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that the c-axis data11,17–20 for all of the single and double-
layer materials (Supplementary Table 2) are again well described
by a line with slope of unity. What is perhaps most remarkable is
that the a–b-plane and c-axis results may all be described by
the same universal line shown in Fig. 2, even though the two
results correspond to very different ranges of r s. The combined
data span nearly five orders of magnitude, from the insulating
behaviour along the c axis in the underdoped systems, to the
metallic behaviour in the a–b planes of the overdoped copper
oxides.
The scaling relation for the a–b planes can be interpreted in a

number of different ways. One of the most direct is the assumption
that all of the spectral weight (the area obtained from the integral of
the optical conductivity) associated with the free-carriers of the
normal state (nn) collapses into the superconducting condensate21

(n s ; nn) below T c. Allowing that the low-frequency conductivity
at T < T c can be described by the simple Drude theory for a metal,

j1(q) ¼ jdc/(1 þ q2t2) (where q is frequency), which has the
shape of a lorentzian centred at zero frequency with a width at
half-maximum given by the scattering rate 1/t, the area under
this curve may be approximated simply as j dc/t. Transport
measurements for the copper oxides22 suggest that 1/t near the
transition scales linearly with T c, so the strength of the condensate
is just r s / jdc T c, in agreement with the observed scaling relation.
This result requires that these materials approach the clean limit
(1/t ,, 2D, where 2D is the superconducting energy gap).

However, this approach cannot be applied to the properties along
the c axis, because it is generally conceded that transport in this
direction is incoherent, and therefore hopping rather than scatter-
ing governs the physics15. The quasi-two-dimensional nature of the
copper oxides, which often includes a semiconducting or activated
response of the resistivity along the c axis, has motivated the
description of the superconductivity in this direction in terms of
a Josephson-coupling picture16,17,23–26. The c-axis penetration depth
l is then determined by the Josephson current density J c and is
l 2 ¼ !c2/8pdeJ c, where J c ¼ (pD/2eRn)tanh(D/2kBT), d is the
separation between the planes, and Rn ¼ d/jdc is the normal-state
tunnelling resistance24. There is convincing evidence that the energy
gap in the copper oxides is d-wave in nature, containing nodes at the
Fermi surface27,28, making the determination of J c difficult. How-
ever, if the coupling between the planes originates at the (0,p), (p,0)
points29 where the gap is a maximum, D0, then we can approximate
D < D0. Furthermore, if D0 /Tc, then Jc /Tc=Rn and rs / jdcTc,
which yields the observed scaling behaviour in the c-axis direction.
Despite the different nature of the transport properties parallel and
perpendicular to the a–b planes, the universal scaling pertaining to
both directions is an unusual and surprising result that should
provide new insights into the origins of the superconductivity in
these materials. A

Figure 1 Plot of the superfluid density (rs) versus the product of the d.c. conductivity
(jdc) and the superconducting transition temperature (Tc) for a variety of copper oxides and

some simple metals. (jdc is measured just above the transition, and parallel to the

copper–oxygen (a–b) planes; data are shown on a log–log plot; see Supplementary

Table 1 for details, including errors.) The values for jdc and rs are obtained from optical

measurements of the reflectance. The reflectance is a complex quantity consisting of an

amplitude and a phase; in an experiment only the amplitude is usually measured.

However, if the reflectance is measured over a wide frequency range, the Kramers–

Kronig relation may be used to obtain the phase. Once the complex reflectance is

known, then other complex optical functions may be calculated (for example, the

dielectric function or the conductivity). The jdc used in this scaling relation has been

extrapolated from the real part of the optical conductivity jdc ¼ j1(q ! 0) at T < Tc.

For T ,, Tc, the response of the dielectric function to the formation of a condensate is

expressed purely by the real part, e1(q) ¼ e1 2 qps
2 /q 2, which allows the

superconducting plasma frequency qps to be calculated from qps
2 ¼ 2q 2e1(q) in the

q ! 0 limit, where qps
2 ¼ 4pn se

2/m* is proportional to the number of carriers in the

condensate. The strength of the condensate (rs) is simply rs ; qps
2 . The dashed and

dotted lines are described by rs ¼ (120 ^ 25)jdcTc. Within error, all the data for the

copper oxides are described by the dashed line. The data for the conventional

superconductors Nb and Pb, indicated by the atomic symbols within the circles, lie

slightly above the dashed line.

Figure 2 As Fig. 1 but for copper oxides only, and including data for the poorly conducting
c axis. The values for rs and jdc are obtained from optical measurements, as described in

Fig. 1 legend. In addition to the published results, new data are also included for

HgBa2CuO4þd and La22xSrxCuO4. Within error, all of the data fall on the same universal

(dashed) line with slope of unity, defined by rs ¼ 120jdcTc; the dotted lines are from

rs ¼ (120 ^ 25)jdcTc. See Supplementary Table 2 for details, including errors.
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may also explain the larger extent of quiet Sun spicules1,2 where p-
mode power and granular flows are stronger by up to 50% and
magnetic fields are more inclined owing to the presence of opposite
polarity24,25.

A natural consequence of our model is that the quasi-periodic
shocks driving the spicules propagate upwards into the low corona,
where they may lead to intensity oscillations with properties that are
similar to those of longitudinal oscillations observed by TRACE26 in
1MK coronal loops27. A
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We thank C.J. Schrijver, T. Tarbell, M. DeRosa and A. Title for discussions, and M. Carlsson for
pointing out the importance of 3min oscillations.

Competing interests statement The authors declare that they have no competing financial
interests.

Correspondence and requests for materials should be addressed to B.D.P.
(bdp@lmsal.com).

..............................................................

A universal scaling relation in high-
temperature superconductors
C. C. Homes1, S. V. Dordevic1, M. Strongin1, D. A. Bonn2, Ruixing Liang2,
W. N. Hardy2, Seiki Komiya3, Yoichi Ando3, G. Yu4, N. Kaneko5*, X. Zhao5,
M. Greven5,6, D. N. Basov7 & T. Timusk8

1Department of Physics, Brookhaven National Laboratory, Upton, New York
11973, USA
2Department of Physics and Astronomy, University of British Columbia,
Vancouver, British Columbia V6T 2A6, Canada
3Central Research Institute of Electric Power Industry, Komae, Tokyo 201-8511,
Japan
4Department of Physics, Stanford University, Stanford, California 94305, USA
5Stanford Synchrotron Radiation Laboratory, Stanford, California 94309, USA
6Department of Applied Physics, Stanford University, Stanford, California 94305,
USA
7Department of Physics, University of California at San Diego, La Jolla, California
92093, USA
8Department of Physics and Astronomy,McMaster University, Hamilton, Ontario
L8S 4M1, Canada

* Present address: National Institute of Advanced Industrial Science and Technology, TsukubaCentral 2-2,

Tsukuba, Ibaraki 305-8568, Japan

.............................................................................................................................................................................

Since the discovery of superconductivity at elevated temperatures
in the copper oxide materials1 there has been a considerable
effort to find universal trends and correlations amongst physical
quantities, as a clue to the origin of the superconductivity. One of
the earliest patterns that emerged was the linear scaling of the
superfluid density (r s) with the superconducting transition
temperature (T c), which marks the onset of phase coherence.
This is referred to as the Uemura relation2, and it works
reasonably well for the underdoped materials. It does not,
however, describe optimally doped (where T c is a maximum)
or overdoped materials3. Similarly, an attempt to scale the super-
fluid density with the d.c. conductivity (jdc) was only partially
successful4. Here we report a simple scaling relation (r s / jdcTc,
with jdc measured at approximately T c) that holds for all tested
high-T c materials. It holds regardless of doping level, nature of
dopant (electrons versus holes), crystal structure and type of
disorder5, and direction (parallel or perpendicular to the copper–
oxygen planes).
We first demonstrate scaling for the a–b plane (that is, parallel

to the copper–oxygen planes) properties6–12 of single- and double-
layer copper oxide materials (Supplementary Table 1), as well as for
the conventional metals13,14 Nb and Pb (elemental superconductors
with relatively high values of T c). The values for r s and jdc are
obtained simultaneously from studies of the reflectance of these
materials. The results for the scaling relation are shown on a log–log
plot in Fig. 1. The dashed line is a linear fit to the data, while
the dotted lines formwhat are effectively an upper and lower bound
for the data; this is described by r s ¼ (120 ^ 25)jdc T c (where r s is
in cm22, jdc is in Q21 cm21, and T c is in K). The remarkable result
contained in this plot is that within error all of these points fall
onto a single line with a slope of unity. This is significant, as the
optimally and overdoped materials, which fall well off of the
Uemura plot, now scale with the underdoped materials onto a
single line.
We also searched for scaling relations along the poorly conduct-

ing c axis, where the charge transport is thought to be incoherent15.
Previous work focused on scaling between r s and jdc only16,17.
Whereas this approach yields good results for the underdoped
materials, in a fashion reminiscent of the Uemura plot, significant
deviations from linearity are encountered for optimally and over-
doped materials; this was thought to signal the onset of more
conventional three-dimensional behaviour. Figure 2 demonstrates
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C=4.4: a-b plane high-Tc superconductor,  
           clean BCS superconductor
C=8.1: c-axis high-Tc superconductor,  
           dirty BCS superconductor

[Erdmenger, Herwerth, Klug, Meyer, Schalm: 1501.07615]

Understanding high Tc superconductivity?
Universal property of the hairy black holes?

C is constant regardless of doping level, nature of dopant,  
crystal structure and type of disorder.
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creases to 80 K, while the relaxation rate o. remains un-
changed; i.e., the data point for the Ca-doped 1:2:3com-
pound in Fig. 2 stays apart from the initial straight line.
In the 2:2:1:2and 2:2:2:3compounds and systems with

similar crystal structures, procedures for controlling the
carrier concentration have not yet been established. To
study the empirical trends, we have performed pSR
measurements on two specimens of the double-layer sys-
tems Bi2Sr2CaCu20s (2:2:1:2 compound) and (Tlp 5-
Pbps)Sr2CaCu207 (see Ref. 5) and on three specimens
of the triple-layer systems T12Ba2Ca2Cu30|p (2:2:2:3
compound), Bi2,Pb Sr2Ca2Cu30|p, and (Tlp 5Pbp s)-
Sr2Ca2Cu309. The results for these systems in Fig. 2
suggest that T, also shows the saturation with increasing
rr(T~ 0) cx:n,/m* in the 2:2:1:2 and 2:2:2:3 systems.

FIG. 2. The superconducting transition temperature T,
plotted vs low-temperature muon-spin-relaxation rate a (T
0) measured in sixteen diA'erent specimens of CuO high-T,

superconductors. The horizontal axis rr(T 0) is proportional
to 1/X and consequently to n, /m* The. closed triangles repre-
sent points for the 2:1:4 system La2 —Sr Cu04, for x=0.08,
0.10, 0.15, 0.20, and 0.21 in the order of increasing a.. The
first two points fall on the universal straight line. Closed cir-
cles denote the 1:2:3systems YBa2Cu30~. In the order of in-
creasing cx, points on the straight line are for y=6.67, 6.76,
and 6.87. The two closed circle points at around a =3.1-3.5
with T, =90 K are obtained for two different 1:2:3 specimens
with y=7.0. The closed circle at o =3.2 and T, =80 K repre-
sents (Yp 7Cap 3)Ba2Cu307. The two stars at T,—75 K repre-
sent the 2:2:1:2 and similar systems, Bi2Sr2CaCu208 and
(Tlp, 5Pbps)Sr2CaCu207, in the order of increasing a. The re-
sults for systems with triple CuO layers are shown by closed di-
amonds; Bi2—Pb„Sr2Ca2Cu30lp, T12Ba2Ca2Cu30lp, and
(Tlp, 5Pbp5)Sr2Ca2Cu309, at T, =110-125 K in the order of in-
creasing o.. For the purpose of comparison, the four points
reported in Ref. 19 are plotted by an open triangle
(Lai s5Srp|5Cu04) and open circles (YBa2Cu30», with y
=6.66, 6.95, and 7.0 in the order of increasing a). Note that
these four points are obtained with experimental conditions
and specimens different from those in the present measure-
ments. Error bars are within the size of each point unless
specified. Solid lines are guides to the eye.

Thus, Fig. 2 clearly demonstrates that the saturation and
suppression of T, with increasing n, /m occurs in all the
different series of the CuO high-T, superconductors.
Values of the carrier concentration in the normal state

n„can be derived from the Hall coefficient RH, or in
principle, directly from the chemical formulas, and
n„/m* may be deduced from the plasma frequency. The
Hall coefficient RH of many high-T, superconductors,
however, shows substantial temperature dependence
above T„making it difficult to estimate n„. It is difficult
to estimate the oxygen concentration accurately, espe-
cially for the three-layered 2:2:2:3 systems, making un-
certain the values of the carrier concentration estimated
from the stoichiometry. As seen in the 1:2:3compounds,
crystallographic ordering of the oxygen sites might also
be a hidden variable which changes the effective carrier
density. Evaluation of the plasma frequency from in-
frared absorption spectra is subject to uncertainty owing
to the relatively continuous and small plasma edge.
(Trends seen in a plasma frequency measurement are
generally consistent with the present results. )
Compared to these other methods, @SRmeasurements

have several advantages: (1) The concentration of su-
perconducting carriers n, can be directly studied. (2)
pSR signals are volume proportional; the results are rel-
atively insensitive to small impurity phases. (3) The ex-
trapolated values of rr(T~ 0) can be determined very
accurately. Thus, the plot shown in Fig. 2 is a reliable
way to study the relation between T, and n, /m*. Both
T, and rr(T 0) represent the experimentally measured
quantities; the chemical composition, which is usually
subject to a significant uncertainty, can be treated as an
implicit variable.
For a typical value of m* =5m, (m, is the bare elec-

tron mass), for example, a relaxation rate o =1 @sec
corresponds to a carrier density of n, =2x10 ' cm in
isotropic type-II superconductors. Therefore, the results
shown in Fig. 2 are consistent in order of magnitude with
estimates of the carrier density based on the calculation
of valency. We would like to note that n, can be regard-
ed either as the three-dimensional (3L') density per
volume, or as the two-dimensional (2D) density on each
CuO plane. The average interplane distance between
adjacent CuO planes is about 6~ 1 4 for each of the
different series of high-T, systems included in Fig. 2.
The 2D and 3D densities are related with approximately
the same conversion factor for diN'erent systems.
As we noted in Ref. 19, the linear relation between T,

and n, /m cannot be expected in the weak-coupling lim-
it of the BCS theory of superconductivity where the
Fermi energy t.F, Debye frequency coD, and T, are relat-
ed as T, « A, roD«eF and T, cx: hroD (the Debye frequen-
cy represents the typical energy scale of the mediating
boson). The Fermi energy of a noninteracting 2D elec-
tron gas is proportional to n„/m*. Therefore, one possi-
ble way to explain the observed linear relation is to view
it as T, ~ eF, which is expected when the energy scale

2319

History for finding universality: Uemura’s law
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that the c-axis data11,17–20 for all of the single and double-
layer materials (Supplementary Table 2) are again well described
by a line with slope of unity. What is perhaps most remarkable is
that the a–b-plane and c-axis results may all be described by
the same universal line shown in Fig. 2, even though the two
results correspond to very different ranges of r s. The combined
data span nearly five orders of magnitude, from the insulating
behaviour along the c axis in the underdoped systems, to the
metallic behaviour in the a–b planes of the overdoped copper
oxides.
The scaling relation for the a–b planes can be interpreted in a

number of different ways. One of the most direct is the assumption
that all of the spectral weight (the area obtained from the integral of
the optical conductivity) associated with the free-carriers of the
normal state (nn) collapses into the superconducting condensate21

(n s ; nn) below T c. Allowing that the low-frequency conductivity
at T < T c can be described by the simple Drude theory for a metal,

j1(q) ¼ jdc/(1 þ q2t2) (where q is frequency), which has the
shape of a lorentzian centred at zero frequency with a width at
half-maximum given by the scattering rate 1/t, the area under
this curve may be approximated simply as j dc/t. Transport
measurements for the copper oxides22 suggest that 1/t near the
transition scales linearly with T c, so the strength of the condensate
is just r s / jdc T c, in agreement with the observed scaling relation.
This result requires that these materials approach the clean limit
(1/t ,, 2D, where 2D is the superconducting energy gap).

However, this approach cannot be applied to the properties along
the c axis, because it is generally conceded that transport in this
direction is incoherent, and therefore hopping rather than scatter-
ing governs the physics15. The quasi-two-dimensional nature of the
copper oxides, which often includes a semiconducting or activated
response of the resistivity along the c axis, has motivated the
description of the superconductivity in this direction in terms of
a Josephson-coupling picture16,17,23–26. The c-axis penetration depth
l is then determined by the Josephson current density J c and is
l 2 ¼ !c2/8pdeJ c, where J c ¼ (pD/2eRn)tanh(D/2kBT), d is the
separation between the planes, and Rn ¼ d/jdc is the normal-state
tunnelling resistance24. There is convincing evidence that the energy
gap in the copper oxides is d-wave in nature, containing nodes at the
Fermi surface27,28, making the determination of J c difficult. How-
ever, if the coupling between the planes originates at the (0,p), (p,0)
points29 where the gap is a maximum, D0, then we can approximate
D < D0. Furthermore, if D0 /Tc, then Jc /Tc=Rn and rs / jdcTc,
which yields the observed scaling behaviour in the c-axis direction.
Despite the different nature of the transport properties parallel and
perpendicular to the a–b planes, the universal scaling pertaining to
both directions is an unusual and surprising result that should
provide new insights into the origins of the superconductivity in
these materials. A

Figure 1 Plot of the superfluid density (rs) versus the product of the d.c. conductivity
(jdc) and the superconducting transition temperature (Tc) for a variety of copper oxides and

some simple metals. (jdc is measured just above the transition, and parallel to the

copper–oxygen (a–b) planes; data are shown on a log–log plot; see Supplementary

Table 1 for details, including errors.) The values for jdc and rs are obtained from optical

measurements of the reflectance. The reflectance is a complex quantity consisting of an

amplitude and a phase; in an experiment only the amplitude is usually measured.

However, if the reflectance is measured over a wide frequency range, the Kramers–

Kronig relation may be used to obtain the phase. Once the complex reflectance is

known, then other complex optical functions may be calculated (for example, the

dielectric function or the conductivity). The jdc used in this scaling relation has been

extrapolated from the real part of the optical conductivity jdc ¼ j1(q ! 0) at T < Tc.

For T ,, Tc, the response of the dielectric function to the formation of a condensate is

expressed purely by the real part, e1(q) ¼ e1 2 qps
2 /q 2, which allows the

superconducting plasma frequency qps to be calculated from qps
2 ¼ 2q 2e1(q) in the

q ! 0 limit, where qps
2 ¼ 4pn se

2/m* is proportional to the number of carriers in the

condensate. The strength of the condensate (rs) is simply rs ; qps
2 . The dashed and

dotted lines are described by rs ¼ (120 ^ 25)jdcTc. Within error, all the data for the

copper oxides are described by the dashed line. The data for the conventional

superconductors Nb and Pb, indicated by the atomic symbols within the circles, lie

slightly above the dashed line.

