Classification of Tensor Network State : Symmetry and Topology

Hyunyong Lee Jung Hoon Han Department of Physics, SKKU

APCTP, August 24, 2016

Foundation of Korea

Outline

I. Introduction

- Topological Phases in Condensed Matter Physics
- Tensor Network and Tensor Network States : MPS, PEPS

II. Classification of TNS

- Matrix Product States : SPT
- Projected Entangled Pair States : Z2 Topological Order

III. Summary & Outlook

Outline

I. Introduction

- Topological Phases in Condensed Matter Physics
- Tensor Network and Tensor Network States : MPS, PEPS

II. Classification of TNS

- Matrix Product States : SPT
- Projected Entangled Pair States : Z2 Topological Order

III. Summary & Outlook

❖ Quantum Phases and Quantum Phase Transitions

- ◆ Classification of QPs is one of main object in Condensed Matter Physics
	- Why? Many different models & materials show essentially the same behavior
	- Example : Transverse Field Ising Model (TFIM)

- continuous QPT between spontaneously symmetry broken (SSB) ⇔ disordered phases
- the most characteristic case of the quantum phase transition
	- \rightarrow so-called "conventional QPT"
	- \rightarrow Ginzburg-Landau theory
- one can classify the QPs with a pair of mathematical objects (*GH, G*) $(\mathcal{C}_2,\{1\})$

◆ Topological Phases

➤ People found some examples of QPs and QPTs which cannot be understood by the conventional QPT : no SSB of any symmetry

• cannot be adiabatically connected to a product state

➤ Topological phases are divided into 2 categories

- ① Symmetry Protected Topological phase (SPT)
	- \rightarrow Distinct only in the presence of symmetry
	- \rightarrow Gapped but gapless mode at edge. e.g.) Topological Insulator, Haldane phase, etc
- ② Topologically Ordered phase

❖ Quantum Phases and Quantum Phase Transitions

- ◆ Classification of QPs is one of main object in Condensed Matter Physics
	- Why? Many different models & materials show essentially the same behavior
	- Example : Transverse Field Ising Model (TFIM)

- continuous QPT between spontaneously symmetry broken (SSB) ⇔ disordered phases
- the most characteristic case of the quantum phase transition
	- \rightarrow so-called "conventional QPT"
	- \rightarrow Ginzburg-Landau theory
- one can classify the QPs with a pair of mathematical objects (*GH, G*) $(\mathcal{C}_2,\{1\})$

◆ Topological Phases

➤ People found some examples of QPs and QPTs which cannot be understood by the conventional QPT : no SSB of any symmetry

• cannot be adiabatically connected to a product state

➤ Topological phases are divided into 2 categories

- ① Symmetry Protected Topological phase (SPT)
	- \rightarrow Distinct only in the presence of symmetry
	- \rightarrow Gapped but gapless mode at edge. Ex) Topological Insulator, Haldane phase, etc
- ② Topologically Ordered phase
	- \rightarrow Non-trivial without symmetry
	- → Ground state (topological) degeneracy. e.g.) Z2 spin liquid, FQH, etc

◆ 1 Dimensional System

➤ There is no topologically ordered phase in 1D

 : any ground state can be adiabatically connected to a product state, if no symmetry is imposed

➤ SPT phases do exist in 1D : we want to classify and construct them!

➤ Any gapped G.S. in 1D can be exactly described by a Matrix Product State (MPS) : classification of SPT in 1D \rightarrow classification of MPS in the presence of symmetry

◆ 2 Dimensional System

➤ Topologically ordered states do exist

: we want to construct them using Projected Entangled Pair States (PEPS)!

➤ SPT phase do exist in 2D

: The way how we describe SPT with 2D TNS has been recently developed

Outline

I. Introduction

- Topological Phases in Condensed Matter Physics
- Tensor Network and Tensor Network States : MPS, PEPS

II. Classification of TNS

- Matrix Product States : SPT
- Projected Entangled Pair States : Z2 Topological Order

III. Summary & Outlook

i j $M_{ij} =$ - rank 2 (matrix) :

- rank 3 :

$$
T_{ijk} = \frac{\partial}{\partial k} \frac{1}{j} \mathbf{k}
$$

- Matrix product : $C = AB$ \longrightarrow $C_{ij} = \sum$ $A_{ik}B_{kj}$

TN

 $C - = -A - B$

k

=

contraction

- Contraction : Sum over connected legs

- **Basic Operation (1) Contraction**
	- Products of multiple high rank tensors :

