SO(d — 1) rotations,
xXP= M,
x,-' = Xx;+ aj,
on oo XAee b = (0, b).

1+ 2b,xt + b2x?’



3. Conformal field theory in dS space

@ The conformal symmetry of dS, is obtained by adding to the dS
isometries the generators:
3 Lorentz boosts Jy;, 1 time translation P® and 1 special conformal
transformation K©.

@ The corresponding finite transformations are:

3 Lorentz boosts Jo;, x'* = A‘xY, N Aj = Lorentz boost,
1 time translation P°, x'© = X%+ a°
. xH + b/:,X2
1 special conformal transf K°, x'# = b* = (b°,0).

1+ 2byxH + b2x2’
The metric transforms as
ds® — ds'? = N*(x)ds?,

where, respectively,

2 2
X0 X0
A(x)? = 1.
(X) (A%X‘L> ’ (Xo + ao> ’




3. Conformal field theory in dS space

@ The 15 isometries of AdSs acts as conformal symmetries on the
boundary.

For Minkowski boundary:

6 Lorentz + 4 translations + 4 special conformal + 1 dilation

Poincare symmetries

conformal symmetries

For de Sitter boundary:

3 rot + 3 spatial transl 4+ 3 special conformal + 1 dilation

dS symmetries

+ 3 boost+ 1 special conformal + 1 time transl

conformal symmetries



3. Conformal field theory in dS space

@ As usual, the special conformal transformations can be constructed
out of translations and the inversion

n
xH 1

Xt Xt == =(=].
x x

@ Inversion is an isometry and induces an SO(1, d — 1) rotation on
vector
0 ’ 0

Dx! 1t =X M/L(X)wv

174

where
XX
2

/\/IZ(X) =0," =2

X
and satisfies /\/I/‘fl\/lfnag = Nuw-

@ For a spinor in fundamental representation, inversion induces the
transformation

000 = 52090 (1 ).

where
[uxt

Ix]

S(x) =

and satisfies
ST(x)T*S(x) = MHTY.



3. Conformal field theory in dS space

@ In a CFT, scalar operator O of conformal dimension A satisfies
under conformal transformation x — x’ as
1
NG~
dS invariance implies that their 2 point function must be function of
the geodesic distance o(x, y)?. Conformal invariance further implies:

O'(X) = ——=<0(x).

(O1(x)Os(y)) = U(XQ;)M(SAI,AZ_A.

@ As for operator O%(x) in spin 1/2 representation, it satisfies:

1
o'*x) = Ax )‘ASB( x)OP(x"), under translation in x°, and

0'*(x) = S§(x)0°(x*), under inversion

These implies that

Daﬁ(x y)

(O (05) = 5 2R

OA;,0p=A-




3. Conformal field theory in dS space

@ Here D is given by

(x = y)ul*

satisfies the relation
11

D(x.y) = 57000 ( 1.1 ) St

@ Constraints on 3 and higher point functions of dS CFT can be
similarly worked out.



3. Conformal field theory in dS space

3.2. Bulk to Boundary Formalism: general

Consider a (d + 1)-dimensional manifold M with boundary and the
metric
ds® = gyndyMdy" .

Without loss of generality, assume near the boundary (z = a):
ds® = dz° + (2, x)dx dx” . Y (2,x) = PP(2)hu(X)

for some function p(z) and h,,, is the boundary metric.
Scalar Case:

@ Real scalar field with action

1

10) = =5 [ 4y V™ omedue + m?)

1 1
= - /aM dxy/Aen™ome + E/dd“y\/g?p(ﬂ - m?),

Get EOM and the boundary action.



3. Conformal field theory in dS space

@ Introduce bulk to boundary propagator:

plz,x) = [ dx'v/h(x)K(z,x,x')po(x') ,

where

(D (x — x’
OK(z,x,x')=0, lim K(z,x,x") ~ f(z)(s(\xfhx) ,

Here f(z) specifies the asymptotic behavior of ¢ near the boundary,

@~ f(z)po(x), z~a.