Figure 2 As Fig. 1 but for copper oxides only, and including data for the poorly conducting
c axis. The values for rs and jdc are obtained from optical measurements, as described in

Fig. 1 legend. In addition to the published results, new data are also included for

HgBa2CuO4þd and La22xSrxCuO4. Within error, all of the data fall on the same universal

(dashed) line with slope of unity, defined by rs ¼ 120jdcTc; the dotted lines are from

rs ¼ (120 ^ 25)jdcTc. See Supplementary Table 2 for details, including errors.
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that the c-axis data11,17–20 for all of the single and double-
layer materials (Supplementary Table 2) are again well described
by a line with slope of unity. What is perhaps most remarkable is
that the a–b-plane and c-axis results may all be described by
the same universal line shown in Fig. 2, even though the two
results correspond to very different ranges of r s. The combined
data span nearly five orders of magnitude, from the insulating
behaviour along the c axis in the underdoped systems, to the
metallic behaviour in the a–b planes of the overdoped copper
oxides.
The scaling relation for the a–b planes can be interpreted in a

number of different ways. One of the most direct is the assumption
that all of the spectral weight (the area obtained from the integral of
the optical conductivity) associated with the free-carriers of the
normal state (nn) collapses into the superconducting condensate21

(n s ; nn) below T c. Allowing that the low-frequency conductivity
at T < T c can be described by the simple Drude theory for a metal,

j1(q) ¼ jdc/(1 þ q2t2) (where q is frequency), which has the
shape of a lorentzian centred at zero frequency with a width at
half-maximum given by the scattering rate 1/t, the area under
this curve may be approximated simply as j dc/t. Transport
measurements for the copper oxides22 suggest that 1/t near the
transition scales linearly with T c, so the strength of the condensate
is just r s / jdc T c, in agreement with the observed scaling relation.
This result requires that these materials approach the clean limit
(1/t ,, 2D, where 2D is the superconducting energy gap).

However, this approach cannot be applied to the properties along
the c axis, because it is generally conceded that transport in this
direction is incoherent, and therefore hopping rather than scatter-
ing governs the physics15. The quasi-two-dimensional nature of the
copper oxides, which often includes a semiconducting or activated
response of the resistivity along the c axis, has motivated the
description of the superconductivity in this direction in terms of
a Josephson-coupling picture16,17,23–26. The c-axis penetration depth
l is then determined by the Josephson current density J c and is
l 2 ¼ !c2/8pdeJ c, where J c ¼ (pD/2eRn)tanh(D/2kBT), d is the
separation between the planes, and Rn ¼ d/jdc is the normal-state
tunnelling resistance24. There is convincing evidence that the energy
gap in the copper oxides is d-wave in nature, containing nodes at the
Fermi surface27,28, making the determination of J c difficult. How-
ever, if the coupling between the planes originates at the (0,p), (p,0)
points29 where the gap is a maximum, D0, then we can approximate
D < D0. Furthermore, if D0 /Tc, then Jc /Tc=Rn and rs / jdcTc,
which yields the observed scaling behaviour in the c-axis direction.
Despite the different nature of the transport properties parallel and
perpendicular to the a–b planes, the universal scaling pertaining to
both directions is an unusual and surprising result that should
provide new insights into the origins of the superconductivity in
these materials. A

Figure 1 Plot of the superfluid density (rs) versus the product of the d.c. conductivity
(jdc) and the superconducting transition temperature (Tc) for a variety of copper oxides and

some simple metals. (jdc is measured just above the transition, and parallel to the

copper–oxygen (a–b) planes; data are shown on a log–log plot; see Supplementary

Table 1 for details, including errors.) The values for jdc and rs are obtained from optical

measurements of the reflectance. The reflectance is a complex quantity consisting of an

amplitude and a phase; in an experiment only the amplitude is usually measured.

However, if the reflectance is measured over a wide frequency range, the Kramers–

Kronig relation may be used to obtain the phase. Once the complex reflectance is

known, then other complex optical functions may be calculated (for example, the

dielectric function or the conductivity). The jdc used in this scaling relation has been

extrapolated from the real part of the optical conductivity jdc ¼ j1(q ! 0) at T < Tc.

For T ,, Tc, the response of the dielectric function to the formation of a condensate is

expressed purely by the real part, e1(q) ¼ e1 2 qps
2 /q 2, which allows the

superconducting plasma frequency qps to be calculated from qps
2 ¼ 2q 2e1(q) in the

q ! 0 limit, where qps
2 ¼ 4pn se

2/m* is proportional to the number of carriers in the

condensate. The strength of the condensate (rs) is simply rs ; qps
2 . The dashed and

dotted lines are described by rs ¼ (120 ^ 25)jdcTc. Within error, all the data for the

copper oxides are described by the dashed line. The data for the conventional

superconductors Nb and Pb, indicated by the atomic symbols within the circles, lie

slightly above the dashed line.

Figure 2 As Fig. 1 but for copper oxides only, and including data for the poorly conducting
c axis. The values for rs and jdc are obtained from optical measurements, as described in

Fig. 1 legend. In addition to the published results, new data are also included for

HgBa2CuO4þd and La22xSrxCuO4. Within error, all of the data fall on the same universal

(dashed) line with slope of unity, defined by rs ¼ 120jdcTc; the dotted lines are from

rs ¼ (120 ^ 25)jdcTc. See Supplementary Table 2 for details, including errors.
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32 Gary T. Horowitz

cases (if indeed “pairing mechanism” is the right concept at strong coupling)?
This remains one of the main open questions in understanding the high Tc mate-
rials.

8. As mentioned above, the large N limit is responsible for allowing spontaneous
symmetry breaking in our 2+1 dimensional field theory. Can one show that away
from this limit, massless fluctuations lead to infrared diverges which destroy the
long range order?

9. In gauge/gravity duality, one takes a large N limit to justify using classical gen-
eral relativity in the bulk. What is the analog of this large N limit in condensed
matter systems? In other words, what types of materials are likely to have a
(tractable) dual gravitational gravitational description? (See [52] for a discussion
of some of the issues.)

10. The high temperature cuprate superconductors satisfy a simple scaling law re-
lating the superfluid density, the normal state (DC) conductivity and the critical
temperature [36]. Can this be given a dual gravitational interpretation?
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But in the last few years we have seen that this same theory can describe other
areas of physics as well, including superconductivity. This is all due to the magic
of gauge/gravity duality. Although the full power of gauge/gravity duality relates a
quantum theory of gravity (indeed string theory) in the bulk to a nongravitational
theory on the boundary, we have worked in a large N limit in which the bulk theory
is just classical general relativity. This large N limit also explains how we can have
spontaneous symmetry breaking in a 2+1 dimensional field theory, in apparent con-
tradiction to the Coleman-Mermin-Wagner theorem. The large N limit suppresses
fluctuations in the fields.14

It is natural to ask how surprised one should be that general relativity can repro-
duce the basic properties of superconductors. After all, Weinberg [60] has shown
that much of the phenomenology of superconductivity follows just from the spon-
taneous breaking of the U(1) symmetry. Once we have found the instability that
leads to charged scalar hair, doesn’t everything else follow? There are indications
that something deeper is going on. For example, order one dimensionless ratios can
be computed and compared with experiment. In particular, the ratio wg/Tc ⇡ 8 dis-
cussed in section 3.2, is close to the observed value. This does not follow from
symmetry arguments alone.

Since our bulk dual of a superconductor just involves gravity interacting with a
Maxwell field and a charged scalar, there is a superficial similarity to a Landau-
Ginzburg description. However, it is important to keep in mind two key differences.
First, the low temperature instability must be put in by hand in the Landau-Ginzburg
model, whereas it arises naturally in our gravitational description. Indeed, we have
seen that there are two physically distinct instabilities which can trigger the phase
transition. Second, the Landau-Ginzburg model is only valid near the transition tem-
perature, since it involves a power series in the order parameter j . To go beyond
T ⇡ Tc, one would need to specify an entire potential V (j). Initially, our bulk the-
ory also had the freedom to add an arbitrary potential V (Y). We chose just a mass
term for simplicity. However, once one embeds the bulk theory into string theory,
the potential is fixed and is no longer arbitrary.

8.1 Open problems

We close with a list of open problems15. They are roughly ordered in difficulty with
the easier problems listed first. (Of course, this is my subjective impression. With
the right approach, an apparently difficult problem may become easy!)

1. In the probe limit below the critical temperature, there is an infinite discrete set
of solutions for y which are all regular on the horizon and satisfy the required
boundary condition at infinity. (When backreaction is included, there is only a

14 This is not an issue for the 3+ 1 dimensional superconductor, which can be holographically
described by the bulk gravitational theory (2) in one higher dimension.
15 I thank Sean Hartnoll for suggesting some of these problems.
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Figure 15. A log-log-plot of the superfluid density ⇢s with respect to �DC(Tc)Tc. The color coding
for �/µ is identical to the phase-diagram plots presented in Figure 5, �/µ = 4.5, 4.8, 5.1, 5.4, 5.7
, whereas values of different p/µ are not resolved, except for the outliers where the value of p/µ is
explicitly attached to the point. If Homes’ relation holds, the points should roughly fall on a line
with a slope of unity, according to log(⇢s) = logC + log(�DCTc) denoted by the black line. The
inset shows the value of Homes’ constant C for �/µ = 4.5, 4.8, 5.1, 5.4, 5.7. The relation is not
expected to hold in the limits of p/µ ! 0 and p/µ ! 1. There the constant approaches zero due to
the absence of momentum relaxation and the corresponding divergence of �DC. These data points
may be faithfully discarded. Doing so, we see that, in the reasonably applicable range of p/µ 2 [1, 2]
Homes’ relation seems to hold within the dashed lines given by C ⇡ 6.17± 0.31. This value for the
constant is extracted from a least-squares fit represented by the thick black line in the main figure.

be almost the arithmetic mean of the two experimentally determined values. Additionally,
one may compare to the most recent results found for organic superconductors in [57], i.e.
C = (110 ± 60)

cm�1/⌦�1K, again in dimensionful units. Converting to our dimensionless
Homes’ constant and including the additional factor of 8, we find C = 4±2.1, which is very
close to the original result in [33].

constants, e.g . for the conversion of the temperature we have

T [K] =
c · h
KB

· 100 T

⇥
cm�1⇤

,

which amounts to 1K = 0.695 cm�1. Similarly, 1⌦�1cm�1 = 4.935 cm�1 and our final conversion factor
reads 1⌦�1K = 3.42983 cm�1. Thus, the values given in [33] are converted by

(120± 25)
cm�1

⌦�1K
=

120± 25
3.43

⇡ 35± 7.3.

Taking into account the correction factor for our different definition of ⇢s we arrive at C = 35±7.3
/8 ⇡

4.4± 0.9.

– 31 –

that the c-axis data11,17–20 for all of the single and double-
layer materials (Supplementary Table 2) are again well described
by a line with slope of unity. What is perhaps most remarkable is
that the a–b-plane and c-axis results may all be described by
the same universal line shown in Fig. 2, even though the two
results correspond to very different ranges of r s. The combined
data span nearly five orders of magnitude, from the insulating
behaviour along the c axis in the underdoped systems, to the
metallic behaviour in the a–b planes of the overdoped copper
oxides.
The scaling relation for the a–b planes can be interpreted in a

number of different ways. One of the most direct is the assumption
that all of the spectral weight (the area obtained from the integral of
the optical conductivity) associated with the free-carriers of the
normal state (nn) collapses into the superconducting condensate21

(n s ; nn) below T c. Allowing that the low-frequency conductivity
at T < T c can be described by the simple Drude theory for a metal,

j1(q) ¼ jdc/(1 þ q2t2) (where q is frequency), which has the
shape of a lorentzian centred at zero frequency with a width at
half-maximum given by the scattering rate 1/t, the area under
this curve may be approximated simply as j dc/t. Transport
measurements for the copper oxides22 suggest that 1/t near the
transition scales linearly with T c, so the strength of the condensate
is just r s / jdc T c, in agreement with the observed scaling relation.
This result requires that these materials approach the clean limit
(1/t ,, 2D, where 2D is the superconducting energy gap).

However, this approach cannot be applied to the properties along
the c axis, because it is generally conceded that transport in this
direction is incoherent, and therefore hopping rather than scatter-
ing governs the physics15. The quasi-two-dimensional nature of the
copper oxides, which often includes a semiconducting or activated
response of the resistivity along the c axis, has motivated the
description of the superconductivity in this direction in terms of
a Josephson-coupling picture16,17,23–26. The c-axis penetration depth
l is then determined by the Josephson current density J c and is
l 2 ¼ !c2/8pdeJ c, where J c ¼ (pD/2eRn)tanh(D/2kBT), d is the
separation between the planes, and Rn ¼ d/jdc is the normal-state
tunnelling resistance24. There is convincing evidence that the energy
gap in the copper oxides is d-wave in nature, containing nodes at the
Fermi surface27,28, making the determination of J c difficult. How-
ever, if the coupling between the planes originates at the (0,p), (p,0)
points29 where the gap is a maximum, D0, then we can approximate
D < D0. Furthermore, if D0 /Tc, then Jc /Tc=Rn and rs / jdcTc,
which yields the observed scaling behaviour in the c-axis direction.
Despite the different nature of the transport properties parallel and
perpendicular to the a–b planes, the universal scaling pertaining to
both directions is an unusual and surprising result that should
provide new insights into the origins of the superconductivity in
these materials. A

Figure 1 Plot of the superfluid density (rs) versus the product of the d.c. conductivity
(jdc) and the superconducting transition temperature (Tc) for a variety of copper oxides and

some simple metals. (jdc is measured just above the transition, and parallel to the

copper–oxygen (a–b) planes; data are shown on a log–log plot; see Supplementary

Table 1 for details, including errors.) The values for jdc and rs are obtained from optical

measurements of the reflectance. The reflectance is a complex quantity consisting of an

amplitude and a phase; in an experiment only the amplitude is usually measured.

However, if the reflectance is measured over a wide frequency range, the Kramers–

Kronig relation may be used to obtain the phase. Once the complex reflectance is

known, then other complex optical functions may be calculated (for example, the

dielectric function or the conductivity). The jdc used in this scaling relation has been

extrapolated from the real part of the optical conductivity jdc ¼ j1(q ! 0) at T < Tc.

For T ,, Tc, the response of the dielectric function to the formation of a condensate is

expressed purely by the real part, e1(q) ¼ e1 2 qps
2 /q 2, which allows the

superconducting plasma frequency qps to be calculated from qps
2 ¼ 2q 2e1(q) in the

q ! 0 limit, where qps
2 ¼ 4pn se

2/m* is proportional to the number of carriers in the

condensate. The strength of the condensate (rs) is simply rs ; qps
2 . The dashed and

dotted lines are described by rs ¼ (120 ^ 25)jdcTc. Within error, all the data for the

copper oxides are described by the dashed line. The data for the conventional

superconductors Nb and Pb, indicated by the atomic symbols within the circles, lie

slightly above the dashed line.

Figure 2 As Fig. 1 but for copper oxides only, and including data for the poorly conducting
c axis. The values for rs and jdc are obtained from optical measurements, as described in

Fig. 1 legend. In addition to the published results, new data are also included for

HgBa2CuO4þd and La22xSrxCuO4. Within error, all of the data fall on the same universal

(dashed) line with slope of unity, defined by rs ¼ 120jdcTc; the dotted lines are from

rs ¼ (120 ^ 25)jdcTc. See Supplementary Table 2 for details, including errors.
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Figure 15. A log-log-plot of the superfluid density ⇢s with respect to �DC(Tc)Tc. The color coding
for �/µ is identical to the phase-diagram plots presented in Figure 5, �/µ = 4.5, 4.8, 5.1, 5.4, 5.7
, whereas values of different p/µ are not resolved, except for the outliers where the value of p/µ is
explicitly attached to the point. If Homes’ relation holds, the points should roughly fall on a line
with a slope of unity, according to log(⇢s) = logC + log(�DCTc) denoted by the black line. The
inset shows the value of Homes’ constant C for �/µ = 4.5, 4.8, 5.1, 5.4, 5.7. The relation is not
expected to hold in the limits of p/µ ! 0 and p/µ ! 1. There the constant approaches zero due to
the absence of momentum relaxation and the corresponding divergence of �DC. These data points
may be faithfully discarded. Doing so, we see that, in the reasonably applicable range of p/µ 2 [1, 2]
Homes’ relation seems to hold within the dashed lines given by C ⇡ 6.17± 0.31. This value for the
constant is extracted from a least-squares fit represented by the thick black line in the main figure.

be almost the arithmetic mean of the two experimentally determined values. Additionally,
one may compare to the most recent results found for organic superconductors in [57], i.e.
C = (110 ± 60)

cm�1/⌦�1K, again in dimensionful units. Converting to our dimensionless
Homes’ constant and including the additional factor of 8, we find C = 4±2.1, which is very
close to the original result in [33].

constants, e.g . for the conversion of the temperature we have

T [K] =
c · h
KB

· 100 T

⇥
cm�1⇤

,

which amounts to 1K = 0.695 cm�1. Similarly, 1⌦�1cm�1 = 4.935 cm�1 and our final conversion factor
reads 1⌦�1K = 3.42983 cm�1. Thus, the values given in [33] are converted by

(120± 25)
cm�1

⌦�1K
=

120± 25
3.43

⇡ 35± 7.3.

Taking into account the correction factor for our different definition of ⇢s we arrive at C = 35±7.3
/8 ⇡

4.4± 0.9.
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Goals and method

⇢s(T = 0) = C�DC(Tc)Tc

⇢s(T = 0) = BTc

Homes’ law
Uemura’s law

Linear response theory

�(!) =
GR

JJ(!)

i!

The model and method are well established.  
 Why is the progress slow?

Holographer’s tool box

1. Need a holographic superconductor ~ hairy black hole (0803.3295: Hartnoll, Herzog, Horowitz)

2. Conductivity?

Son and Starinets, hep-th/0205051 
Herzog and Son, hep-th/0212072 
Skenderis and van Rees, 0805.0150GR

Goals

Holography

Momentum relaxation matters

⇢s = lim
!!0

!Im[�(!)]

�DC = lim
!!0

Re[�(!)]