After getting used to graphical representation, complex network of tensors are intuitively understandable! **Basic Operation (2) - Singular Value Decomposition**

 $M_{ij} = U_{ik}S_kV_{kj}^{\intercal}$ *U, V* : unitary matrix $(m \times n)$

◆ Quantum Entanglement

$$
\begin{pmatrix} A & B \end{pmatrix}
$$

$$
|\psi\rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} |i^A j^B\rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{\chi} U_{ik} S_k V_{kj}^{\dagger} |i^A\rangle \otimes |j^B\rangle
$$

$$
= \sum_{k=1}^{\chi} S_k \left(\sum_{i=1}^{m} U_{ik} | i^A \rangle \right) \otimes \left(\sum_{i=1}^{m} V_{kj}^{\dagger} | j^B \rangle \right)
$$

 $=$ \sum $\overline{\chi}$ $k=1$ $S_k|\phi_k^A\rangle \otimes |\phi_k^B\rangle$ Schmidt decomposition!

$$
\begin{cases}\n(S_k)^2 & \text{: Entanglement Spectrum} \\
S_{\text{vN}} \equiv -\sum_{k=1}^{\chi} (S_k)^2 \log(S_k)^2 & \text{: Entanglement Entropy}\n\end{cases}
$$

Tensor Network

• What is TN?

Specific form of TN depends on property of original tensor!

◆ Connection between TN & Many-body state

$$
= |\psi\rangle = \sum_{i_1, \dots, i_N} \Psi_{i_1, i_2, \dots, i_N} |i_1, i_2, \dots, i_N\rangle
$$

◆ Area Law of Entanglement Entropy

Generic quantum states satisfy \rightarrow $S_{\text{vN}} \sim L^D(V)$: volume law

Set of Relevant states or ground states of local Hamiltonian

 $S_{\text{vN}} \sim L^{D-1}(\partial V)$: area law

N-body system

Hilbert space of N-body system

H

MPS (1D) $\frac{1}{\sqrt{2}}$ S v $S_{\rm vN} \sim L \log \chi$

N-body system

Outline

I. Introduction

- Topological Phases in Condensed Matter Physics
- Tensor Network and Tensor Network States : MPS, PEPS

II. Classification of TNS

- Matrix Product States : SPT
- Projected Entangled Pair States : Z2 Topological Order

III. Summary & Outlook

 S_i^2 : Entanglement Spectrum between subsystems $x \le i$ and $x > i$

◆ Transfer Matrix in Canonical (Pure) MPS

$$
-\langle\Psi|\Psi\rangle=\frac{\frac{\Psi}{\Gamma_1}}{\frac{\Psi}{\Gamma_1}}=\frac{\frac{\Gamma_1}{\Gamma_1}\frac{\Gamma_2}{\Gamma_2}\frac{\Gamma_2}{\Gamma_2}\frac{\Gamma_3}{\Gamma_3}\frac{\Gamma_3}{\Gamma_4}\frac{\Gamma_4}{\Gamma_4}\frac{\Gamma_5}{\Gamma_5}\frac{\Gamma_6}{\Gamma_5}\frac{\Gamma_7}{\Gamma_6}\frac{\Gamma_8}{\Gamma_7}\frac{\Gamma_8}{\Gamma_8}\frac{\Gamma_9}{\Gamma_9}\frac{\Gamma_9}{\Gamma_9}\frac{\Gamma_1}{\Gamma_9}\
$$

;::::::::::::::::::::;;

$$
-\frac{S}{\sqrt{S}}\prod_{i=1}^{n-1} (x^2 \times x^2) - \text{transfer matrix (TM)}
$$

- TM : Linear mapping from matrix to matrix

$$
\blacktriangleright \epsilon(X) := \sum_m \Gamma_m S X S \Gamma_m^\dagger
$$

- **◆** Transfer Matrix in Canonical (Pure) MPS
	- One can show following two properties

$$
\Phi \quad \epsilon(\mathbb{I}) = \sum_{m} \Gamma_m S^2 \Gamma_m^{\dagger} = \mathbb{I} \quad \longleftrightarrow
$$