@ And we obtain the two point function:

1(6) = / dx /B X V) 9o(x)G0x X Yoo (x)

with G(x, x") defined as

‘g(x,x/) = lim f(2)p?(2)0.K(z,x,x').

z—a




3. Conformal field theory in dS space

Spin 1/2 fermion
o Consider massive free spin 1/2 fermion

o = / 4D — o,

@ The action vanishes on-shell and one needs to supplement it with
the boundary action

1 _
lp == lim = d? )
b im 2/6M X/

z—a

@ The fermionic bulk-to-boundary propgator S is defined by

$(z,x) = / A\ R)S (2,35 Ybo(X')

(5(d)(x—x’)
here —u)S=0, limS(z,x,x)~ f(z)——~—~
where (D)5 =0, lim S(z.xx) ~ F(2) 0

and f(z) specifies the boundary behaviour:

P~ F(2)ho(x), z~ a.

o It is easy to see that, for > 0, the non-normalizable mode is obtain
from o of negative chirality: %1y = —1) .

1.



3. Conformal field theory in dS space

@ We obtain
I = [ @ RGBT T )G X Yol
where
G(x', ") —ﬂnf/dx¢7;;52xx5&xx).

@ As S behaves like a delta function near the boundary, the integral
picks up its contribution from the two regions: x ~ x” and x ~ x”
and we obtain

G(x',x") = lim 1f(z)pd(z)(ST(z,x”,X’) + 5(z,x',x")).

z—a

So our job reduces to determining the bulk-to-boundary propagators K
and S for the AdS space with dS boundary. However, we don’t need the
full knowledge. In fact only need them near the boundary. And there is a
simple relation

S=DK

which holds near the boundary.



3. Conformal field theory in dS space

@ Instead of trying to solve for K directly from its defining DE and
BC, one has a more effective way.
Introduce the Green function for the bulk

(-O0+ m?)G(z,x;2/,x) = \/1§5(d)(x - x"o(z—-2') .

Using the Green's identity, one can easily obtain the solution of the
scalar Klein-Gordon equation in terms of the Green function as

o(z,x) = /dd+lx\/§ o(~0+ m?)G — G(-O+ m?)p
_ / 49 po(x )2 x) (GO F(2) — ()0 G) |

As a result

K(z,x,x") = lim pd(z’)(G(z,x;Z’,x’)@zzf(z’) — f(z’)@z/G(z,x;z’,X'))

z'—a

@ This formula displays clearly how the bulk physics, as encoded in the
bulk Green function, is translated to the physics on the holographic
field theory through the boundary data
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4. 2-point function in dS CFT

. 2-point function for scalar operators in dS CFT

@ For AdS,.1 in the Poincare coordinates, we have,

Ca (& A /N A+
d—2 A r 2
LR6(X XT) = v (2) (2’ 2 Y 1'5)’

where Cp = constant,

42
A = either Ay = dj:u u::\/7+m2L2.

@ Flat case: In the Poincare coordinate:

2rr’

—————5 — 0, near the boundary r’ — 0 or z’ — 0.
r’+|x — x|

¢~
@ We obtain the bulk to boundary propagator and the 2-point function

K= (o )°
o (r2+\x—x’|2)

1
/
G(x,x') = X — XA

which is expected for CFT in Minkowski space.



4. 2-point function in dS CFT

dS case
@ The AdSyy1 metric is

ds® = dz? + sinh?(Hz) ds3g ,

and has a dS boundary with metric h, where /g = sinh?(Hz)v/h.
Near the boundary z/ — oo, we have

efH(z+z')
T
where | 2024
P2 =02 4 e 2. W
and
o2 — (Xu - X,L/L)z

/
H?xox}



4. 2-point function in dS CFT

@ As the Green function is diffeomorphic invariant, we obtain

immediately
—Hz A

K:(e?) . withA=A,

and the two point function

1

" —

T

This is the expected form of the two point function for operators of
dimension A of a conformal field theory in dS spacetime.