[Hartnoll, Herzog, Horowitz:  
0803.3295]Original holographic superconductor: HHH

AdS-RN-black brane
� = 0

� 6= 0
Holographic  superconductor

18 Horizons, holography and condensed matter
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Figure 6 The zero temperature holographic superconductor. The electric
flux is sourced entirely by the scalar field condensate.

finds that the theory (6.1) admits Lifshitz solutions with the dynamical
critical exponent z given by solutions to

8(VT � 3) + 4(V
0 2
T � 4VT + 12)z + (V

0 2
T + 8VT � 24)z2 + V

0 2
T z3 = 0 . (6.6)

Here we introduced

VT = 2L2
�
V (�1) +m2�2

1
�
, V

0
T =

2L

e

�
V 0(�1) + 2m2�1

�
. (6.7)

Thus the dynamical critical exponent is determined by the value of the
potential and its first derivative at the fixed point value of �1, which is in
turn determined by the equations of motion. In order for the scaling (6.5) to
have a straightforward interpretation as a renormalisation transformation,
one should have z > 0. The null energy condition in the bulk furthermore
implies z > 1 [46]. Even if (6.6) gives physical solutions for z, it is not
guaranteed that the corresponding Lifshitz solution is realised as the near
horizon geometry. An instructive simple case to consider is m2 > 0 and
V = 0. One obtains in this case [46, 45]

z =
�2

�2 � L2m2
, �2

1 =
1

e2L2

6z

(1 + z)(2 + z)
. (6.8)

The Lifshitz solutions are seen to exist so long as the scalar is not too heavy,
L2m2 < �2. As L2m2 ! 0, we see that z ! 1 and an emergent relativistic
AdS4 is obtained. As L2m2 ! �2 from below, z ! 1 and the extremal
AdS2⇥R2 geometry is recovered. However, recall from (6.2) that AdS2⇥R2 is
stable against � condensing if �2�m2L2  3

2 . Extremal Reissner-Nordström
is likely the ground state in this case. It follows that the Lifshitz geometries
(6.8) realized as IR scaling regimes in this theory with a positive quadratic

5 The planar Reissner-Nordström-AdS black hole 13

The Maxwell potential of the solution is

A = µ

✓
1� r

r+

◆
dt . (5.5)

We have required the Maxwell potential to vanish on the horizon, At(r+) =
0. The simplest argument for this condition is that otherwise the holonomy
of the potential around the Euclidean time circle would remain nonzero when
the circle collapsed at the horizon, indicating a singular gauge connection.
The planar Reissner-Nordström-AdS solution is characterized by two scales,
the chemical potential µ = limr!0At and the horizon radius r+. From the
dual field theory perspective, it is more physical to think in terms of the
temperature than the horizon radius

T =
1

4⇡r+

✓
3�

r2+µ
2

2�2

◆
. (5.6)

The black hole is illustrated in figure 4 below. This black hole, which can

&KDUJH�
GHQVLW\(OHFWULF�IOX[�

� ��

�

Figure 4 The planar Reissner-Nordström-AdS black hole. The charge den-
sity is sourced entirely by flux emanating from the black hole horizon.

additionally carry a magnetic charge, was the starting point for holographic
approaches to finite density condensed matter [27, 28].

Because the underlying UV theory is scale invariant, the only dimension-
less quantity that we can discuss is the ratio T/µ. In order to answer our
basic question about the IR physics at low temperature, we must take the
limit T/µ ⌧ 1 of the solution. We thereby obtain the extremal Reissner-
Nordström-AdS black hole with

f(r) = 1� 4

✓
r

r+

◆3

+ 3

✓
r

r+

◆4

. (5.7)

The near-horizon extremal geometry, capturing the field theory IR, follows
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In this section we briefly review the holographic superconductor model that dualizes
to a field theory in the presence of a Q-lattice, which has been studied in detail in [1, 2].
The action is given by

S =

Z
d4x

p
�g


R+ 6� 1

4
F

2 � |(@ � iqA)�|2 �m

2
���

⇤ � |@ |2 �m

2
 | |2

�
, (2.5)

where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e

ikx
'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
phase. We will always set the mass of these two scalar fields m

2
 = m

2
� = �2.

We take the following anisotropic ansatz

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�

A = µ(1� z)a(z)dt � = z�(z)  = e

ikx
z (z)

(2.6)

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�
,

A = µ(1� z)a(z)dt ,  = e

ikx
z (z) , � = z�(z) ,

(2.7)

where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
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Optical conductivity

�R(!) =
1

⇡
P
Z

�I(!0)

!0 � !
d!0 , �I(!) = � 1

⇡
P
Z

�R(!0)

!0 � !
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�(!) = �R(!) + i�I(!)

Kramers-Kronig relation

Translation invariance + finite density
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As described above, we impose ingoing boundary conditions for A
x

at the
horizon of the black hole. Our goal is to determine the sub-leading fall-o↵
hJ

x

i by solving the equations of motion in the bulk.
These calculations were first performed in [18] for the Schwarzchild black

hole and in [2] for the Reissner-Nordström black hole. One can show that
sourcing A

x

in this way will also turn on the metric component g
tx

, but no
further fields. The Maxwell equation is

(f(r)A0
x

)0 +
w2

f(r)
A

x

= �A0
0

r2

L2

✓
g0
tx

+
2

r
g
tx

◆

while the Einstein equations require

g0
tx

+
2

r
g
tx

+
4L2

�2
A0

0

A
x

= 0

We can use this latter constraint to eliminate the metric, leaving us with a
single second order equation of motion for A

x

,

(fA0
x

)0 +
w2

f
A

x

=
4µ2

�2r2
h

r2A
x

(33)

Solving this equation, subject to the ingoing boundary conditions at the
horizon, allows us to determine the response hJ

x

i in terms of the source.
The ratio is the optical conductivity, which we can write as

�(!) =
1

e2
A0

x

i!A
x

����
r=0

(34)

Although (33) cannot be solved analytically, it is a simple matter to solve
it numerically. The result is plotted in Figure 5.

Let’s compare this to our expectations from the previous section. We
see that at frequencies ! � µ, there is a rise in the conductivity, before it
reaches a plateaux for higher !. This is analogous to the behaviour seen
in graphene and, as we mentioned in Section 3, is typical of any CFT in
d = 2 + 1 dimensions.

However, there is no Drude peak at small frequencies. Instead, some-
thing much more dramatic happens. In the numerical data shown, this
reveals itself as a pole in the imaginary part of the imaginary part of the
conductivity, Im� ⇠ 1/!. But the Kramers-Kronig relation (which is es-
sentially the requirement of causality imposed on response functions) means
that this pole is necessarily accompanied by a zero-frequency delta-function
in the real part of the conductivity,

Re�(!) ⇠ K�(!) (35)

, Re �(!) ⇠ �(!)

⇢s(T = 0) = C�DC(Tc)Tc

Homes’ law
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2.1 Holographic setup

The holographic model that dualizes to a field theory in the presence of a helical lattice

has the action [26]

Shelix =

∫
d4+1x

√
−g

[
R+ 12− 1

4
FµνFµν −

1

4
WµνWµν −m2BµB

µ

]

− κ

2

∫
B ∧ F ∧W. (2.1)

Here gµν is the metric of a 5-dimensional asymptotically anti-de-Sitter spacetime including

the 3 + 1 field theory dimensions and the additional radial coordinate r. R is the Ricci

scalar of this metric. There are two field strengths: Fµν = ∂µAν − ∂νAµ is the Maxwell

field which accounts for the U(1) charge dynamics. The additional massive Proca field

Bµ generates the ‘helix U(1)’ with field strength Wµν = ∂µBν − ∂νBµ, and supports the

helical structure. In addition, there is a Chern-Simons term which couples the fields Aµ

and Bµ with coupling constant κ. In the above action, the AdS radius L has been set to

one. Furthermore, Newton’s constant has been fixed to κ25 = 1/2. This can be achieved

by redefining the remaining couplings such that 1/(2κ2
5) becomes a total factor multiplying

the action. To encode the U(1) order parameter, we add to this action a scalar field with

charge q and mass mρ minimally coupled to Aµ,

Stotal = Shelix+

∫
d4+1x

√
−g

[
− |∂ρ− iqAρ|2 −m2

ρ|ρ|2
]
. (2.2)

The equations of motion following from the action (2.2) are

Rµν −
1

2
Rgµν − 6gµν = T (A)

µν + T (B)
µν + T (ρ)

µν , (2.3)

where

T (A)
µν =

1

2
FµαF

α
ν − 1

8
gµνF

2,

T (B)
µν =

1

2
WµαW

α
ν − 1

8
gµνW

2 − m2

2
BµBν ,

T (ρ)
µν = Re

[
(∇µρ

∗ + iqAµρ
∗)(∇νρ− iqAνρ)

]
− 1

2
gµν

(
|∂ρ− iqAρ|2 +m2

ρ|ρ|2
)
, (2.4)

are the energy-momentum tensors of the two vector fields A and B, and of the complex

scalar ρ. Furthermore, we have the scalar equation

0 =
[
(∇µ − iqAµ)(∇µ − iqAµ)−m2

ρ

]
ρ, (2.5)

and the Maxwell equations

∇µF
µν = iq [ρ∗(∂ν − iqAν)ρ− ρ(∂ν + iqAν)ρ∗] +

κ

4
√
−g

ϵ̃µναβγ∂α(BµWβγ), (2.6)

∇µW
µν = m2Bν +

κ

8
√
−g

ϵ̃µναβγ [2∂γ(BµFαβ)− FµαWβγ ] . (2.7)
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x

Figure 2. Plot of the one-form ω2 along the x-axis for one period. Being periodic with period
2π/p, ω2 is not translationally invariant for p ̸= 0. The vector field B = w(r)ω2 acts as a source for
the helix and imprints the helical, translational symmetry breaking structure on the system.

Here ϵ̃µναβγ is the totally antisymmetric Levi-Civita symbol in 5 dimensions with ϵ̃01234 = 1.

As in [26], the wedge product in the action (2.2) is normalized such that the Chern-Simons

term evaluated on the chosen Ansatz equals SCS =
∫
dr pκw2a′/2.

We now construct solutions to the equations that have the following properties. First

we aim to study the system with the helix structure in order to break translational sym-

metry. For this purpose, the one-forms

ω1 = dx ,

ω2 = cos(px) dy − sin(px) dz ,

ω3 = sin(px) dy +cos(px) dz , (2.8)

are introduced. They provide a basis for the spatial (x, y, z) part of the metric and the two

vector fields Aµ and Bµ. In figure 2, one period of ω2 is plotted along the x-coordinate.

The forms ω2 and ω3 have the structure of a helix with periodicity 2π/p. In the following, we

focus on the case m = 0, i.e. we are considering a massless helix field B. In our setup, the

role of B is to introduce a lattice in a phenomenological way and thus break translational

symmetry. Since this can be achieved with a massless helix field, m = 0 is chosen for

simplicity. This choice follows [26]. Using these one-forms we make the Ansatz for the

helix field B = Bµdxµ to be

B = w(r)ω2, w(∞) = λ, (2.9)

where r = ∞ denotes the boundary of the asymptotically anti-de-Sitter space. Since this

Ansatz shows that By and Bz do not vanish at the boundary, the field theory interpretation

is that we explicitly introduce a source λ for the operator dual to B, i.e. we are deforming

the homogeneous theory by a lattice operator. λ can be interpreted as the lattice strength.

The field B extends along ω2 and therefore breaks translational symmetry in the x-direction

for p ̸= 0. Via backreaction on the metric, this helical structure is imprinted on the whole

– 7 –

J
H
E
P
0
5
(
2
0
1
5
)
0
9
4

2.1 Holographic setup

The holographic model that dualizes to a field theory in the presence of a helical lattice

has the action [26]

Shelix =

∫
d4+1x

√
−g

[
R+ 12− 1

4
FµνFµν −

1

4
WµνWµν −m2BµB

µ

]

− κ

2

∫
B ∧ F ∧W. (2.1)

Here gµν is the metric of a 5-dimensional asymptotically anti-de-Sitter spacetime including

the 3 + 1 field theory dimensions and the additional radial coordinate r. R is the Ricci

scalar of this metric. There are two field strengths: Fµν = ∂µAν − ∂νAµ is the Maxwell

field which accounts for the U(1) charge dynamics. The additional massive Proca field

Bµ generates the ‘helix U(1)’ with field strength Wµν = ∂µBν − ∂νBµ, and supports the

helical structure. In addition, there is a Chern-Simons term which couples the fields Aµ

and Bµ with coupling constant κ. In the above action, the AdS radius L has been set to

one. Furthermore, Newton’s constant has been fixed to κ25 = 1/2. This can be achieved

by redefining the remaining couplings such that 1/(2κ2
5) becomes a total factor multiplying

the action. To encode the U(1) order parameter, we add to this action a scalar field with

charge q and mass mρ minimally coupled to Aµ,

Stotal = Shelix+

∫
d4+1x

√
−g

[
− |∂ρ− iqAρ|2 −m2

ρ|ρ|2
]
. (2.2)

The equations of motion following from the action (2.2) are

Rµν −
1

2
Rgµν − 6gµν = T (A)

µν + T (B)
µν + T (ρ)

µν , (2.3)

where

T (A)
µν =

1

2
FµαF

α
ν − 1

8
gµνF

2,

T (B)
µν =

1

2
WµαW

α
ν − 1

8
gµνW

2 − m2

2
BµBν ,

T (ρ)
µν = Re

[
(∇µρ

∗ + iqAµρ
∗)(∇νρ− iqAνρ)

]
− 1

2
gµν

(
|∂ρ− iqAρ|2 +m2

ρ|ρ|2
)
, (2.4)

are the energy-momentum tensors of the two vector fields A and B, and of the complex

scalar ρ. Furthermore, we have the scalar equation

0 =
[
(∇µ − iqAµ)(∇µ − iqAµ)−m2

ρ

]
ρ, (2.5)

and the Maxwell equations

∇µF
µν = iq [ρ∗(∂ν − iqAν)ρ− ρ(∂ν + iqAν)ρ∗] +

κ

4
√
−g

ϵ̃µναβγ∂α(BµWβγ), (2.6)

∇µW
µν = m2Bν +

κ

8
√
−g

ϵ̃µναβγ [2∂γ(BµFαβ)− FµαWβγ ] . (2.7)

– 6 –

J
H
E
P
0
5
(
2
0
1
5
)
0
9
4

ω2-one form field
in yz-plane

x

Figure 2. Plot of the one-form ω2 along the x-axis for one period. Being periodic with period
2π/p, ω2 is not translationally invariant for p ̸= 0. The vector field B = w(r)ω2 acts as a source for
the helix and imprints the helical, translational symmetry breaking structure on the system.

Here ϵ̃µναβγ is the totally antisymmetric Levi-Civita symbol in 5 dimensions with ϵ̃01234 = 1.

As in [26], the wedge product in the action (2.2) is normalized such that the Chern-Simons

term evaluated on the chosen Ansatz equals SCS =
∫
dr pκw2a′/2.

We now construct solutions to the equations that have the following properties. First

we aim to study the system with the helix structure in order to break translational sym-

metry. For this purpose, the one-forms

ω1 = dx ,

ω2 = cos(px) dy − sin(px) dz ,

ω3 = sin(px) dy +cos(px) dz , (2.8)

are introduced. They provide a basis for the spatial (x, y, z) part of the metric and the two

vector fields Aµ and Bµ. In figure 2, one period of ω2 is plotted along the x-coordinate.

The forms ω2 and ω3 have the structure of a helix with periodicity 2π/p. In the following, we

focus on the case m = 0, i.e. we are considering a massless helix field B. In our setup, the

role of B is to introduce a lattice in a phenomenological way and thus break translational

symmetry. Since this can be achieved with a massless helix field, m = 0 is chosen for

simplicity. This choice follows [26]. Using these one-forms we make the Ansatz for the

helix field B = Bµdxµ to be

B = w(r)ω2, w(∞) = λ, (2.9)

where r = ∞ denotes the boundary of the asymptotically anti-de-Sitter space. Since this

Ansatz shows that By and Bz do not vanish at the boundary, the field theory interpretation

is that we explicitly introduce a source λ for the operator dual to B, i.e. we are deforming

the homogeneous theory by a lattice operator. λ can be interpreted as the lattice strength.

The field B extends along ω2 and therefore breaks translational symmetry in the x-direction

for p ̸= 0. Via backreaction on the metric, this helical structure is imprinted on the whole

– 7 –

Helical lattice model

Holographic superconductor with momentum relaxation
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Figure 15. A log-log-plot of the superfluid density ⇢s with respect to �DC(Tc)Tc. The color coding
for �/µ is identical to the phase-diagram plots presented in Figure 5, �/µ = 4.5, 4.8, 5.1, 5.4, 5.7
, whereas values of different p/µ are not resolved, except for the outliers where the value of p/µ is
explicitly attached to the point. If Homes’ relation holds, the points should roughly fall on a line
with a slope of unity, according to log(⇢s) = logC + log(�DCTc) denoted by the black line. The
inset shows the value of Homes’ constant C for �/µ = 4.5, 4.8, 5.1, 5.4, 5.7. The relation is not
expected to hold in the limits of p/µ ! 0 and p/µ ! 1. There the constant approaches zero due to
the absence of momentum relaxation and the corresponding divergence of �DC. These data points
may be faithfully discarded. Doing so, we see that, in the reasonably applicable range of p/µ 2 [1, 2]
Homes’ relation seems to hold within the dashed lines given by C ⇡ 6.17± 0.31. This value for the
constant is extracted from a least-squares fit represented by the thick black line in the main figure.

be almost the arithmetic mean of the two experimentally determined values. Additionally,
one may compare to the most recent results found for organic superconductors in [57], i.e.
C = (110 ± 60)

cm�1/⌦�1K, again in dimensionful units. Converting to our dimensionless
Homes’ constant and including the additional factor of 8, we find C = 4±2.1, which is very
close to the original result in [33].

constants, e.g . for the conversion of the temperature we have

T [K] =
c · h
KB

· 100 T

⇥
cm�1⇤

,

which amounts to 1K = 0.695 cm�1. Similarly, 1⌦�1cm�1 = 4.935 cm�1 and our final conversion factor
reads 1⌦�1K = 3.42983 cm�1. Thus, the values given in [33] are converted by

(120± 25)
cm�1

⌦�1K
=

120± 25
3.43

⇡ 35± 7.3.

Taking into account the correction factor for our different definition of ⇢s we arrive at C = 35±7.3
/8 ⇡

4.4± 0.9.
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In this section we briefly review the holographic superconductor model that dualizes
to a field theory in the presence of a Q-lattice, which has been studied in detail in [1, 2].
The action is given by

S =

Z
d4x

p
�g


R+ 6� 1

4
F

2 � |(@ � iqA)�|2 �m

2
���

⇤ � |@ |2 �m

2
 | |2

�
, (2.5)

where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e

ikx
'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
phase. We will always set the mass of these two scalar fields m

2
 = m

2
� = �2.

We take the following anisotropic ansatz

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�

A = µ(1� z)a(z)dt � = z�(z)  = e

ikx
z (z)

(2.6)

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�
,

A = µ(1� z)a(z)dt ,  = e

ikx
z (z) , � = z�(z) ,

(2.7)

where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
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In this section we briefly review the holographic superconductor model that dualizes
to a field theory in the presence of a Q-lattice, which has been studied in detail in [1, 2].
The action is given by

S =

Z
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p
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where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e

ikx
'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
phase. We will always set the mass of these two scalar fields m

2
 = m

2
� = �2.