- $\mathcal{L}(\mathcal{L}) = \lambda X$: eigenvalues $|\lambda| \leq 1$ & Largest $|\lambda|$ is unique
- **◆** Global Symmetry Operation
	- $\blacktriangleright\;\;U=\otimes_{i=1}^N u_i\;\;$ (ex) Spin rotation, Time-Reversal, etc

$$
\triangleright \langle \Psi | U | \Psi \rangle = \stackrel{\Psi}{\downarrow} \stackrel{\Psi}{\downarrow} \stackrel{\Gamma_1}{\downarrow} \stackrel{S_1 - \Gamma_2}{\downarrow} \stackrel{S_2 - \Gamma_3}{\downarrow} \stackrel{S_3 - \Gamma_4}{\downarrow} \stackrel{S_4 - \Gamma_5}{\downarrow} \stackrel{S_5 - \Gamma_4}{\downarrow} \stackrel{S_6 - \Gamma_5}{\downarrow} \stackrel{S_7 - \Gamma_4}{\downarrow} \stackrel{S_8 - \Gamma_4}{\downarrow} \stackrel{S_9 - \Gamma_4^{\dagger}}{\downarrow} \stackrel{S_1 - \Gamma_4^{\dagger}}{\downarrow} \stackrel{S_1 - \Gamma_4^{\dagger}}{\downarrow} \stackrel{S_2 - \Gamma_4^{\dagger}}{\downarrow} \stackrel{S_3 - \Gamma_4^{\dagger}}{\downarrow} \stackrel{S_4 - \Gamma_5^{\dagger}}{\downarrow}
$$

◆ New Transfer Matrix

S

 \boldsymbol{u}

S †

-

$$
\ell^{u_1,\ldots,u_{mn}}=e^{i\theta_m}\delta_{mn}
$$

$$
\ast \quad \epsilon_u(X) \stackrel{\dot{ \Psi}}{=} \sum_m e^{i \theta_m} \Gamma_m S X S \Gamma_m^\dagger
$$

We want to know the eigenvalues of New TM!

-
$$
\epsilon_u(V) = \lambda V = \sum_m e^{i\theta_m} \Gamma_m SV S \Gamma_m^{\dagger}
$$

\n
$$
\lambda \left| \text{Tr} \left[VS^2 V^{\dagger} \right] \right| = \left| \sum_m e^{i\theta_m} \text{Tr} \left[\Gamma_m SV S \Gamma_m^{\dagger} S^2 V^{\dagger} \right] \right|
$$

◆ New Transfer Matrix $\begin{array}{ccccccc} \textbf{u} & & \longleftrightarrow & \epsilon_u(X) & \xrightarrow{\dot{\mathbf{v}}} & \sum \end{array}$ *m* $e^{i\theta_m}\Gamma_m SXS\Gamma_m^\dagger$ $u_{mn} = e^{i\theta_m}\delta_{mn}$ We want to know the eigenvalues of New TM! $\epsilon_u(V) = \lambda V = \sum e^{i\theta_m} \Gamma_m SV S \Gamma_m^{\dagger}$ *m S S †* \boldsymbol{u}

$$
\mathbf{E} \left[\lambda \left| \text{Tr} \left[V S^2 V^{\dagger} \right] \right] = \left| \sum_m e^{i \theta_m} \text{Tr} \left[\Gamma_m S V S \Gamma_m^{\dagger} S^2 V^{\dagger} \right] \right|
$$

= $\overline{}$ I l \mathbf{I} \blacktriangledown *m* $\text{Tr} \left(X_m^\dagger Y_m^{} \right)$ $\overline{}$ $\overline{}$ l I I $\overline{}$ $X_m = e^{-\theta_m} S\Gamma_m S V^\dagger$ $Y_m = SV^\intercal \Gamma_m S$ \leq $\overline{}$ $\mathbf{\mathbf{I}}$ 1 \mathbf{I} \mathbf{I} \blacktriangledown *m* $\text{Tr}\left(X_m^\dagger X_m\right)$ $\overline{}$ ł ł ı \mathbf{I} $rac{1}{2}$ | **Contract** in 1999. ł $\mathsf I$ \blacktriangledown *m* $\text{Tr}\left(Y_m^\dagger Y_m\right)$ $\overline{}$ ł l 1 2 Cauchy-Schwarz inequality $|\vec{v}_1 \cdot \vec{v}_2| \leq |\vec{v}_1||\vec{v}_2|$