4. 2-point function in dS CFT

4.2. 2-point function for spin 1/2 operators in dS CFT

@ For the metric
ds® = dz® + sinh® Hz(—dt? + e 72t dx?).
The Dirac operator reads

1 dH
sinh HdeS + 2tanh Hzr '

@ One can show that the solution of S to the defining DE and BC can
be written as

D =r?0, +

S

(D+p—HcothHz THYK + 6,

—Hz\ A+
(%)
p
is the bulk to boundary propagator for an aux. scalar field of mass m

m? = u® — d*/4

where

and 9 is some function on AdS which vanishes at the bounary.



4. 2-point function in dS CFT

o As

G(x',x") = lim 1f(z)pd(z)(.‘slf(z,x”,x/) + S(Z,XI,X”))

z—a
is eventually sandwiched between 1), and 1 (opposite chirality)
inside
I = [ @ VRGBT T )G X Yol
one see that the constant and I'* term do not contribute
Yoo =0, Yol “1po = 0,

and

S=DK.
@ As a result, we obtain the boundary two-point function

D
Gx.x") = —5 -

This agrees with the result for CFT in dS spacetime.



5. Wilson Loop

Outline

© 5. Wilson Loop



5. Wilson Loop

@ An observer in de Sitter space will observe a bath of thermal particles
emitted from the de Sitter horizon at the Hawking temperature

H

Th

o For flat space, Q% = H, thus SUSY invariance of vacuum implies
(H) = 0 for any SUSY inv state. Therefore a temperature would
break SUSY.

@ For dS space, H is not the square of a supersymmetry generator,
and so the temperature does not break SUSY. This finite
temperature radiation is present even though the vaccuum state
preserves exact supersymmetry.

In flat case, QQ potential is fixed by conformal symmetry to be V = 1/¢.
Q. For dS case, how does the temperture the physics?

Expect: V = V((,H) = %f(HI@).



5. Wilson Loop

@ Static heavy quarks on the dS boundary of the AdS space follow
spacelike geodesics which diverges from each other, with increasing
distance between them as time goes.

@ A simple case where the invariant distance between the quarks is
preserved a constant £ is to give the quarks a constant speed with
direction pointing to each other

2142
vzz—gH.
4




5. Wilson Loop

@ The profile of the string solution and the inter-quark distance in
terms of the tunning point:

L

2o

1 2 3 0

o For each value of ¢, there are 2 solutions corresponding to 2 turning
points zy. The preferred solution (with smaller area) has smaller z.

@ The on-shell Nambu-Goto action is co due to the co lenght of the
string worldsheet, out of which the energy of the 2 single quarks has

to be subtracted:
Etot(L) = SQ(_? - 25Q .



5. Wilson Loop

@ We obtain the energy of the bounded state in terms of the size of
the bound state £ in units of H.

=

-200

@ There is a maximum value of £ beyond which there is no minimal
surface with the boundary conditions. The turning point occurs for
negative values of energy, The almost flat branch corresponds to the
non-stable solutions that are energetically non-favorable.

@ The behaviour is quite similar to the thermal QQ potential
computed using the AdS-BH background, and is a result of the
presence of the cosmological horizon.
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6. Discussion

@ The thermal behaviour of the Wilson loop signifies the effects of the
cosmological horizon.

Q. In flat space, a finite temperature breaks supersymmetry.
However here we have exact SUSY preserved here. could we use
SUSY to constraint the form of the potential, or other operators?

@ It would be interesting to compute the higher point functions and
see if there is any nonrenormalization theorem for chiral operators as
in the standard A" = 4 SYM.

@ The N/ =4 SCYM seems to be an interesting QFT with remarkable
properties: exact conformality, SL(2, Z) duality, integrability, etc.
Further anaysis are called for.

@ On the AdSs x S° side, the existence of the Lax pair and an infinite
set of classically conserved nonlocal charges are properties of the
Green-Schwarz string sigma model. One may speculate that the
N = 4 superconformal Yang-Mills on dS4 may also be integrable in
some of its sectors.

Thank you!



	1. Introduction
	2. AdS/dS CFT Correspondence
	3. Conformal field theory in dS space
	4. 2-point function in dS CFT
	5. Wilson Loop
	6. Discussion