We take the following anisotropic ansatz

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�

A = µ(1� z)a(z)dt � = z�(z)  = e

ikx
z (z)

(2.7)
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,

A = µ(1� z)a(z)dt ,  = e

ikx
z (z) , � = z�(z) ,

(2.9)

where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
k is the lattice wavenumber and µ is the chemical potential of the dual field theory. The
normal phase of the system corresponds to the solution with a vanishing charged scalar
field �. If U = 1 + z + z

2 � µ

2
z

3
/4, V1 = V2 = a = 1,  = � = 0, we recover the

familiar planar AdS-Reissner-Nordström(AdS-RN) black hole. The non-trivial Q-lattice
backgrounds can be obtained by setting a non-trivial boundary condition at infinity for
the scalar field  (0) = � and regular boundary conditions on the horizon z = 1. We will
refer to � as the lattice amplitude. The black hole temperature is T/µ = U(1)/(4⇡µ).
Due to conformal invariance, the solutions of the system are specified by four dimensionless
parameters, namely (T/µ,�/µ, k/µ, q). We will set µ = 1 in numerical calculation.

3 Critical temperature and DC conductivity

3.1 Metal-insulator transition without condensate

To check the Homes’ law in our model, we need to calculate the DC conductivity �DC at
the critical temperature. A formula for �DC in terms of the background solution data at
the horizon can be derived [3]

�DC =

 r
V2

V1
+

µ

2
a

2
p
V1V2

2k2 2

!�����
z=1

. (3.1)

3.2 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field �, corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 3 we illustrate how
the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
the critical temperature first decreases for small k/µ, and then increases for large values
of k/µ. When k/µ ! 1, it approaches to the critical temperature of AdS-RN(�/µ = 0).
In axion model [4] and helical lattice model [5] the critical temperature has the similar
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We want to check if C or B is universal 
(independent of momentum relaxation parameters) 

C =
⇢s(T = 0)

�DC(Tc)Tc

B =
⇢s(T = 0)

(Tc)Tc

⇢s(T = 0) = C�DC(Tc)Tc

⇢s(T = 0) = BTc

Homes’ law
Uemura’s law
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2 AC conductivities: holographic model and method

2.1 Equilibrium state

In this section we briefly review the holographic superconductor model we study, referring

to [26, 29, 51, 52, 59] for more complete and detailed analysis. We consider the action2
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M = {t, x, y, r} and r is the holographic direction. R is the Ricci scalar and

⇤ = �3/L2 is the cosmological constant with the AdS radius L = 1. We have included

the field strength F = dA for a U(1) gauge field A, the complex scalar field � with

mass m, two massless scalar fields,  
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(I = 1, 2). The covariant derivative is defined by
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for which we make the following ansatz:

A = A

t

(r)dt+
1

2
B (xdy � ydx) , � = �(r) ,  

I

= (�x,�y) , (2.5)

ds2 = �U(r)e��(r)dt2 +
dr2

U(r)
+ r

2(dx2 + dy2) . (2.6)

In the gauge field, A
t

(r) encodes a finite chemical potential or charge density and B plays a

role of an external magnetic field. �(r) is dual to a superconducting phase order parameter,

condensate. Near boundary (r ! 1), � ⇠ J

�

r

3�� +
hO�i
r

� + . . . with two undetermined

coe�cients J� and
⌦

O�
↵

, which are identified with the source and condensate respectively.

The dimension � of the condensate is related to the bulk mass of the complex scalar by

m

2 = �(��3). In this paper, we take m2 = �2 and � = 2 to perform numerical analysis.

 

I

is introduced to give momentum relaxation e↵ect where � is the parameter for the

strength of momentum relaxation. For � = 0, the model becomes the original holographic

superconductor proposed by Hartnoll, Herzog, and Horowitz (HHH) [5, 6].

First, if �(r) = 0 (no condensate), the solution corresponds to a normal state and its

2The complete action includes also the Gibbons Hawking term and some boundary terms for holographic
renormalization, which are explained in [26, 29, 51, 52, 59] in more detail.
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where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e

ikx
'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
phase. We will always set the mass of these two scalar fields m

2
 = m

2
� = �2.

We take the following anisotropic ansatz

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�

A = µ(1� z)a(z)dt � = z�(z)  = e

ikx
z (z)

(2.7)
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Figure 1. Numerical solutions of bulk background functions, which are numerically integrated from
the black hole horizon (rh = 1). The solid curves are for the case without momentum relaxation
(� = 0) while the dotted curves are for momentum relaxation (�/µ = 0.5). The black curves are
for normal phase (

⌦

O�
↵

= 0) while the red curves are for superconducting phase (
⌦

O�
↵

6= 0). In
(b) and (c) the black solid and dotted curves are coincide, but in (a) they are di↵erent. It agrees
to the analytic formula in (2.7), where � enters only into U(r).

analytic formula is given by

U(r) = r

2 � �

2

2
� m0

r

+
n

2 +B

2

4r2
, �(r) = 0,

A

t

= n

✓

1

r

h

� 1

r

◆

,

(2.7)

where r

h

is the location of the black brane horizon defined by U(r
h

) = 0, m0 ⌘ r

3
h

�
�

2
r

h

2 + n

2+B

2

4r
h

, and n is interpreted as charge density. It is the dyonic black brane [60]

modified by � due to  

I

[52]. The thermodynamics and transport coe�cients(electric,

thermoelectric, and thermal conductivity) of this system was analysed in detail in [52]. In

the case without magnetic field, see [29]. Next, if �(r) 6= 0, the solution corresponds to

a superconducting state with finite condensate and its analytic formula is not available3.

For B = 0, the solutions are numerically obtained in [6] for � = 0 and in [44] for � 6= 0.

For example we display numerical solutions for some cases in Figure 1, where we set r
h

= 1

and plot dimensionless quantities scaled by µ: U(r)/µ2, A
t

/µ, and �. For B 6= 0, due to

the generation of vortex our ansatz (2.5) should be modified. In this paper we will not

consider this case and refer to [2, 61, 62].

3A nonzero �(r) induces a nonzero �(r), which changes the definition of ‘time’ at the boundary so field
theory quantities should be defined accordingly.
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[52]. The thermodynamics and transport coe�cients(electric,

thermoelectric, and thermal conductivity) of this system was analysed in detail in [52]. In

the case without magnetic field, see [29]. Next, if �(r) 6= 0, the solution corresponds to

a superconducting state with finite condensate and its analytic formula is not available3.

For B = 0, the solutions are numerically obtained in [6] for � = 0 and in [44] for � 6= 0.

For example we display numerical solutions for some cases in Figure 1, where we set r
h

= 1

and plot dimensionless quantities scaled by µ: U(r)/µ2, A
t

/µ, and �. For B 6= 0, due to

the generation of vortex our ansatz (2.5) should be modified. In this paper we will not

consider this case and refer to [2, 61, 62].

3A nonzero �(r) induces a nonzero �(r), which changes the definition of ‘time’ at the boundary so field
theory quantities should be defined accordingly.
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⇢s(T = 0) = C�DC(Tc)Tc

Homes’ law



⇢s(T = 0) = C�DC(Tc)TcHomes’ law

Critical temperature

(a) � = 2, q = 3 (b) � = 2, q = 2 (c) � = 4, q = 3

(d) plot (a) and (b) together (e) plot (c) extended to ��

Figure 2. Phase diagrams for point (a),(b), and (c) in Figure 1. The meshed surface is the phase
boundary at the critical temperature. Dark region below the surface is superconducting phase while
region above the surface is normal phase.

consider the condensate of the operator of dimension two, hO(2)i. See (2.20). We may

choose the di↵erent boundary condition, �(2) = 0, but we will not deal with the case in

this paper. At high temperature we obtain only one solution, which agrees to an analytic

solution of normal state (2.26)-(2.30). At low temperature we find another solution with

� 6= 0(superconducting phase) in addition to a normal state solution (2.26)-(2.30). In this

case it turns out that the superconducting solution always has a lower grand potential and

becomes a ground state. The phase transition is continuous at a critical temperature(Tc).

Figure 2 shows typical examples of phase diagrams for three points (a),(b), and (c) in

Figure 1(b). The three dimensional information in Figure 2 may be summarized in a two

dimensional plot, for example, in the plane of dimensionless quantities T/� and µ/�. In

practice, we have obtained such two dimensional plots first and rescaled them to make three

dimensional plots, where µ,�, and T have the same unit of energy. Three dimensional plots

would be more convenient to represent overall features, even though all information can be

compressed in two dimensional plots.

Let us start with the point (a) and (b) in Figure 1(b). They are always in supercon-

ducting phase for all � and µ at zero temperature. As temperature increases we expect that

the system undergoes a phase transition from superconducting phase to normal phase. Our

numerical analysis confirms it and the phase diagram is shown in Figure 2(a)(b), where the

meshed surface is the phase boundary at the critical temperature. Dark region below the

surface is superconducting phase while region above the surface is normal phase. Figure

2(a)(b) focuses on the phase structure for small �. In Figure 2(d) we extend � axis of

Figure 2(a)(b) to larger values and combine them for comparison, where Figure 2(a) is red.
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Conductivities

In superconducting phase,

✏ = hTtti = �2G(1)
, ⇢ =

⌦
J

t
↵
= A

(1)
, s = 4⇡r2h , (2.55)

where G(1) and A

(1) are numerical values. Lack of the analytic relation such as (2.55)

make it di�cult to check if W = ⌦. Therefore, we numerically checked and found that

⌦ = ✏ � Ts � µ⇢ = G(1) � �

2
rh 6= W. However, as far as the phase diagram is concerned,

this di↵erence does not matter. It turns out W < ⌦ in superconducting phase so we may

use ⌦ as our criteria for phase transition. To study thermodynamical quantities it will be

important to understand physics of the di↵erence between W and ⌦. We leave it for future

study.

3 Optical conductivity

In this section we study electric(�), thermoelectric(↵), thermal(̄) conductivity by con-

sidering small fluctuations of relevant gauge, metric, scalar fields around the normal and

superconducting background we obtained in the previous section. From here on, we set

L = 1 and use the scaled variables (2.25) without tilde.

3.1 Fluctuations for optical conductivity: equations and on-shell action

Electric conductivity is related to a small bulk gauge field fluctuation �Ax(t, r)

�Ax(t, r) =

Z 1

�1

d!

2⇡
e

�i!t
ax(!, r) , (3.1)

of which boundary dual operator is electric current. The fluctuation is chosen to be inde-

pendent of x and y, which is allowed since all the background fields a↵ecting the equations

of motion are independent of x and y. Because of rotational symmetry in x-y plane, it is

enough to consider �Ax. The gauge field fluctuation(�Ax(t, r)) sources to metric(�gtx(t, r))

and scalar field(� 1(t, r)) fluctuation

�gtx(t, r) =

Z 1

�1

d!

2⇡
e

�i!t
r

2
htx(!, r) , (3.2)

� 1(t, r) =

Z 1

�1

d!

2⇡
e

�i!t
⇠(!, r) , (3.3)

and all the other fluctuations can be decoupled. Notice that htx(!, r) is defined to approach

constant as r goes to infinity.

In momentum space, the linearized equations of motion around the background (2.8)
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compute electric, thermoelectric, and thermal conductivities it is enough to consider

�A

i

(t, r) =

Z 1

�1

d!

2⇡
e

�i!t

a

i

(!, r) ,

�g

ti

(t, r) =

Z 1

�1

d!

2⇡
e

�i!t

r

2
h

ti

(!, r) ,

� 

i

(t, r) =

Z 1

�1

d!

2⇡
e

�i!t

⇠

i

(!, r) ,

(2.8)

where i = x, y for B 6= 0 and i = x is enough for B = 0 thanks to a rotational symmetry in

x� y space. For the sake of illustration of our method, we consider the case for B = 0 [44]

and refer to [52] for B 6= 0. In momentum space, the linearized equations of motion around

the background are4
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�

U

2
h

tx

+
!

2
e

�

U

2
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(2.9)

Near boundary (r ! 1) the asymptotic solutions are

h

tx

= h

(0)
tx

+
1

r

2
h

(2)
tx

+
1

r

3
h

(3)
tx

+ · · · ,

a

x

= a

(0)
x

+
1

r

a

(1)
x

+ · · · ,

⇠ = ⇠

(0) +
1

r

2
⇠

(2) +
1

r

3
⇠

(3) + · · · ,

(2.10)

The on-shell quadratic action in momentum space reads

S

(2)
ren =

1

2

Z

d!

2⇡

h

J

a

�!

A
ab

(!)Jb

!

+ J

a

�!

B
ab

(!)Rb

!

i

, (2.11)

where

J

a =

0

B

@

a

(0)
x

h

(0)
tx

⇠

(0)

1

C

A

, R

a =

0

B

@

a

(1)
x

h

(3)
tx

⇠

(3)

1

C

A

, A =

0

B

@

0 �n 0

0 2U (1) 0

0 0 0

1

C

A

, B =

0

B

@

1 0 0

0 �3 0

0 0 3

1

C

A

. (2.12)

Here U

(1) is the coe�cient of 1/r when U(r) is expanded near boundary and n is charge

density. The index ! in J

a and R

a are suppressed.

The remaining task for reading o↵ the retarded Green’s function is to express R

b

in terms of J

a. It can be done by the following procedure. First let us denote small

4For B 6= 0 case, the bulk fluctuations to y direction should be turned on so the number of equations of
motion are doubled too.
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where we discarded the contribution from the horizon as the prescription for the retarded

Green’s function [46]. In particular, with the spatially homogeneous ansatz (3.1)-(3.3), the

quadratic action in momentum space yields

S

(2)
ren =

V2

2

Z 1

0

d!

2⇡

⇣
�⇢ā

(0)
x h

(0)
tx � ✏h̄

(0)
tx h

(0)
tx + ā

(0)
x a

(1)
x � 3h̄(0)tx h

(3)
tx + 3⇠̄(0)⇠(3)

⌘
, (3.14)

S

(2)
ren =

V2

2

Z 1

0

d!

2⇡

⇣
�⇢ā

(0)
x h

(0)
tx � ✏h̄

(0)
tx h

(0)
tx � ⇢h̄

(0)
tx a

(0)
x + ā

(0)
x a

(1)
x

⌘
, (3.15)

where V2 is the two dimensional spatial volume
R
dxdy and we omit the term proportional

to �(1)�(2)
h

(0)
tx h

(0)
tx since we are studying the case with �(1) = 0. The range of ! is chosen

to be positive following the prescription in [46].

The on shell action (3.15) plays a role of the generating functional for two-point Green’s

functions sourced by a

(0)
x , h

(0)
tx , and ⇠

(0). We may simply read o↵ part of the two point

functions from the first two terms in (3.15). The other three terms are nontrivial and

we need to know the dependence of {a(1)x , h

(3)
tx , ⇠

(3)} on {a(0)x , h

(0)
tx , ⇠

(0)}. However, thanks

to linearity of equations (3.4)-(3.6), we can always find out the linear relation between

{a(1)x , h

(3)
tx , ⇠

(3)} and {a(0)x , h

(0)
tx , ⇠

(0)}. We will first explain our numerical method to find

such a relationship in a more general setup in the following subsection and continue the

computation in that setup.

3.2 Numerical method

A systematic numerical method for a system with multi fields and constraints were devel-

oped in [23] based on [37, 38]. We summarise it briefly and refer to [23] for more details.

To develop a systematic method in a general setup, let us start with N fields �a(x, r),

(a = 1, 2, · · · , N), which satisfy a set of coupled N independent second order di↵rential

equations:

�a(x, r) =

Z
ddk

(2⇡)d
e

�ikx
r

p�a
k(r) , (3.16)

where the index a may include components of higher spin fields. For convenience, rp is

multiplied such that the solution �a
k(r) goes to constant at boundary. For example, p = 2

in (3.2).

Near horizon(r = 1), solutions can be expanded as

�a(r) = (r � 1)⌫a± ('a + '̃

a(r � 1) + · · · ) , (3.17)

where we omitted the subscript k for simplicity and ⌫a± correspond to incoming/outgoing

boundary conditions. To compute the retarded Green’s function we choose the incoming

boundary condition [46], fixingN initial conditions. The otherN initial conditions, denoted
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Action

Background

2 AC conductivities: holographic model and method

2.1 Equilibrium state

In this section we briefly review the holographic superconductor model we study, referring

to [26, 29, 51, 52, 59] for more complete and detailed analysis. We consider the action2

S =

Z

d4x
p
�g

"

R� 2⇤� 1

4
F

2 � |D�|2 �m

2|�|2 � 1

2

2
X

I=1

(@ 
I

)2
#

, (2.1)

where x

M = {t, x, y, r} and r is the holographic direction. R is the Ricci scalar and

⇤ = �3/L2 is the cosmological constant with the AdS radius L = 1. We have included

the field strength F = dA for a U(1) gauge field A, the complex scalar field � with

mass m, two massless scalar fields,  
I

(I = 1, 2). The covariant derivative is defined by

D

M

� ⌘ r
M

� � iqA

M

� with the charge q of the complex scalar field. The action (2.1)

yields equations of motion

R

MN

� 1

2
g

MN

 

R+ 6� 1

4
F

2 � |D�|2 �m

2|�|2 � 1

2

2
X

I=1

(@ 
I

)2
!

=
1

2
F

MQ

F

N

Q +
1

2
(D

M

�D
N

�⇤ +D

N

�D
M

�⇤) +
1

2

2
X

I=1

@

M

 

I

@

N

 

I

, (2.2)

r
M

F

MN = �iq(�⇤
D

N�� �DN�⇤) , (2.3)
�

D

2 �m

2
�

� = 0 , r2
 

I

= 0 , (2.4)

for which we make the following ansatz:

A = A

t

(r)dt+
1

2
B (xdy � ydx) , � = �(r) ,  

I

= (�x,�y) , (2.5)

ds2 = �U(r)e��(r)dt2 +
dr2

U(r)
+ r

2(dx2 + dy2) . (2.6)

In the gauge field, A
t

(r) encodes a finite chemical potential or charge density and B plays a

role of an external magnetic field. �(r) is dual to a superconducting phase order parameter,

condensate. Near boundary (r ! 1), � ⇠ J

�

r

3�� +
hO�i
r

� + . . . with two undetermined

coe�cients J� and
⌦

O�
↵

, which are identified with the source and condensate respectively.

The dimension � of the condensate is related to the bulk mass of the complex scalar by

m

2 = �(��3). In this paper, we take m2 = �2 and � = 2 to perform numerical analysis.

 

I

is introduced to give momentum relaxation e↵ect where � is the parameter for the

strength of momentum relaxation. For � = 0, the model becomes the original holographic

superconductor proposed by Hartnoll, Herzog, and Horowitz (HHH) [5, 6].

First, if �(r) = 0 (no condensate), the solution corresponds to a normal state and its

2The complete action includes also the Gibbons Hawking term and some boundary terms for holographic
renormalization, which are explained in [26, 29, 51, 52, 59] in more detail.
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2 Holographic superconductor on a Q-lattice
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In this section we briefly review the holographic superconductor model that dualizes
to a field theory in the presence of a Q-lattice, which has been studied in detail in [1, 2].
The action is given by
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where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e

ikx
'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
phase. We will always set the mass of these two scalar fields m

2
 = m

2
� = �2.