◆ New Transfer Matrix

$$
\sum |\lambda| \text{Tr} \left[V S^2 V^{\dagger} \right] \le \left| \sum_{m} \text{Tr} \left(S \Gamma_m S V^{\dagger} V S \Gamma_m^{\dagger} S \right) \right|^{\frac{1}{2}} \left| \sum_{m} \text{Tr} \left(S V^{\dagger} \Gamma_m S^2 \Gamma_m^{\dagger} V S \right) \right|^{\frac{1}{2}} \n= \epsilon \left(V^{\dagger} V \right) = \epsilon \left(\mathbb{I} \right) = \mathbb{I}
$$

$$
\epsilon(X):=\sum_m\Gamma_m SXS\Gamma_m^\dagger
$$

◆ New Transfer Matrix

$$
\sum |\lambda| \text{Tr} \left[VS^2 V^{\dagger} \right] \le \left| \sum_{m} \text{Tr} \left(S \Gamma_{m} S V^{\dagger} V S \Gamma_{m}^{\dagger} S \right) \right|^{\frac{1}{2}} \left| \sum_{m} \text{Tr} \left(S V^{\dagger} \Gamma_{m} S^{2} \Gamma_{m}^{\dagger} V S \right) \right|^{\frac{1}{2}}
$$

\n
$$
\left| \begin{array}{ll} \begin{aligned} \text{ic} \left(V^{\dagger} V \right) \text{ is} \\ \text{bounded by } V^{\dagger} V \end{aligned} \right| \le \left| \text{Tr} \left(V^{\dagger} V \right) S^{2} \right| \right|^{\frac{1}{2}} \left| \text{Tr} \left(V S^{2} V^{\dagger} \right) \right|^{\frac{1}{2}} \\ \le \left| \text{Tr} \left(V^{\dagger} V S^{2} \right) \right|^{\frac{1}{2}} \left| \text{Tr} \left(V S^{2} V^{\dagger} \right) \right|^{\frac{1}{2}} \\ = \text{Tr} \left(V S^{2} V^{\dagger} \right) \end{array} \right|
$$

 $>$ $|\lambda| \leq 1$: Physically, it is obvious! Otherwise $|\langle \Psi | U | \Psi \rangle \!\!\!\!\!\times \!\!\!\!\times \langle \Psi | \Psi \rangle$

2

 \blacktriangleright Requiring the symmetry : $\boxed{U|\Psi} = e^{i\Theta}|\Psi\rangle$

$$
\Rightarrow \langle \Psi | U | \Psi \rangle = e^{i\Theta} \langle \Psi | \Psi \rangle
$$

$$
\Rightarrow |\lambda| = 1
$$

- **◆** Symmetry Imposed MPS
	- ▶ Symmetry or $|\lambda| = 1$ gives us 2 constraints

$$
\circledcirc \ \epsilon \left(V^{\dagger}V \right) = V^{\dagger}V : \ \ V^{\dagger}V = \mathbb{I} \ \ \text{or} \ \ V \text{ is unitary}
$$

$$
\begin{aligned}\n\mathcal{Q} \quad X_m \parallel Y_m \, : \, \alpha X_m &= Y_m \\
&\quad \downarrow \quad \alpha e^{i\theta_m} S \Gamma_m S V^\dagger = S V^\dagger \Gamma_m S \\
&\quad \downarrow \quad \downarrow \quad |\alpha|^2 \sum_m S \Gamma_m S V^\dagger V S \Gamma_m^\dagger S = \sum_m S V^\dagger \Gamma_m S^2 \Gamma_m^\dagger V S \\
&\quad \frac{m}{\sqrt{\pi}} \sum_{m} \left(V^\dagger V \right) = \mathbb{I} \n\end{aligned}
$$

- **◆** Symmetry Imposed MPS
	- ▶ Symmetry or $|\lambda| = 1$ gives us 2 constraints

$$
\begin{aligned}\n\mathbb{O} \quad & \epsilon \left(V^{\dagger} V \right) = V^{\dagger} V : \quad V^{\dagger} V = \mathbb{I} \quad \text{or} \quad V \text{ is unitary} \\
& \quad \mathbb{Q} \quad X_m \parallel Y_m : \alpha X_m = Y_m \\
& \quad \mathbf{e}^{i\theta_m} S \Gamma_m S V^{\dagger} = S V^{\dagger} \Gamma_m S \\
& \quad \mathbf{b} \mid \alpha \mid^2 \sum_m S \Gamma_m S V^{\dagger} V S \Gamma_m^{\dagger} S = \sum_m S V^{\dagger} \Gamma_m S^2 \Gamma_m^{\dagger} V S \\
& \quad \mathbf{b} \mid \alpha \mid^2 S^2 = S^2 \quad \therefore \quad \alpha = e^{-i\phi_u} \\
& \quad e^{i\theta_m} \Gamma_m = e^{i\phi_u} V \Gamma_m V^{\dagger} \n\end{aligned}
$$