We take the following anisotropic ansatz
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Numerical method for multi fields

Near horizon(r = 1), solutions can be expanded as
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where we omitted the subscript k for simplicity and ⌫a± correspond to incoming/outgoing
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where G,�, At,� are background field obtained in the previous section. For normal phase

we have the analytic solutions ((2.26)-(2.30)) but for superconducting phase we have it

numerically.

We solve these equations with two boundary conditions: incoming boundary conditions

at the black hole horizon and the Dirichlet boundary conditions at the boundary. First,

near the black hole horizon (r ! 1) the solutions are expanded as
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and we fix the values of the leading terms as boundary conditions.

Plugging the solutions into the renormalized action (2.42), we have a quadratic order

on-shell action
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where we discarded the contribution from the horizon as the prescription for the retarded
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ex) one field case: 

[Kaminski, Landsteiner, Mas, Shock, Tarrio: 2009] 
[KYK, Kim, Sin, Seo: 2014)] 
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Figure 2. Electric conductivity with momentum relaxation
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�!GabJ
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bJ
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b

Near horizon(r = 1), solutions can be expanded as

�a(r) = (r � 1)⌫a± ('a + '̃

a(r � 1) + · · · ) , (3.20)

where we omitted the subscript k for simplicity and ⌫a± correspond to incoming/outgoing

boundary conditions. To compute the retarded Green’s function we choose the incoming

boundary condition [46], fixingN initial conditions. The otherN initial conditions, denoted

by '

a
i , (i = 1, 2, · · · , N), can be chosen, for example, as

⇣
'

a
1 '

a
2 '

a
3 . . . '

a
N

⌘
=

0

BBBBBB@

1 1 1 . . . 1

1 �1 1 . . . 1

1 1 �1 . . . 1
...

...
...

. . .
...

1 1 1 . . . �1

1

CCCCCCA
. (3.21)

Every column vector 'a
i yields a solution, denoted by �a

i (r), which is expanded as

�a
i (r) ! Sai + · · ·+ Oa

i

r

�
a

+ · · · (near boundary) , (3.22)

where Sai are the sources(leading terms) of i-th solution and Oa
i are the operator expectation

values corresponding to sources(�a � 1). Notice that S and O can be written as regular

matrices of order N , where the superscript a runs for row index and the subscript i runs

for column index.

Since all N solutions {�a
i } becomes a basis set, a general solution yields

�a(r) = �a
i (r)c

i ! Sai ci + · · ·+ Oa
i c

i

r

�
a

+ · · · (near boundary) (3.23)

⌘ J

a + · · ·+ R

a

r

�
a

+ · · · , (3.24)

with real constants ci’s. For any given J

a we can always find c

i

c

i = (S�1)iaJ
a
, (3.25)

and the corresponding response R

a is expressed as

R

a = Oa
i c

i = Oa
i (S�1)ibJ

b
. (3.26)

A general on-shell quadratic action in momentum space has the form of

S

(2)
ren =

1

2

Z
ddk

(2⇡)d

h
J

a
�kAab(k)J

b
k + J

a
�kBab(k)R

b
k

i
, (3.27)

S

(2)
ren =

V2

2

Z 1

0

d!

(2⇡)d

h
J

a
�!Aab(!)J

b
! + J

a
�!Bab(!)R

b
!

i
, (3.28)
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Thermoelectric conductivities and DC limits
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(a) Re �. A delta function at ! = 0 for
� = 0 is not drawn. The red dots at ! = 0
are the analytic DC values (4.15).
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Figure 2. Electric conductivity � with momentum relaxation at fixed µ/T = 6. For larger � the
Drude-like peak at small ! becomes broader.
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Figure 3. Electric conductivity � with momentum relaxation at fixe �/T = 3. By comparing
with Figure 1 we may also see how � changes conductivity curves since all parameters are the same
except �.

fluctuation the Ward identity (2.13) is

@
t

h�p
x

i = �h�Oi+ hJ ti�E
x

. (4.16)

Comparing with the Drude model

dp

dt
= �1

⌧
p+ qE . (4.17)

We see that, if h�Oi is proportional to �h�p
x

i without any parameter dependence, it is

possible to have a Drude peak ⌧ ⇠ 1/�. Since, however, in our case h�Oi may depend on

� and µ, we would not expect such a simple relation in general. (comment: Indeed we will

show later h�Oi ⇠ ��

µ

h�p
x

i or h�Oi ⇠ � �

T

h�p
x

i numerically in certain limit. See (4.27)

and (4.28).) Furthermore, a peak may be di↵erent from the Drude form in the regime of

strong coupling. (comment: However, If we break translation symmetry weakly, then we

have Drude.(Check Hartnoll’s umklapp paper))

With these warnings in mind, as an e↵ective simple model of peak, let us consider the

– 13 –
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Figure 1. Electric conductivity without momentum relaxation

Not a general configuration but a specific one: no k-dependence.
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Figure 7. Approximate scaling behaviour (�/r0 = 1.5)

slopes are �1. This scaling can be understood as a tail of Drude form, because in this

regime the Drude form is dominant as shown in Figure 2 and 5. As � increases the scaling

of Drude tail becomes weaken (Figure 6(b)) and disappears at bigger !(Figure 6(c))).

Now we want to investigate if there is a modified scaling law motivated by previous

holographic models [4, 5, 7, 10].

� =

✓
B

!�

+ C

◆
ei

⇡

2 �̃ , (4.30)

where B and C are constants and �̃ may be di↵erent from �. We find that the Figure 6(c)

can be approximately fitted by a modified scaling law, with � ⇡ 0.24

� =

✓
K

(!/µ)�
+ �

DC

◆
ei⇡� , (4.31)

which is shown in Figure 7. Interestingly, in this case, the constants B and C in (4.30)

are fixed by analytic K and �
DC

, while in other models, they are numerically determined.

However, this approximate scaling behaviour seems not very robust under change of pa-

rameters.

4.2 Thermoelectric and thermal conductivity

Finally we plot the thermoelectric(↵) and thermal(̄) conductivity in Figure 8. Qualitative

feature is similar to electric conductivity. The red dots at ! = 0 is the DC conductivities

analytically computed in [26]

↵ =
4⇡µ

�2
r0 ,

̄

T
=

(4⇡)2

�2
r20 , (4.32)

At large ! it can be shown from Ward identity (comment: cite our future paper)

↵ ! �µ

T
,

̄

T
! µ2 + �2

T 2
(4.33)
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Figure 7. Approximate scaling behaviour (�/r0 = 1.5)

slopes are �1. This scaling can be understood as a tail of Drude form, because in this

regime the Drude form is dominant as shown in Figure 2 and 5. As � increases the scaling

of Drude tail becomes weaken (Figure 6(b)) and disappears at bigger !(Figure 6(c))).

Now we want to investigate if there is a modified scaling law motivated by previous

holographic models [4, 5, 7, 10].

� =

✓
B

!�

+ C

◆
ei

⇡

2 �̃ , (4.30)

where B and C are constants and �̃ may be di↵erent from �. We find that the Figure 6(c)

can be approximately fitted by a modified scaling law, with � ⇡ 0.24

� =

✓
K

(!/µ)�
+ �

DC

◆
ei⇡� , (4.31)

which is shown in Figure 7. Interestingly, in this case, the constants B and C in (4.30)

are fixed by analytic K and �
DC

, while in other models, they are numerically determined.

However, this approximate scaling behaviour seems not very robust under change of pa-

rameters.

4.2 Thermoelectric and thermal conductivity

Finally we plot the thermoelectric(↵) and thermal(̄) conductivity in Figure 8. Qualitative

feature is similar to electric conductivity. The red dots at ! = 0 is the DC conductivities

analytically computed in [26]

↵ =
4⇡µ

�2
r0 ,

̄

T
=

(4⇡)2

�2
r20 , (4.32)

At large ! it can be shown from Ward identity (comment: cite our future paper)

↵ ! �µ

T
,

̄

T
! µ2 + �2

T 2
(4.33)
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◆
(63)

Aµ = A(0)
µ +

r0
r
A(2)

µ + . . . , (64)
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r20
r2
 (2)
I +

r30
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 (3)
I + . . . (65)
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2
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✓
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g(0)µ⌫ R

(0)

◆
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2r20
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I � 1

2
g(0)µ⌫ (g
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7 Ward Identities

In this section, we study on Ward identities in a 2+1 dimensional system which is dual to our

bulk model. Let us start with a following generating functional which produces Euclidean

correlation functions,

eW [g,A,�] = Z[g, A,�] =

Z
D�e�S[�,g,A,�] , (68)

where g↵�, Aµ and �J are non-dynamical sources for the stress-energy tensor, the current and

the scalar operator. Those are denoted by T ↵�, Jµ and OJ . By definition, the expectation

values of the operator can be expressed by functional derivatives.

hJµ(x)i = �W

�Aµ(x)
, hT µ⌫(x)i = 2

�W

�gµ⌫(x)
,

⌦
OI(x)

↵
=

�W

��I(x)
, (69)

where one has to note that these expectation values are not tensors but tensor densities. Also

one more functional derivative give us following Euclidean time ordered two-point functions

as follows :

Gµ⌫,↵�
E (x, y) ⌘

⌦
T (T µ⌫(x)T ↵�(y))

↵
= 4

�2W

�gµ⌫(x)�g↵�(y)
, (70)

Gµ⌫,↵
E (x, y) ⌘ hT (T µ⌫(x)J↵(y))i = 2

�2W

�gµ⌫(x)�A↵(y)
, (71)

Gµ⌫,I
E (x, y) ⌘

⌦
T (T µ⌫(x)OI(y))

↵
= 2

�2W

�gµ⌫(x)��I(y)
, (72)
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Generating functional for Euclidean time ordered correlation functions
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7 Ward Identities

In this section, we study on Ward identities in a 2+1 dimensional system which is dual to our

bulk model. Let us start with a following generating functional which produces Euclidean

correlation functions,

eW [g,A,�] = Z[g, A,�] =

Z
D�e�S[�,g,A,�] , (68)

where g↵�, Aµ and �J are non-dynamical sources for the stress-energy tensor, the current and

the scalar operator. Those are denoted by T ↵�, Jµ and OJ . By definition, the expectation

values of the operator can be expressed by functional derivatives.
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, hT µ⌫(x)i = 2

�W

�gµ⌫(x)
,

⌦
OI(x)

↵
=

�W

��I(x)
, (69)

where one has to note that these expectation values are not tensors but tensor densities. Also

one more functional derivative give us following Euclidean time ordered two-point functions

as follows :

Gµ⌫,↵�
E (x, y) ⌘

⌦
T (T µ⌫(x)T ↵�(y))

↵
= 4

�2W

�gµ⌫(x)�g↵�(y)
, (70)

Gµ⌫,↵
E (x, y) ⌘ hT (T µ⌫(x)J↵(y))i = 2

�2W

�gµ⌫(x)�A↵(y)
, (71)

Gµ⌫,I
E (x, y) ⌘

⌦
T (T µ⌫(x)OI(y))

↵
= 2

�2W

�gµ⌫(x)��I(y)
, (72)
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Diffeomorphisms and gauge transformations

Gµ,↵
E (x, y) ⌘ hT (Jµ(x)J↵(y))i = �2W

�Aµ(x)�A↵(y)
, (73)

Gµ,I
E (x, y) ⌘

⌦
T (Jµ(x)OI(y))

↵
=

�2W

�Aµ(x)��I(y)
, (74)

GJ,I
E (x, y) ⌘

⌦
T (OJ(x)OI(y))

↵
=

�2W

��J(x)��I(y)
. (75)

If gauge and gravitational anomalies do not exist, the generating functional W is invari-

ant under the gauge and coordinates transformation :

Aµ ! Aµ + @µ⇤ , xµ ! xµ + ⇣µ (76)

For the gauge transformation, variations of the fields are trivial while variations for the

di↵eomorphisms are given by Lie derivatives.

�gµ⌫ = (L⇣g)µ⌫ = rµ⇣⌫ +r⌫⇣µ , (77)

�Aµ = (L⇣A)µ = ⇣�r�Aµ + (rµ⇣
⌫)A⌫ , (78)

��I = (L⇣�I) = ⇣�r��I , (79)

wherer is the covariant derivative for tensors. Thus, the variation of the functional becomes
Z

d3x

✓
�W

�gµ⌫(x)
(L⇣g)µ⌫ +

�W

�Aµ(x)
(L⇣A)µ +

�W

��I(x)
(L⇣�I)

◆
= 0 (80)

A little algebra with integrations by part gave us following a Ward identity :

Dµ hT µ⌫i+ F�
⌫
⌦
J�

↵
+
⌦
OI

↵
g⌫�@��I = 0 , (81)

where Dµ is a covariant derivative for tensor densities. The explicit expression is

Dµ hT µ⌫(x)i = @µ hT µ⌫(x)i+ �⌫
↵�

⌦
T ↵�(x)

↵
. (82)

For the gauge transformation, one can easily obtain another Ward identity :

@µ hJµ(x)i = 0 . (83)

Since our goal is to derive Ward identities for the two point functions, we need to take

one more functional derivative on (81) and (83). The latter does not give any interesting

relation. Taking derivatives of (81) with respect to g↵�(y), A↵(y) and OJ(y), we found

following Ward identities :

Dµ hT (J↵(y)T µ⌫(x))i+ Fµ
⌫ hT (J↵(y)Jµ(x))i � g⌫� hJ↵(x)i @

@x�
�(x� y) (84)
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Ward identities for diffeomorphisms

Gµ,↵
E (x, y) ⌘ hT (Jµ(x)J↵(y))i = �2W

�Aµ(x)�A↵(y)
, (73)

Gµ,I
E (x, y) ⌘

⌦
T (Jµ(x)OI(y))

↵
=

�2W

�Aµ(x)��I(y)
, (74)

GJ,I
E (x, y) ⌘

⌦
T (OJ(x)OI(y))

↵
=

�2W

��J(x)��I(y)
. (75)

If gauge and gravitational anomalies do not exist, the generating functional W is invari-

ant under the gauge and coordinates transformation :

Aµ ! Aµ + @µ⇤ , xµ ! xµ + ⇣µ (76)

For the gauge transformation, variations of the fields are trivial while variations for the

di↵eomorphisms are given by Lie derivatives.

�gµ⌫ = (L⇣g)µ⌫ = rµ⇣⌫ +r⌫⇣µ , (77)

�Aµ = (L⇣A)µ = ⇣�r�Aµ + (rµ⇣
⌫)A⌫ , (78)

��I = (L⇣�I) = ⇣�r��I , (79)

wherer is the covariant derivative for tensors. Thus, the variation of the functional becomes
Z

d3x

✓
�W

�gµ⌫(x)
(L⇣g)µ⌫ +

�W

�Aµ(x)
(L⇣A)µ +

�W

��I(x)
(L⇣�I)

◆
= 0 (80)

A little algebra with integrations by part gave us following a Ward identity :

Dµ hT µ⌫i+ F�
⌫
⌦
J�

↵
+
⌦
OI

↵
g⌫�@��I = 0 , (81)

where Dµ is a covariant derivative for tensor densities. The explicit expression is

Dµ hT µ⌫(x)i = @µ hT µ⌫(x)i+ �⌫
↵�

⌦
T ↵�(x)

↵
. (82)

For the gauge transformation, one can easily obtain another Ward identity :

@µ hJµ(x)i = 0 . (83)

Since our goal is to derive Ward identities for the two point functions, we need to take

one more functional derivative on (81) and (83). The latter does not give any interesting

relation. Taking derivatives of (81) with respect to g↵�(y), A↵(y) and OJ(y), we found

following Ward identities :

Dµ hT (J↵(y)T µ⌫(x))i+ Fµ
⌫ hT (J↵(y)Jµ(x))i � g⌫� hJ↵(x)i @

@x�
�(x� y) (84)
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6 Holographic Renormalization

�µ⌫ = (
r

r0
)2
✓
g(0)µ⌫ +

r20
r2
g(2)µ⌫ +

r30
r3
g(3)µ⌫ + . . . ,

◆
(63)

Aµ = A(0)
µ +

r0
r
A(2)

µ + . . . , (64)

 I =  (0)
I +

r20
r2
 (2)
I +

r30
r3
 (3)
I + . . . (65)

 (2) =
l2

2
⇤0 

(0)
I (66)

g(2)µ⌫ = �?

✓
R(0)

µ⌫ � 1

4
g(0)µ⌫ R

(0)

◆
+

l2

2r20


@µ 

(0)
I @⌫ 

(0)
I � 1

2
g(0)µ⌫ (g

(0)↵�@↵ 
(0)
I @� 

(0)
I )

�
(67)

7 Ward Identities

In this section, we study on Ward identities in a 2+1 dimensional system which is dual to our

bulk model. Let us start with a following generating functional which produces Euclidean

correlation functions,

eW [g,A,�] = Z[g, A,�] =

Z
D�e�S[�,g,A,�] , (68)

where g↵�, Aµ and �J are non-dynamical sources for the stress-energy tensor, the current and

the scalar operator. Those are denoted by T ↵�, Jµ and OJ . By definition, the expectation

values of the operator can be expressed by functional derivatives.

hJµ(x)i = �W

�Aµ(x)
, hT µ⌫(x)i = 2

�W

�gµ⌫(x)
,

⌦
OI(x)

↵
=

�W

��I(x)
, (69)

where one has to note that these expectation values are not tensors but tensor densities. Also

one more functional derivative give us following Euclidean time ordered two-point functions

as follows :

Gµ⌫,↵�
E (x, y) ⌘

⌦
T (T µ⌫(x)T ↵�(y))

↵
= 4

�2W

�gµ⌫(x)�g↵�(y)
, (70)

Gµ⌫,↵
E (x, y) ⌘ hT (T µ⌫(x)J↵(y))i = 2

�2W

�gµ⌫(x)�A↵(y)
, (71)

Gµ⌫,I
E (x, y) ⌘

⌦
T (T µ⌫(x)OI(y))

↵
= 2

�2W

�gµ⌫(x)��I(y)
, (72)
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One-point correlation functions

Then, the Ward identities become simpler form :

! hJT i+ ! hni � i� hJSi = 0 (A.10)

! hTT i+ ! h✏i � i� hTSi = 0 (A.11)

< SJ > �i� hSSi = 0 (A.12)

Using

Q = T � µJ , hQJi = !↵T , hQQi = !̄T , hJJi = !� , (A.13)

The ward identities ...

↵+
µ

T

� � i

hni
!T

� �

hJSi
!

2

T

= 0 (A.14)

̄

T

+
2µ↵

T

+
µ

2

�

T

2

� i

h✏0i
!T

2

� �

hQSi
!

2

T

2

� �

µ hJSi
!

2

T

2

= 0 (A.15)

hSJi � i�

hSSi
!

= 0 (A.16)

We have 3 relations among 6 kinds of the transport coe�cients, thus 3 kinds of coe�cient

are enough to know the all the coe�cients.......
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In addition, we are also considering spatially homogeneous fluctuations, so the Fourie mo-

mentum becomes kµ = (!, 0, 0). Since we are interested in various physical quantities in a

magnetic field and a chemical potential, we turn on the external field strength for the mag-

netic part and the temporal component of the external gauge field, i.e, Fxy = B and A0 = µ.

Also, for simplicity, we take �I as (�x, �y), where � controls the strength of momentum

relaxation.

Now, we are ready to get the final form of the Ward identities. Plugging the above

conditions into the Ward identities, the Ward identities become

!G̃j,0k
R (k)� iB✏ikG̃j,i

R (k) + !�jk hni�?i��kI G̃
j,I
R (k) = 0 , (94)

!
⇣
G̃0j,0k

R (k) + �kj h✏i
⌘
� i

⇣
B✏ikG̃0j,i

R (k)+?��kI G̃
0j,I
R (k)

⌘
= 0 , (95)

!G̃J,0j
R (k)�?iB✏ijG̃J,i

R �?iG̃J,I
R (k)��jI = 0 . (96)

This is a general result for the vector perturbation.

Let us consider a simplest case with B = 0. In this case, it is enough to turn on a

perturbation of i = x direction for general behavior. Then, the Ward identities become

simpler form :

! hJT i+ ! hni � i� hJSi = 0 (97)

! hTT i+ ! h✏i � i� hTSi = 0 (98)

! < SJ > �i� hSSi = 0 (99)

Using

Q = T � µJ , hQJi = !↵T , hQQi = !̄T , hJJi = !� , (100)

The ward identities ...

↵ +
µ

T
� +

hni
!T

� i�
hJSi
!2T

= 0 (101)

̄

T
+

2µ↵

T
+

µ2�

T 2
+

h✏0i
!T 2

� i�
hQSi
!2T 2

� i�
µ hJSi
!2T 2

= 0 (102)

hSJi � i�
hSSi
!

= 0 (103)

We have 3 relations among 6 kinds of the transport coe�cients, thus 3 kinds of coe�cient

are enough to know the all the coe�cients.......

In a external magnetic field,

± ! < JT >± �B < JJ >± +! < n > ⌥i� < JS >±= 0 (104)

11

In addition, we are also considering spatially homogeneous fluctuations, so the Fourie mo-

mentum becomes kµ = (!, 0, 0). Since we are interested in various physical quantities in a

magnetic field and a chemical potential, we turn on the external field strength for the mag-

netic part and the temporal component of the external gauge field, i.e, Fxy = B and A0 = µ.

Also, for simplicity, we take �I as (�x, �y), where � controls the strength of momentum

relaxation.

Now, we are ready to get the final form of the Ward identities. Plugging the above

conditions into the Ward identities, the Ward identities become

!G̃j,0k
R (k)� iB✏ikG̃j,i

R (k) + !�jk hni�?i��kI G̃
j,I
R (k) = 0 , (94)

!
⇣
G̃0j,0k

R (k) + �kj h✏i
⌘
� i

⇣
B✏ikG̃0j,i

R (k)+?��kI G̃
0j,I
R (k)

⌘
= 0 , (95)

!G̃J,0j
R (k)�?iB✏ijG̃J,i

R �?iG̃J,I
R (k)��jI = 0 . (96)

This is a general result for the vector perturbation.

Let us consider a simplest case with B = 0. In this case, it is enough to turn on a

perturbation of i = x direction for general behavior. Then, the Ward identities become

simpler form :

! hJT i+ ! hni � i� hJSi = 0 (97)

! hTT i+ ! h✏i � i� hTSi = 0 (98)

! < SJ > �i� hSSi = 0 (99)

Using

Q = T � µJ , hQJi = i!↵T , hQQi = i!̄T , hJJi = i!� , (100)

The ward identities ...

↵ +
µ

T
� +

hni
!T

� i�
hJSi
!2T

= 0 (101)

̄

T
+

2µ↵

T
+

µ2�

T 2
+

h✏0i
!T 2

� i�
hQSi
!2T 2

� i�
µ hJSi
!2T 2

= 0 (102)

hSJi � i�
hSSi
!

= 0 (103)

We have 3 relations among 6 kinds of the transport coe�cients, thus 3 kinds of coe�cient

are enough to know the all the coe�cients.......

In a external magnetic field,

± ! < JT >± �B < JJ >± +! < n > ⌥i� < JS >±= 0 (104)

11

In momentum space (with constant one point function)

Ward identities for one-point functions

Ward identities for two-point functions

Relation between transport coefficients

KK, Kim, Park(2015) 
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(a) Ward 4: (4.56)
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(b) Ward 5: (4.57)
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(c) Ward 6: (4.58)

Figure 7. Confirmation of Ward identities. The left hand side of (4.56)-(4.58) is plotted for the
temperatures shown in Fig.6 all together. They are almost zero, less than 10�15.

5 Homes’ law and Uemura’s law

We first analyse small ! behaviours of the two-point correlation functions based on our

numerical results and Ward Identities both in superconducting and normal phase. After

identifying superfluid density and normal component density in the two fluid model of

superconductor we check Homes’ law and Uemura’s law.

5.1 Conductivities at small !

For � = 0, the Ward identities (4.56)-(4.58) become simplified

Re[↵] = �µ

T

Re[�] , Re[̄] = �µRe[↵] ,

Im[↵] +
µ

T

Im[�] =
n

!T

, Im[̄] + µIm[↵] =
✏

0 � µn

!T

.

(5.1)

This relation was reported in [2] for normal phase and here we have shown it still holds

for superconducting phase. By these relations, once � is obtained, ↵ and ̄ are completely

determined. In both normal and superconducting phase, Im[�] turns out to have 1/! pole

by numerical computation so Re[�] is infinite by the Kramers-Kronig relation [2, 6, 29].

Therefore, by (5.1), Re[↵] and Re[̄] are also infinite and Im[↵] and Im[̄] have 1/! poles.

In normal phase it is due to the absence of momentum relaxation and in superconducting

phase there is another contribution due to condensate.

– 19 –

Figure 6. hJSi, hQSi, hSSi for µ/� = 1 at T/Tc = 3.2, 1, 0.89, 0.66, 0.27 (dotted, red, orange,
green, blue).

we obtain the relations between the conductivities:

Ward 4 : ↵+
µ
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= 0 , (4.56)
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= 0 , (4.57)

Ward 6 : hST i+ i�

hSSi
!

= 0 , (4.58)

where ̄ is redefined as (4.47) to subtract a counter term and ✏

0 = ✏+ hTT i
!=0. In normal

phase, hTT i
!=0 = �✏ and ✏/2 for � = 0 and � 6= 0 respectively. In superconducting phase

for � = 0, hTT i
!=0 = �✏.

4.2 Numerical confirmation: holography

In the previous subsection we have derived the Ward identities for two-point functions

from field theory perspective. Here we show that those Ward identities indeed hold in

our holographic model studied in [29, 44, 52]. More concretely, our goal is to compute

�,↵, ̄, hJSi, hQSi, hSSi numerically and plug them into the Ward identities (4.44)-(4.45)

and (4.56)-(4.58) to check if they add up to zero or not.

For B = 0, the conductivities �,↵, ̄ were reported in [52] and reproduced in Figure

2. Here in Figure 6 we display the other two-point correlation functions related to the

real scalar operator, hJSi, hQSi, and hSSi. Contrary to Figure 2 there is no divergence

at ! = 0, which is also shown in their small ! expressions (5.10)-(5.12). By using the

data in Figure 2 and 6 we numerically compute the left hand side of three Ward identities

(4.56)-(4.58). The numerical sums for all considered temperatures are shown together in

Figure 7. All of them vanish(< 10�15), confirming analytic formulas. We have also checked

three other cases: 1) B = 0 and �/µ = 0.1, 2) B = 0 and µ = 0, 3) B 6= 0. It turned

out that all numerical sums vanish too. For completeness, we show the numerical data for

these three cases in the appendix A.
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Figure 2. AC electric conductivity(�(!)), thermoelectric conductivity(↵(!)), and thermal
conductivity(̄(!)) for �/µ = 1 and q = 3 at di↵erent temperatures: T/Tc = 3.2, 1, 0.89, 0.66, 0.27
(dotted, red, orange,green, blue). Top is the real part and bottom is the imaginary part of conduc-
tivities.

mass of � defined by m

2
e↵ ⌘ m

2 � q

2|gtt|A2
t

can be compared with the Breitenlohner-

Freedman (BF) bound. The BF bound for AdS
d+1 is �d

2

4 ⌘ m

2
BF. The e↵ective mass

m

2
e↵ may be su�ciently negative near the horizon to destabilize the scalar field since |gtt|

becomes bigger at low temperature6. Based on this argument one may expect that when

q = 0 the instability would turn o↵. However, it turns out that a Reissner-Nordstrom AdS

black hole may still be unstable to forming neutral scalar hair, if m2 is a little bit bigger

than the BF bound for AdS4. It can be understood by the near horizon geometry of an

extremal Reissner-Nordstrom AdS black hole. It is AdS2⇥ R2 so scalars above the BF

bound for AdS4 may be below the bound for AdS2. These two instability conditions can

be summrized by one ineqaulity [44]

m

2
e↵ =

2

4

m

2 � 2q2

1 + �

2

µ

2

3

5

2

4

1

6

0

@1 +

�

2

µ

2

1 + �

2

µ

2

1

A

3

5

< �1

4
= m

2
BF , (3.1)

which reproduces the result for � = 0 in [2]

m

2
e↵ =

�

m

2 � 2q2
�

✓

1

6

◆

< �1

4
= m

2
BF . (3.2)

Here, we see m

2
e↵ can be below the BF bound when q = 0.

However, it was discussed in [6, 7] that the instability to forming neutral scalar hair for

q = 0 is not associated with superconductivity because it does not break a U(1) symmetry,

but at most breaks a Z2 symmetry � ! ��. Therefore, it would be interesting to see if the

DC conductivity is infinite or not in the background with a neutral scalar hair.7 Without

6As the temperature of a charged black hole is decreased, g
tt

develops a double zero at the horizon.
7We thank Sang-Jin Sin for suggesting this.
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(a) �/µ = 0.1, T/T
c

= 1.52, 1,
0.94, 0.76, 0.37 (dotted, red,

orange, green, blue)

(b) �/µ = 1, T/T
c

= 3.2, 1, 0.89,
0.66, 0.27 (dotted, red, orange,

green, blue)

(c) �/µ ! 1(µ = 0), T/T
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=

13.2, 3.5, 1, 0.95, 0.7, 0.4, 0.25
(dashed, dotted, red, orange,

green, blue, purple)

Figure 4. Electric conductivity(�) for three cases �/µ = 0.1, 1 and 1(or µ = 0)

(a) �/µ = 0.1. Data points and fitting curves (3.41)

The purple line fits well too.

(b) �/µ = 1. Data points and fitting curves (3.42)

Figure 5. Near ! = 0 of Figure 4(a) and (b). T/Tc = the same color as Figure 4. Dots are the
same data in Figure 4 and solid lines are Drude-like fits.

One common important feature in Figure 4 is the appearance of 1/! pole in Im[�]

below the critical temperature, while the disappearance of 1/! pole above the critical

temperature. By the Kramers-Kronig relation, 1/! pole in Im[�] implies the delta function

at ! = 0 in Re[�]. Therefore, in normal phase the DC conductivity is finite due to

momentum relaxation and in superconducting phase the DC conductivity is infinite, which

is one of the hallmarks of superconductor.

Roughly at T/Tc > 0.5, in addition to the delta function at ! = 0, there is still a finite

value of DC Re[�] in superconducting phase. It may be interpreted as a contribution from

normal components in superconducting phase, implying a two-fluid model. For small !

there is a Drude-like peak in some cases in (a) and (b) of Figure 4. For smaller �/µ or

at higher temperature, the peak becomes sharper. For the sake of comparison we used a

similar scales in (a),(b) and (c) of Figure 4, which hides the structure of (a) near ! = 0.

Therefore we zoom in Figure 4(a) in Figure 5(a). The data points well fit to the formula

(solid lines)

�(!̄) = i

Ks

!̄

+
Kn⌧

1� i!̄⌧

, (3.41)
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temperature. By the Kramers-Kronig relation, 1/! pole in Im[�] implies the delta function

at ! = 0 in Re[�]. Therefore, in normal phase the DC conductivity is finite due to

momentum relaxation and in superconducting phase the DC conductivity is infinite, which

is one of the hallmarks of superconductor.

Roughly at T/Tc > 0.5, in addition to the delta function at ! = 0, there is still a finite

value of DC Re[�] in superconducting phase. It may be interpreted as a contribution from

normal components in superconducting phase, implying a two-fluid model. For small !

there is a Drude-like peak in some cases in (a) and (b) of Figure 4. For smaller �/µ or

at higher temperature, the peak becomes sharper. For the sake of comparison we used a

similar scales in (a),(b) and (c) of Figure 4, which hides the structure of (a) near ! = 0.
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temperature. By the Kramers-Kronig relation, 1/! pole in Im[�] implies the delta function

at ! = 0 in Re[�]. Therefore, in normal phase the DC conductivity is finite due to

momentum relaxation and in superconducting phase the DC conductivity is infinite, which

is one of the hallmarks of superconductor.

Roughly at T/Tc > 0.5, in addition to the delta function at ! = 0, there is still a finite

value of DC Re[�] in superconducting phase. It may be interpreted as a contribution from
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(a) � = 2, q = 3 (b) � = 2, q = 2 (c) � = 4, q = 3

(d) plot (a) and (b) together (e) plot (c) extended to ��

Figure 2. Phase diagrams for point (a),(b), and (c) in Figure 1. The meshed surface is the phase
boundary at the critical temperature. Dark region below the surface is superconducting phase while
region above the surface is normal phase.

consider the condensate of the operator of dimension two, hO(2)i. See (2.20). We may

choose the di↵erent boundary condition, �(2) = 0, but we will not deal with the case in

this paper. At high temperature we obtain only one solution, which agrees to an analytic

solution of normal state (2.26)-(2.30). At low temperature we find another solution with

� 6= 0(superconducting phase) in addition to a normal state solution (2.26)-(2.30). In this

case it turns out that the superconducting solution always has a lower grand potential and

becomes a ground state. The phase transition is continuous at a critical temperature(Tc).

Figure 2 shows typical examples of phase diagrams for three points (a),(b), and (c) in

Figure 1(b).

Let us start with the point (a) and (b) in Figure 1(b). They are always in supercon-

ducting phase for all � and µ at zero temperature. As temperature increases we expect that

the system undergoes a phase transition from superconducting phase to normal phase. Our

numerical analysis confirms it and the phase diagram is shown in Figure 2(a)(b), where the

meshed surface is the phase boundary at the critical temperature. Dark region below the

surface is superconducting phase while region above the surface is normal phase. Figure

2(a)(b) focuses on the phase structure for small �. In Figure 2(d) we extend � axis of

Figure 2(a)(b) to larger values and combine them for comparison, where Figure 2(a) is red.

The red mesh is above the black mesh, which means that a large q enhances superconduc-

tivity, as at the zero temperature in Figure 1. However, the phase transition line coincides

at µ = 0, because the e↵ect of q enters in the combination of qµ as shown in (2.35).

Notice that the superconducting phase exists even when µ = 0. In the HHH model [6]

the phase transition is understood as a competition between µ and T and in this case it is

– 11 –
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Homes’ law
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Figure 9. ⇢̃s, T̃ s, and �DC for q = 3
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Figure 10. Checking Uemura’s law. Uemura’s law holds in coherent regime (red dots: µ/� =
2, 3, 5, 7, 10, 15, 20) while it does not hold in incoherent regime (blue dots: µ/� = 0.3, 0.4, 0.5, 0.7, 1).
In (a) the black line is drawn for B ⇠ 5.47, and in (b) the black lines are drawn for B ⇠
6.87, 5.47, 4.64 for q = 2, 3, 6 respectively.

dots belong to incoherent regime, where a optical conductivity loses a Drude behaviour.

They correspond to Figure 8(a) and there is a gap between charge density and superfluid

density at zero temperature. Also, for di↵erent values of q, we find that Uemura’s law is

satisfied for large µ/� but with a di↵erent constant B. For example, for q = 2, B ⇡ 6.87

and for q = 6, B ⇡ 4.64 in the regime of µ/� & 2 (Figure 10(c)). Since Uemura’s law is

observed in underdoped regimes, if � can be interpreted as a doping parameter our result

will be consistent with phenomena.

Based on our results on Uemura’s law(Figure 10(a)) and �

DC

(Figure 9(c)), we may

anticipate if Homes’ law is satisfied. If �
DC

is quickly decreasing function approaching to

constant for µ/� & 2 we may have a chance to obtain Homes’ law. However, our �
DC

does

not show that behaviour. Therefore, as shown in Figure 11, Home’s law does not hold

in both coherent regime (red dots) and incoherent regime (blue dots). In Figure 11(a),

for large µ/�, C(= ⇢̃

s

/(�
DC

T̃

c

)) approaches to a constant value, but it is zero. It simply

means that �

DC

goes to infinite as momentum relaxation goes to zero. Figure 11(b) is

another representation, a plot of ⇢̃
s

versus �

DC

T̃

c

, where it is also clear that there is no

linear relation between between ⇢̃

s

and �

DC

T̃

c

. For di↵erent values of q, we considered

q = 2 and q = 6 and obtained figures qualitatively similar to Figure 11, so Homes’ law

seems not satisfied for di↵erent values of q either.

Homes’ law may be understood based on Planckian dissipation, for which the time scale
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Figure 11. Checking Homes’ law. Homes’ law does not hold. The blue dots are for incoherent
regime (µ/� = 0.3, 0.4, 0.5, 0.7, 1) and the red dots are for coherent regime (µ/� = 2, 3, 5, 7, 10). In
(a) the data for C do not align on a constant value and in (b) the data do not yield a linear relation.

of dissipation is shortest possible [60] . In summary, the left hand side of (5.16), superfluid

density is proportional to density of mobile electrons in superconducting state (n
S

). The

right hand side of (5.16), �
DC

is proportional to density of mobile electrons in normal

state (n
N

) times relaxation time (⌧), and the relaxation time is inversely proportional to

the temperature (Planckian dissipation):

⇢

s

⇠ n

S

, �

DC

⇠ n

N

⌧(T
c

) , ⌧(T
c

) ⇡ ~
k

B

T

c

, (5.18)

where k

B

is Boltzmann’s constant and proportionality constants of the relations are ma-

terial independent. Notice that thanks to the Planckian dissipation T

c

is cancelled out

in Homes’ law, leaving universal constant ~/k
B

. Finally if we use another empirical law,

Tanner’s law, n
S

= n

N

/4, Homes’ law is obtained.

In our model, it turns out a kind of Tanner’s law holds in coherent regime (µ/� � 2).

In Figure 8(b), all curves coincide and it means n
s

/n

N

does not depend on µ/�, which is

the qualitative content of Tanner’s law. Therefore, if our system were Planckian dissipator

in coherent regime, we would have seen Homes’ law. The relaxation time ⌧ for our model

can be written as

⌧ =
f(T/�, µ/�, q)

T

, (5.19)

where T in the denominator is extracted to mimic the form of Planckian dissipation [45].

Since our system does not show Homes’ law it is not a Planckian dissipator, which means

f is not universal near T
c

. Indeed we may induce that f ⇠ µ

2
/�

2 because T

c

⇠ µ/� from

Figure 9(b) and ⌧ ⇠ µ/� from the analysis in [29].