If satisfied, the MPS is symmetric under *U*

- **◆** Projective Representation
	- Acting u twice,

$$
\therefore \quad u_2 u_1 \Gamma = e^{i \phi_{u_1} + i \phi_{u_2}} V_{u_2} V_{u_1} \Gamma \ V_{u_1}^{\dagger} V_{u_2}^{\dagger}
$$

= *eⁱ*[*u*1*u*2]*V*[*u*1*u*2] *V †* [*u*1*u*2] = *eⁱ*¹² *^V*¹² *^V †* 12 *ei*✓ [*u*1*u*2] = *^u*¹ + *^u*² *V^u*¹ *V^u*² = *V*[*u*1*u*2] ➤ *{* : *^V^u* is a projective representation of *G^u u*1*u*² 2 *G^u u*1 *u*2 *^V*¹ *^V † ^V*² ¹ *^V †* = *e* ² *i*1+*i*²

non-trivial projective representation (or symmetry fractionalization) leads non-trivial degeneracies in Entanglement Spectrum (ES) characterizing topological phase from trivial phase ➤

❖ Example : Haldane Phase (S=integer)

$$
\blacktriangleright \quad \text{Model:} \ \ H = J \sum_i \vec{S}_i \cdot \vec{S}_{i+1} + U_{zz} \sum_i (S_i^z)^2
$$

- \blacktriangleright $Z_2 \times Z_2$ symmetry: spin flipping along x and z axes
- \blacktriangleright Acting each Z_2^{α} twice,

 $= e^{i\theta_x}$ $= e^{i\theta_z}$ $V_{Z_2^x} V_{Z_2^x} = e^{i \theta_x} V_{(Z_2^x)^2}$ $V_{Z_2^z} V_{Z_2^z} = e^{i \theta_z} V_{(Z_2^z)}$ $\left\{ \begin{aligned} V_{Z_2^x} V_{Z_2^x} &= e^{i\theta_x} V_{(Z_2^x)^2} = e^{i\theta_x} & \xrightarrow{\text{redefine}} \ V_{Z_2^x} V_{Z_2^z} &= e^{i\theta_z} V_{(Z_2^z)^2} = e^{i\theta_z} & V_{Z_2^{\alpha}} \end{aligned} \right\} \left\{ \begin{aligned} (V_{Z_2^x})^2 &= \mathbb{I} \ (V_{Z_2^z})^2 &= \mathbb{I} \end{aligned} \right.$ $(V_{Z_2^z})^2 = \mathbb{I}$ redefine $V_{Z_2^\alpha}$

 \blacktriangleright Acting combined $Z_2^x Z_2^z$ twice,

: $(V_{Z_2^x}V_{Z_2^z})(V_{Z_2^x}V_{Z_2^z})=e^{i\theta_{xz}}V_{(Z_2^y)^2}=e^{i\theta_{xz}} \quad \longrightarrow \quad \Big|\; V_xV_z=e^{i\theta_{xz}}V_zV_x$

$$
\therefore e^{i2\theta_{xz}} = 1 \qquad \therefore \ \theta_{xz} = 0 \text{ or } \pi
$$

$$
\theta_{xz} = \pi \qquad \theta_{xz} = 0 \qquad U_{zz}
$$

We should pass through a phase transition!

- ❖ Example : Haldane Phase (S=integer)
	- \triangleright One can show $[S, V_{\alpha}] = 0$. Therefore, when $\theta_{xz} = \pi$ or $V_x V_z = -V_z V_x$ Entanglement Spectrum *S* is at least double degenerate !