Our results on Uemura’s law and Homes’ law are di↵erent from the previous work [45],

where a superconductor model in a helical lattice was studied. In the model, there are

two parameters corresponding to the strength of momentum relaxation e↵ect: the lattice

strength � and the helix pitch p, and it was found that Homes’ law held for restricted

parameter regime (not in small momentum relaxation, but for rather large values of � and

p) while Uemura’s law did not hold. In particular, Homes’ law was observed in insulating

phase near phase transition. However, in our model there is no insulating phase and it may
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Figure 10. Checking Uemura’s law. Uemura’s law holds in coherent regime (red dots: µ/� =
2, 3, 5, 7, 10, 15, 20) while it does not hold in incoherent regime (blue dots: µ/� = 0.3, 0.4, 0.5, 0.7, 1).
In (a) the black line is drawn for B ⇠ 5.47, and in (b) the black lines are drawn for B ⇠
6.87, 5.47, 4.64 for q = 2, 3, 6 respectively.

dots belong to incoherent regime, where a optical conductivity loses a Drude behaviour.

They correspond to Figure 8(a) and there is a gap between charge density and superfluid

density at zero temperature. Also, for di↵erent values of q, we find that Uemura’s law is

satisfied for large µ/� but with a di↵erent constant B. For example, for q = 2, B ⇡ 6.87

and for q = 6, B ⇡ 4.64 in the regime of µ/� & 2 (Figure 10(c)). Since Uemura’s law is

observed in underdoped regimes, if � can be interpreted as a doping parameter our result

will be consistent with phenomena.

Based on our results on Uemura’s law(Figure 10(a)) and �

DC

(Figure 9(c)), we may

anticipate if Homes’ law is satisfied. If �
DC

is quickly decreasing function approaching to

constant for µ/� & 2 we may have a chance to obtain Homes’ law. However, our �
DC

does

not show that behaviour. Therefore, as shown in Figure 11, Home’s law does not hold

in both coherent regime (red dots) and incoherent regime (blue dots). In Figure 11(a),

for large µ/�, C(= ⇢̃

s

/(�
DC

T̃

c

)) approaches to a constant value, but it is zero. It simply

means that �

DC

goes to infinite as momentum relaxation goes to zero. Figure 11(b) is

another representation, a plot of ⇢̃
s

versus �

DC

T̃

c

, where it is also clear that there is no

linear relation between between ⇢̃

s

and �

DC

T̃

c

. For di↵erent values of q, we considered

q = 2 and q = 6 and obtained figures qualitatively similar to Figure 11, so Homes’ law

seems not satisfied for di↵erent values of q either.

Homes’ law may be understood based on Planckian dissipation, for which the time scale
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Figure 15. A log-log-plot of the superfluid density ⇢s with respect to �DC(Tc)Tc. The color coding
for �/µ is identical to the phase-diagram plots presented in Figure 5, �/µ = 4.5, 4.8, 5.1, 5.4, 5.7
, whereas values of different p/µ are not resolved, except for the outliers where the value of p/µ is
explicitly attached to the point. If Homes’ relation holds, the points should roughly fall on a line
with a slope of unity, according to log(⇢s) = logC + log(�DCTc) denoted by the black line. The
inset shows the value of Homes’ constant C for �/µ = 4.5, 4.8, 5.1, 5.4, 5.7. The relation is not
expected to hold in the limits of p/µ ! 0 and p/µ ! 1. There the constant approaches zero due to
the absence of momentum relaxation and the corresponding divergence of �DC. These data points
may be faithfully discarded. Doing so, we see that, in the reasonably applicable range of p/µ 2 [1, 2]
Homes’ relation seems to hold within the dashed lines given by C ⇡ 6.17± 0.31. This value for the
constant is extracted from a least-squares fit represented by the thick black line in the main figure.

be almost the arithmetic mean of the two experimentally determined values. Additionally,
one may compare to the most recent results found for organic superconductors in [57], i.e.
C = (110 ± 60)

cm�1/⌦�1K, again in dimensionful units. Converting to our dimensionless
Homes’ constant and including the additional factor of 8, we find C = 4±2.1, which is very
close to the original result in [33].

constants, e.g . for the conversion of the temperature we have

T [K] =
c · h
KB

· 100 T

⇥
cm�1⇤

,

which amounts to 1K = 0.695 cm�1. Similarly, 1⌦�1cm�1 = 4.935 cm�1 and our final conversion factor
reads 1⌦�1K = 3.42983 cm�1. Thus, the values given in [33] are converted by

(120± 25)
cm�1

⌦�1K
=

120± 25
3.43

⇡ 35± 7.3.

Taking into account the correction factor for our different definition of ⇢s we arrive at C = 35±7.3
/8 ⇡

4.4± 0.9.
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Figure 16. The nature of the zero-temperature ground state from the finite temperature conduc-
tivity. The surprise is that for fixed helix amplitude � the system transitions from an insulating to
a metallic and then back to an insulating phase. For p/µ ⌧ 1 and �/µ ⌧ 1, we expect a metallic
phase designated by the shaded green area due to the fact that momentum relaxation is removed
in the limit where either of these parameters vanishes. This part of the metallic phase could not
be distinguished from the insulating phase since we are using very coarse measure to determine
the nature of the ground state i.e. a qualitative measure of the conductivity. The thick blue line
denotes the location of the minimal critical temperature Tmin

c extracted from Figure 5. In the case
 = 0, shown in the left panel, this minimum tracks qualitatively the metallic phase inferred from
the conductivity, whereas for  =

1/
p
2 the minimal critical temperature Tmin

c is invariant under
changes in p/µ and �/µ. Note that at high values for �/µ the critical temperature is very low and
thus our numerical code cannot reach Tmin

c anymore. Homes’ relation holds in the region marked
by the white dashed box.

nicely stable, indicating that it is the true ground state [26]. The insulating IR geometry is
indeed unstable towards superconductivity, but curiously not for the mass of the scalar field
considered here. We suspect, however, that in this case the superconducting IR geometry,
is still the thermodynamically preferred ground state, i.e. the state of lowest free energy.
The insulating but not superconducting geometry of [26] is hence dynamically stable, but
thermodynamically unstable. This would indicate that they are separated by a first order
transition. We will support this claim by an analysis of the thermodynamics and transport
at zero temperature in a forthcoming work [37].

5.2 Transport

In our system, the linear momentum relaxation introduced by the Bianchi VII
0

structure of
the geometry allows us to reliably analyse the physics behind the low-frequency transport
properties of our system. Our computation reveals that the superconducting system is well
described by a two-fluid Drude model at small frequencies in the regime of weak momentum
relaxation �/µ ⌧ 1, a fact also observed in the models of [29, 30]. On the other hand, in
the regime of stronger momentum relaxation, �/µ ⇡ 1, the two-fluid Drude model seems to
work less and less well, again similar to [29, 30].
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inset shows the value of Homes’ constant C for �/µ = 4.5, 4.8, 5.1, 5.4, 5.7. The relation is not
expected to hold in the limits of p/µ ! 0 and p/µ ! 1. There the constant approaches zero due to
the absence of momentum relaxation and the corresponding divergence of �DC. These data points
may be faithfully discarded. Doing so, we see that, in the reasonably applicable range of p/µ 2 [1, 2]
Homes’ relation seems to hold within the dashed lines given by C ⇡ 6.17± 0.31. This value for the
constant is extracted from a least-squares fit represented by the thick black line in the main figure.

be almost the arithmetic mean of the two experimentally determined values. Additionally,
one may compare to the most recent results found for organic superconductors in [57], i.e.
C = (110 ± 60)

cm�1/⌦�1K, again in dimensionful units. Converting to our dimensionless
Homes’ constant and including the additional factor of 8, we find C = 4±2.1, which is very
close to the original result in [33].

constants, e.g . for the conversion of the temperature we have

T [K] =
c · h
KB

· 100 T

⇥
cm�1⇤

,

which amounts to 1K = 0.695 cm�1. Similarly, 1⌦�1cm�1 = 4.935 cm�1 and our final conversion factor
reads 1⌦�1K = 3.42983 cm�1. Thus, the values given in [33] are converted by

(120± 25)
cm�1
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=
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3.43

⇡ 35± 7.3.

Taking into account the correction factor for our different definition of ⇢s we arrive at C = 35±7.3
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Figure 1. The variation of the critical temperature with respect to the lattice wavenumber at some
fixed lattice amplitude (q = 6).

2.1 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field  , corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 2 we illustrate how

Figure 2. The variation of the critical temperature with respect to the lattice wavenumber at some
fixed lattice amplitude (q = 6).

the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
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2 Holographic superconductor on a Q-lattice

Total action S = SHHH + Sm
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 I = (�x,�y) (2.6)

In this section we briefly review the holographic superconductor model that dualizes
to a field theory in the presence of a Q-lattice, which has been studied in detail in [1, 2].
The action is given by

S =

Z
d4x

p
�g


R+ 6� 1

4
F

2 � |(@ � iqA)�|2 �m

2
���

⇤ � |@ |2 �m

2
 | |2

�
, (2.7)

where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e

ikx
'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
phase. We will always set the mass of these two scalar fields m

2
 = m

2
� = �2.

 = e

ikx
'(r)
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We take the following anisotropic ansatz

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�

A = µ(1� z)a(z)dt � = z�(z)  = e

ikx
z (z)

(2.8)

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�
,

A = µ(1� z)a(z)dt ,  = e

ikx
z (z) , � = z�(z) ,

(2.9)

 (0) = �

where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
k is the lattice wavenumber and µ is the chemical potential of the dual field theory. The
normal phase of the system corresponds to the solution with a vanishing charged scalar
field �. If U = 1 + z + z

2 � µ

2
z

3
/4, V1 = V2 = a = 1,  = � = 0, we recover the

familiar planar AdS-Reissner-Nordström(AdS-RN) black hole. The non-trivial Q-lattice
backgrounds can be obtained by setting a non-trivial boundary condition at infinity for
the scalar field  (0) = � and regular boundary conditions on the horizon z = 1. We will
refer to � as the lattice amplitude. The black hole temperature is T/µ = U(1)/(4⇡µ).
Due to conformal invariance, the solutions of the system are specified by four dimensionless
parameters, namely (T/µ,�/µ, k/µ, q). We will set µ = 1 in numerical calculation.

3 Critical temperature and DC conductivity

3.1 Metal-insulator transition without condensate

To check the Homes’ law in our model, we need to calculate the DC conductivity �DC at
the critical temperature. A formula for �DC in terms of the background solution data at
the horizon can be derived [3]

�DC =

 r
V2

V1
+

µ

2
a

2
p
V1V2

2k2 2

!�����
z=1

. (3.1)

3.2 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field �, corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 3 we illustrate how
the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
the critical temperature first decreases for small k/µ, and then increases for large values
of k/µ. When k/µ ! 1, it approaches to the critical temperature of AdS-RN(�/µ = 0).
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there exist black brane solutions with a non-vanishing charged scalar field �, corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 3 we illustrate how
the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
the critical temperature first decreases for small k/µ, and then increases for large values
of k/µ. When k/µ ! 1, it approaches to the critical temperature of AdS-RN(�/µ = 0).
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Figure 16. The nature of the zero-temperature ground state from the finite temperature conduc-
tivity. The surprise is that for fixed helix amplitude � the system transitions from an insulating to
a metallic and then back to an insulating phase. For p/µ ⌧ 1 and �/µ ⌧ 1, we expect a metallic
phase designated by the shaded green area due to the fact that momentum relaxation is removed
in the limit where either of these parameters vanishes. This part of the metallic phase could not
be distinguished from the insulating phase since we are using very coarse measure to determine
the nature of the ground state i.e. a qualitative measure of the conductivity. The thick blue line
denotes the location of the minimal critical temperature Tmin

c extracted from Figure 5. In the case
 = 0, shown in the left panel, this minimum tracks qualitatively the metallic phase inferred from
the conductivity, whereas for  =

1/
p
2 the minimal critical temperature Tmin

c is invariant under
changes in p/µ and �/µ. Note that at high values for �/µ the critical temperature is very low and
thus our numerical code cannot reach Tmin

c anymore. Homes’ relation holds in the region marked
by the white dashed box.

nicely stable, indicating that it is the true ground state [26]. The insulating IR geometry is
indeed unstable towards superconductivity, but curiously not for the mass of the scalar field
considered here. We suspect, however, that in this case the superconducting IR geometry,
is still the thermodynamically preferred ground state, i.e. the state of lowest free energy.
The insulating but not superconducting geometry of [26] is hence dynamically stable, but
thermodynamically unstable. This would indicate that they are separated by a first order
transition. We will support this claim by an analysis of the thermodynamics and transport
at zero temperature in a forthcoming work [37].

5.2 Transport

In our system, the linear momentum relaxation introduced by the Bianchi VII
0

structure of
the geometry allows us to reliably analyse the physics behind the low-frequency transport
properties of our system. Our computation reveals that the superconducting system is well
described by a two-fluid Drude model at small frequencies in the regime of weak momentum
relaxation �/µ ⌧ 1, a fact also observed in the models of [29, 30]. On the other hand, in
the regime of stronger momentum relaxation, �/µ ⇡ 1, the two-fluid Drude model seems to
work less and less well, again similar to [29, 30].
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box and put “metal” and “insulator” in the figure?)
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III. CRITICAL TEMPERATURE AND DC
CONDUCTIVITY

We numerically construct explicit superconducting
background at finite temperature. For each set of pa-
rameters (�/µ, k/µ, q), we find that below some critical
temperature T

c

/µ, there exist black brane solutions with
a non-vanishing charged scalar field �, corresponding to
the superconducting phases. From now on we fix q = 6.

FIG. 3. The variation of the critical temperature with respect
to the lattice wavenumber at some fixed lattice amplitude
(q = 6).

FIG. 4. The value of DC conductivity as a function of k/µ
for �/µ = 1, 3, 5, 10.

In Figure 3 we illustrate how the critical temperature
depends on �/µ and k/µ. First, for a fixed k/µ, the
transition temperature decreases monotonously with the
increase of �/µ. Second, for a fixed �/µ, the critical tem-
perature first decreases for small k/µ, and then increases
for large values of k/µ. When k/µ ! 1, it approaches to
the critical temperature of AdS-RN(�/µ = 0). In axion
model [23] and helical lattice model [7] the critical tem-
perature has the similar non-monotonic behavior. This
behavior was not seen in [21, 22] because the scalar field
� had much smaller charge q. (need to check)
To check the Homes’ law in our model, we need to

calculate the DC conductivity �

DC

at the critical tem-
perature, which is plotted in Figure 4 as a function of
�/µ and k/µ. When k/µ = 0, we have infinite �

DC

because in this case the system is a homogeneous the-
ory. For a fixed �/µ, �

DC

at the critical temperature
decreases when k/µ is small and increases when k/µ is
large. When k/µ ! 1, it again goes to infinity.
Note that the critical temperature and DC conductiv-

ity at the critical temperature all approach their values
of AdS-RN at large k/µ, similar to the observation made
in [7]. In fact, as we will see later, when k/µ ! 1,
all observables tend to their values of AdS-RN. This is
reasonable because in this case the neutral scalar field
 oscillates so fast that the observables can not feel the
e↵ect of Q-lattice (4). We may see the decreasing ef-
fect of k at large k holographically: in Figure 5 we plot
the bulk profile of � at T/T

c

= 0.1 with �/µ = 50 and
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Therefore, it seems that Homes’ law is not realized for
all holographic models. Because physic behind Homes’
law in [7] has not been clearly understood yet, it will
be important to analyse other holographic models to see
how much holographic Homes’ law is robust and to de-
duce the physical mechanism behind it. For this purpose,
in this paper, we study Homes’ law in a holographic su-
perconductor model with Q-lattice. We chose this model
for two reasons. First, it can be easily compared to two
previous works since this model has a similar structure
to the Helical lattice model in that it has two param-
eters and anisotropic. In addition it can be compared
also to linear scalar model in certain limit. Second, it
was argued in [7] that the Homes’ law may have some-
thing to do with the metal/insulator transition in normal
state and it was reported that Q-lattice model also has
metal-insulator transition [? ].

We find that Homes’ law is realized in Q-lattice model
for certain parameter regime of large momentum relax-
ation, which belongs to insulating phase when the con-
dense is suppressed, which is similar to the helical lat-
tice model in [7]. In computing the superfluid density,
we employ two methods: one is related to infinite DC
conductivity and the other is related to magnetic pen-
etration depth. Both yield the same results with finite
momentum relaxation, but the only latter captures the
superfluid density even in the case without momentum
relaxation.

To clarify tissues raised in Johanna’s
This paper is organised as follows. In section II, we

introduce a holographic superconductor model with Q-
lattice. The metal-insulator transition of the ground
state is also briefly reviewed. In section III, the supercon-
ducting transition temperature and electric DC conduc-
tivity are computed. In section IV the superfluid density
is computed in two methods. In section V we discuss the
Home’s law. In section VI we conclude.

II. HOLOGRAPHIC SUPERCONDUCTOR ON
A Q-LATTICE

In this section we briefly review a holographic super-
conductor model on a Q-lattice, which has been studied
in detail in [21, 22]. The action is given by

S =

Z
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where we have chosen units such that the gravitational
constant 16⇡G = 1 and set the AdS radius to unity.
The first two lines are the first holographic supercon-
ductor model [12, 13] with the U(1) gauge field A, its
field strength F = dA, and a complex scalar �. The
last line introduces momentum relaxation by a real scalar

 = e

ikx

z (z). To obtain classical solutions we consider
the following ansatz

ds2 =
1

z

2

h
� (1� z)U(z)dt2 +

dz2

(1� z)U(z)

+ V1(z)dx
2 + V2(z)dy

2
i
,

A = µ(1� z)a(z)dt , � = z�(z) , = e

ikx

z (z) ,

(4)

where U, V1, V2, a, and � are functions of the holo-
graphic coordinate z only. Notice that k is the lattice
wavenumber and µ is the chemical potential of the dual
field theory. The normal phase of the system corre-
sponds to the solution with a vanishing charged scalar
field �. If U = 1 + z + z

2 � µ

2
z

3
/4, V1 = V2 =

a = 1,  = � = 0, we recover the familiar planar
AdS-Reissner-Nordström(AdS-RN) black hole. The non-
trivial Q-lattice backgrounds can be obtained by setting
a non-trivial boundary condition at infinity for the scalar
field  (0) = � and regular boundary conditions on the
horizon z = 1. We will refer to � as the lattice ampli-
tude. The black hole temperature is T/µ = U(1)/(4⇡µ).
Due to conformal invariance, the solutions of the system
are specified by four dimensionless parameters, namely
(T/µ,�/µ, k/µ, q). We will set µ = 1 in numerical calcu-
lation.

We will always set the mass of these two scalar fields
m

2
 = m

2
� = �2.