[M. Oshikawa et al. PRB (2010)]

Outline

I. Introduction

- Topological Phases in Condensed Matter Physics
- Tensor Network and Tensor Network States : MPS, PEPS

II. Classification of TNS

- Matrix Product States : SPT
- Projected Entangled Pair States : Z2 Topological Order

III. Summary & Outlook

- $\int [\widetilde{\mathbf{B}}(\vec{x}, \vec{y})]_{ab} = [W^{-1}(\vec{x}, 1)]_{a'a}[W^{-1}(\vec{y}, 2)]_{b'b}[\mathbf{B}(\vec{x}, \vec{y})]_{a'b'}$

- $\{T(\bar{x})\}$ \overrightarrow{x} , **B**(\overrightarrow{x} , \overrightarrow{x}')} \longrightarrow {**T**(\overrightarrow{x}), **B**(\overrightarrow{x} , \overrightarrow{x}')} $\{e^{i\theta(\vec{x})}, W(\vec{x})\}$

- Invariant Gauge Group (IGG): [X. G. Wen, 2001]

{ (i) (ii) $[\mathbf{T}(\vec{x})]_{abcd} = e^{i\theta(\vec{x})}\eta_{aa'}\eta_{bb'}\eta_{cc'}\eta_{dd'}[\mathbf{T}(\vec{x})]_{a'b'c'd'}$ $[\mathbf{B}(\vec{x}, \vec{y})]_{ab} = \eta_{a'a}^{-1} \eta_{b'b}^{-1} [\mathbf{B}(\vec{x}, \vec{y})]_{a'b'}$

IGG is directly related with the gauge dynamics!

[X. Wen, PRB 82, 165119(2010)] [B. Swingle and X. Wen, arXiv:1001.4517] [N. Schuch et. al, Ann. Phys. 325, 2153 (2010)] [S. Jian and Y. Ran, PRB 92, 104414(2015)] **◆** Z2 topological order (1)

ex) Deconfining phase of Z_2 gauge theory

Low-energy quasi-particles *{* **◆**

 f : bound state of e and m [Kitaev, 2006] *1 : trivial particle e : chargon m : fluxon*

◆ Anyonic statistics :

Fusion rule

- **◆** Z2 topological order (2)
	- (a) Z2 even Tensor

(b) Z2 odd Tensor

(c) TNS with Z2 even Tensor

◆ Z2 topological order (4)

- Braiding statistics between Fluxon and Chargon

 Z_2 IGG invariant TN \longrightarrow Z2 topologically ordered state

[S. Jian and Y. Ran(2015)]

Outline

I. Introduction

- Topological Phases in Condensed Matter Physics
- Tensor Network and Tensor Network States : MPS, PEPS

II. Classification of TNS

- Matrix Product States : SPT
- Projected Entangled Pair States : Z2 Topological Order

III. Summary & Outlook

Summary

1. By imposing symmetry on MPS, one can derive the constraint

$$
\frac{\Gamma}{\omega} = e^{i\phi_u} - \frac{\Gamma}{\Gamma} \frac{\Gamma}{\omega}
$$

- 2. For a given symmetry, one can classify SPT phases using above eq.
- 3. Z2 topologically ordered state is systematically constructed by PEPS
- 4. One can impose symmetries on PEPS to classify the quantum states in terms of the projective symmetry group

Outlook

1. Multi-scale Entanglement Renormalisation Ansatz (MERA)

2. Classification SPT in 2D

3. Numerical tools to find the ground states and thermally excited states and etc….

Thank you very much!

- ❖ When TNSs work very well?
	- **◆** Quantum Entanglement
	- Physical phenomenon that occurs when groups of particles are generated in ways such that the quantum state of each particle cannot be described independently [wiki]

- Measured by von Neumann (entanglement) entropy:

$$
S_{\rm vN} = -\text{Tr}[\rho_A \log \rho_A] = -\text{Tr}[\rho_B \log \rho_B]
$$

e.g.)

$$
|\uparrow_A \uparrow_B \rangle \longrightarrow S_{\rm vN} = 0
$$

$$
\frac{1}{\sqrt{2}}(|\uparrow_A \downarrow_B \rangle - |\downarrow_A \uparrow_B \rangle) \longrightarrow S_{\rm vN} = \log 2
$$

Hilbert space of N-body system

❖ Exemplary TNSs

◆ Affeck-Lieb-Kennedy-Tasaki (AKLT) state

$$
- H = \sum_{i} S_i \cdot S_{i+1} + \frac{1}{3} (S_i \cdot S_{i+1})^2
$$

 $(s = 0, 1)$

◆ Nearest Neighbour Resonating Valence Bond (NN-RVB) state

ex) NN RVB on Kagame

[Cirac et. al., 2013]

Resolution of Identity : $\equiv I \equiv - \equiv v_1 - v_1^{\dagger} \equiv$

❖ Canonical Form of MPS

◆ Transfer Matrix