A. metal-insulator transition

We are mainly interested in the holographic supercon-
ductor model in this paper. However, let us consider
the model without complex scalar fields for a moment to
investigate the properties of our model without conden-
sate. Once we have the background solutions, the DC
conductivity, �DC

, can be computed by [32]

�

DC

=

 r
V2

V1
+

µ

2
a

2
p
V1V2

2k2 2

!�����
z=1

. (5)

For example, we show the DC conductivity as a function
of temperature in Figure 1, at fixed �/µ = 50 and k/µ =
8(a), 12(b).
The resistivity (⇢ = 1/�DC) in this case are shown in

grey dotted lines in Figure 1: (a) is an insulating phase
with increasing resistivity as temperatures lowers while
(b) is a metal phase with decreasing resistivity as tem-
peratures lowers. The metal insulator transition occurs
at k/µ ⇡ 10.15. (It can be understood by Figure ??.
For conducting phase (k =?) �(1) ! 0 so, by (5), ⇢
approaches to zero.) (To Chao: Can you make a plot
similar to Figure 5 without condensation?) By consider-
ing several values of � and k we found a phase diagram
for metal-insulator phase, which is shown in Figure 2.
This phase diagram was first studied in ?? and here we
analysed to ..... If we allow the condensate, there is a

[Donos, Gauntlett: 1401.5077]

[KYK, Niu: 1608.04653]

[Donos, Gauntlett: 1311.3292]

[Ling, Liu, Niu, Wu, Xian: 1410.6761] 
[Andrade, Gentle: 1412.6521]
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how much holographic Homes’ law is robust and to de-
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state and it was reported that Q-lattice model also has
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tice model in [7]. In computing the superfluid density,
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etration depth. Both yield the same results with finite
momentum relaxation, but the only latter captures the
superfluid density even in the case without momentum
relaxation.
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ductor model [12, 13] with the U(1) gauge field A, its
field strength F = dA, and a complex scalar �. The
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where U, V1, V2, a, and � are functions of the holo-
graphic coordinate z only. Notice that k is the lattice
wavenumber and µ is the chemical potential of the dual
field theory. The normal phase of the system corre-
sponds to the solution with a vanishing charged scalar
field �. If U = 1 + z + z
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/4, V1 = V2 =

a = 1,  = � = 0, we recover the familiar planar
AdS-Reissner-Nordström(AdS-RN) black hole. The non-
trivial Q-lattice backgrounds can be obtained by setting
a non-trivial boundary condition at infinity for the scalar
field  (0) = � and regular boundary conditions on the
horizon z = 1. We will refer to � as the lattice ampli-
tude. The black hole temperature is T/µ = U(1)/(4⇡µ).
Due to conformal invariance, the solutions of the system
are specified by four dimensionless parameters, namely
(T/µ,�/µ, k/µ, q). We will set µ = 1 in numerical calcu-
lation.

We will always set the mass of these two scalar fields
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2
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A. metal-insulator transition

We are mainly interested in the holographic supercon-
ductor model in this paper. However, let us consider
the model without complex scalar fields for a moment to
investigate the properties of our model without conden-
sate. Once we have the background solutions, the DC
conductivity, �DC

, can be computed by [32]
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For example, we show the DC conductivity as a function
of temperature in Figure 1, at fixed �/µ = 50 and k/µ =
8(a), 12(b).
The resistivity (⇢ = 1/�DC) in this case are shown in

grey dotted lines in Figure 1: (a) is an insulating phase
with increasing resistivity as temperatures lowers while
(b) is a metal phase with decreasing resistivity as tem-
peratures lowers. The metal insulator transition occurs
at k/µ ⇡ 10.15. (It can be understood by Figure ??.
For conducting phase (k =?) �(1) ! 0 so, by (5), ⇢
approaches to zero.) (To Chao: Can you make a plot
similar to Figure 5 without condensation?) (To Chao:
what if m = 0? would there be metal-insulator tran-
sition?) By considering several values of � and k we
found a phase diagram for metal-insulator phase, which
is shown in Figure 2. This phase diagram was first stud-
ied in ?? and here we analysed to ..... If we allow the
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FIG. 1. Resistivity in insulator and metal phase. Red dotted
lines are the case without condensate. With the condensate,
there is a superconducting phase transition at critical tem-
perature and ⇢ becomes zero below Tc.

FIG. 2. Metal-insulator transition without condensate. Red
lines are for ideal metals. (To Chao: Please erase the grey
box and put “metal” and “insulator” in the figure?)
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and ⇢ becomes zero below T
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III. CRITICAL TEMPERATURE AND DC
CONDUCTIVITY

We numerically construct explicit superconducting
background at finite temperature. For each set of pa-
rameters (�/µ, k/µ, q), we find that below some critical
temperature T

c

/µ, there exist black brane solutions with
a non-vanishing charged scalar field �, corresponding to
the superconducting phases. From now on we fix q = 6.
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FIG. 3. The variation of the critical temperature with respect
to the lattice wavenumber at some fixed lattice amplitude
(q = 6).

FIG. 4. The value of DC conductivity as a function of k/µ
for �/µ = 1, 3, 5, 10.

In Figure 3 we illustrate how the critical temperature
depends on �/µ and k/µ. First, for a fixed k/µ, the
transition temperature decreases monotonously with the
increase of �/µ. Second, for a fixed �/µ, the critical tem-
perature first decreases for small k/µ, and then increases
for large values of k/µ. When k/µ ! 1, it approaches to
the critical temperature of AdS-RN(�/µ = 0). In axion
model [23] and helical lattice model [7] the critical tem-
perature has the similar non-monotonic behavior. This
behavior was not seen in [21, 22] because the scalar field
� had much smaller charge q. (need to check)
To check the Homes’ law in our model, we need to

calculate the DC conductivity �

DC

at the critical tem-
perature, which is plotted in Figure 4 as a function of
�/µ and k/µ. When k/µ = 0, we have infinite �

DC

because in this case the system is a homogeneous the-
ory. For a fixed �/µ, �

DC

at the critical temperature
decreases when k/µ is small and increases when k/µ is
large. When k/µ ! 1, it again goes to infinity.
Note that the critical temperature and DC conductiv-

ity at the critical temperature all approach their values
of AdS-RN at large k/µ, similar to the observation made
in [7]. In fact, as we will see later, when k/µ ! 1,
all observables tend to their values of AdS-RN. This is
reasonable because in this case the neutral scalar field
 oscillates so fast that the observables can not feel the
e↵ect of Q-lattice (4). We may see the decreasing ef-
fect of k at large k holographically: in Figure 5 we plot
the bulk profile of � at T/T

c

= 0.1 with �/µ = 50 and
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all observables tend to their values of AdS-RN. This is
reasonable because in this case the neutral scalar field
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FIG. 5. The bulk profile of the neutral scalar field z (z) at
T/Tc = 0.1 with �/µ = 50. From top to down the lines
represent k/µ = 2, 4, 6, 10.1, 12, 15, 20.

di↵erent k/µ. The  (z) at the boundary is 50 and the
z decreases more quickly from boundary to horizon for
larger values of k/µ. There is a phase transition, which
is metal-insulator transition, which will be explained in
the following subsection.

IV. SUPERFLUID DENSITY

In this section we calculate the superfluid density K

s

in two ways by the London equation [13]:

J

i

(!, p) = �K

s

A

i

(!, p) , (6)

explaining both the infinite DC conductivity and the
Meissner e↵ect of superconductors. It is valid when !

and p are small compared to the scale of the condensate
of the charged scalar.

First, in the limit p = 0 and ! ! 0, the time derivative
of (6) gives

J

i

(!, 0) =
iK

s

!

E

i

(!, 0) ⌘ �(!)E
i
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implying the Meissner e↵ect. Here � is the magnetic pen-
etration depth squared which is inversely proportional to
the superfluid density. However, notice that since the
gauge field in the holographic model is external, currents
do not source electromagnetic fields and Maxell’s equa-
tion can not be applied. We have only half of the Meiss-
ner e↵ect.
Based on two limits above, the superfluid density can

be obtained by optical conductivity and magnetic pen-
etration depth. According to the AdS/CFT correspon-

dence, J
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in the limits ! ! 0 and p ! 0. However, there is a
subtle issue in the order of limit. The two limits ! ! 0
and p ! 0 may not commute. In the probe limit, it was
shown that the two limits commute, but in the case of
full back reaction, these two limits may not commute.
(momentum: p or k?)

A. In the limit p = 0 and ! ! 0

In order to calculate the superfluid density in the limit
p = 0 and ! ! 0, we introduce a small perturbation of
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Figure 1. The variation of the critical temperature with respect to the lattice wavenumber at some
fixed lattice amplitude (q = 6).

2.1 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field  , corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 2 we illustrate how

Figure 2. The variation of the critical temperature with respect to the lattice wavenumber at some
fixed lattice amplitude (q = 6).

the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
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FIG. 5. The bulk profile of the neutral scalar field z (z) at
T/Tc = 0.1 with �/µ = 50. From top to down the lines
represent k/µ = 2, 4, 6, 10.1, 12, 15, 20.

di↵erent k/µ. The  (z) at the boundary is 50 and the
z decreases more quickly from boundary to horizon for
larger values of k/µ. There is a phase transition, which
is metal-insulator transition, which will be explained in
the following subsection.
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Therefore, it seems that Homes’ law is not realized for
all holographic models. Because physic behind Homes’
law in [7] has not been clearly understood yet, it will
be important to analyse other holographic models to see
how much holographic Homes’ law is robust and to de-
duce the physical mechanism behind it. For this purpose,
in this paper, we study Homes’ law in a holographic su-
perconductor model with Q-lattice. We chose this model
for two reasons. First, it can be easily compared to two
previous works since this model has a similar structure
to the Helical lattice model in that it has two param-
eters and anisotropic. In addition it can be compared
also to linear scalar model in certain limit. Second, it
was argued in [7] that the Homes’ law may have some-
thing to do with the metal/insulator transition in normal
state and it was reported that Q-lattice model also has
metal-insulator transition [? ].

We find that Homes’ law is realized in Q-lattice model
for certain parameter regime of large momentum relax-
ation, which belongs to insulating phase when the con-
dense is suppressed, which is similar to the helical lat-
tice model in [7]. In computing the superfluid density,
we employ two methods: one is related to infinite DC
conductivity and the other is related to magnetic pen-
etration depth. Both yield the same results with finite
momentum relaxation, but the only latter captures the
superfluid density even in the case without momentum
relaxation.

To clarify tissues raised in Johanna’s
This paper is organised as follows. In section II, we

introduce a holographic superconductor model with Q-
lattice. The metal-insulator transition of the ground
state is also briefly reviewed. In section III, the supercon-
ducting transition temperature and electric DC conduc-
tivity are computed. In section IV the superfluid density
is computed in two methods. In section V we discuss the
Home’s law. In section VI we conclude.

II. HOLOGRAPHIC SUPERCONDUCTOR ON
A Q-LATTICE

In this section we briefly review a holographic super-
conductor model on a Q-lattice, which has been studied
in detail in [21, 22]. The action is given by

S =

Z
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where we have chosen units such that the gravitational
constant 16⇡G = 1 and set the AdS radius to unity.
The first two lines are the first holographic supercon-
ductor model [12, 13] with the U(1) gauge field A, its
field strength F = dA, and a complex scalar �. The
last line introduces momentum relaxation by a real scalar

 = e

ikx

z (z). To obtain classical solutions we consider
the following ansatz

ds2 =
1

z

2

h
� (1� z)U(z)dt2 +

dz2

(1� z)U(z)

+ V1(z)dx
2 + V2(z)dy

2
i
,

A = µ(1� z)a(z)dt , � = z�(z) , = e

ikx

z (z) ,

(4)

where U, V1, V2, a, and � are functions of the holo-
graphic coordinate z only. Notice that k is the lattice
wavenumber and µ is the chemical potential of the dual
field theory. The normal phase of the system corre-
sponds to the solution with a vanishing charged scalar
field �. If U = 1 + z + z

2 � µ

2
z

3
/4, V1 = V2 =

a = 1,  = � = 0, we recover the familiar planar
AdS-Reissner-Nordström(AdS-RN) black hole. The non-
trivial Q-lattice backgrounds can be obtained by setting
a non-trivial boundary condition at infinity for the scalar
field  (0) = � and regular boundary conditions on the
horizon z = 1. We will refer to � as the lattice ampli-
tude. The black hole temperature is T/µ = U(1)/(4⇡µ).
Due to conformal invariance, the solutions of the system
are specified by four dimensionless parameters, namely
(T/µ,�/µ, k/µ, q). We will set µ = 1 in numerical calcu-
lation.

We will always set the mass of these two scalar fields
m

2
 = m

2
� = �2.

A. metal-insulator transition

We are mainly interested in the holographic supercon-
ductor model in this paper. However, let us consider
the model without complex scalar fields for a moment to
investigate the properties of our model without conden-
sate. Once we have the background solutions, the DC
conductivity, �DC

, can be computed by [32]

�

DC

=

 r
V2

V1
+

µ

2
a

2
p
V1V2

2k2 2

!�����
z=1

. (5)

For example, we show the DC conductivity as a function
of temperature in Figure 1, at fixed �/µ = 50 and k/µ =
8(a), 12(b).
The resistivity (⇢ = 1/�DC) in this case are shown in

grey dotted lines in Figure 1: (a) is an insulating phase
with increasing resistivity as temperatures lowers while
(b) is a metal phase with decreasing resistivity as tem-
peratures lowers. The metal insulator transition occurs
at k/µ ⇡ 10.15. (It can be understood by Figure ??.
For conducting phase (k =?) �(1) ! 0 so, by (5), ⇢
approaches to zero.) (To Chao: Can you make a plot
similar to Figure 5 without condensation?) (To Chao:
what if m = 0? would there be metal-insulator tran-
sition?) By considering several values of � and k we
found a phase diagram for metal-insulator phase, which
is shown in Figure 2. This phase diagram was first stud-
ied in ?? and here we analysed to ..... If we allow the

 (0) = �

[KYK, Niu: 1608.04653]



32

Superfluid density

4

FIG. 5. The bulk profile of the neutral scalar field z (z) at
T/Tc = 0.1 with �/µ = 50. From top to down the lines
represent k/µ = 2, 4, 6, 10.1, 12, 15, 20.

di↵erent k/µ. The  (z) at the boundary is 50 and the
z decreases more quickly from boundary to horizon for
larger values of k/µ. There is a phase transition, which
is metal-insulator transition, which will be explained in
the following subsection.
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In this section we calculate the superfluid density K
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in two ways by the London equation [13]:
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explaining both the infinite DC conductivity and the
Meissner e↵ect of superconductors. It is valid when !
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of the charged scalar.
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of (6) gives
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where �(!) denotes complex optical conductivity. Thus
the superfluid density (K
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) is identified with the coe�-
cient of the 1/! pole in the imaginary part of the complex
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implying the Meissner e↵ect. Here � is the magnetic pen-
etration depth squared which is inversely proportional to
the superfluid density. However, notice that since the
gauge field in the holographic model is external, currents
do not source electromagnetic fields and Maxell’s equa-
tion can not be applied. We have only half of the Meiss-
ner e↵ect.
Based on two limits above, the superfluid density can

be obtained by optical conductivity and magnetic pen-
etration depth. According to the AdS/CFT correspon-
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in the limits ! ! 0 and p ! 0. However, there is a
subtle issue in the order of limit. The two limits ! ! 0
and p ! 0 may not commute. In the probe limit, it was
shown that the two limits commute, but in the case of
full back reaction, these two limits may not commute.
(momentum: p or k?)

A. In the limit p = 0 and ! ! 0

In order to calculate the superfluid density in the limit
p = 0 and ! ! 0, we introduce a small perturbation of
the gauge field of the form [21, 22]
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FIG. 5. The bulk profile of the neutral scalar field z (z) at
T/Tc = 0.1 with �/µ = 50. From top to down the lines
represent k/µ = 2, 4, 6, 10.1, 12, 15, 20.

di↵erent k/µ. The  (z) at the boundary is 50 and the
z decreases more quickly from boundary to horizon for
larger values of k/µ. There is a phase transition, which
is metal-insulator transition, which will be explained in
the following subsection.
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At the boundary the asymptotic behaviour of the fluc-
tuations are as follows:
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Using di↵eomorphism (and gauge transformaion?) we

impose the following boundary conditions [16]: (a(0)
x

= 1
just for conveniece?)
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At the horizon we impose ingoing boundary conditions.
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B. In the limit ! = 0 and p ! 0

Next we study the limit ! = 0 and p ! 0. In this case
we allow for perturbations in A

x
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Note that these two equations are second order. Thus we
can solve this system of ODEs by using regular conditions
at the horizon. At the boundary we have
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At the boundary the asymptotic behaviour of the fluc-
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Note that these two equations are second order. Thus we
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(a) no momentum relaxation (b) no momentum relaxation

(c) large momentum relaxation (d) small momentum relaxation

FIG. 6. The charge density n, superfluid density Ks, and K̃s vs T/Tc

Then we can identify J
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with the London current (6)
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In Figure 6 we plot the superfluid densities (K
s

, K̃

s

) as
well as the charge density n as functions of T/T

c

for dif-
ferent sets of parameters �/µ, k/µ. First, we display the
cases with no momentum relaxation in Figure 6 (a) and
(b): (a) is simply the AdS-RN geometry (�/µ = 0 and
�(z) = 0) but (b) is not, because there is a finite scalar
field �(z) with � = 5, but with k = 0, so the the bound-
ary theory is still translationally invariant. Here we find
that K

s

and K̃

s

are di↵erent and the superfluid density
should be identified with K̃

s

since it is zero for T > T

c

.
The K

s

is nonzero for T > T

c

because the DC conductiv-
ity is infinite even in normal phase due to translational
invariance. This is an interesting and useful observation,
since K̃

s

gives a way to compute the superfluid density
even in the case with translation invariance.

Next, let us turn to the case with momentum relax-
ation in Figure 6 (c) and (d). Here K

s

= K̃

s

and they

FIG. 7. The superfluid density Ks(= K̃s) vs k/µ for �/µ =
5, T/Tc = 0.1.

are zero for T > T

c

, which means that the contribution
to K

s

from translational invariance vanishes. Notice that
the superfluid density K̃

s

in Figure 6 (d) is similar to K̃

s

in Figure 6 (a) not in (b). It is because k ! 1 the field
� oscillate very rapidly around zero and the translation
invariance is e↵ectively restored. In this limit the value
of � becomes irrelevant and the geometry approach to
AdS-RN. ((compare with the conductivity and transition
temperatuer argument))
For our goal (Homes’ law), we need to know K

s

at zero
temperature, which can be read from Figure 6 (b),(c),(d),
for example, for �/µ = 5 and k/µ = 0, 2, 20 respectively3.

3
Because of di�culties in our numerical analysis we have obtained

4

FIG. 5. The bulk profile of the neutral scalar field z (z) at
T/Tc = 0.1 with �/µ = 50. From top to down the lines
represent k/µ = 2, 4, 6, 10.1, 12, 15, 20.

di↵erent k/µ. The  (z) at the boundary is 50 and the
z decreases more quickly from boundary to horizon for
larger values of k/µ. There is a phase transition, which
is metal-insulator transition, which will be explained in
the following subsection.

IV. SUPERFLUID DENSITY

In this section we calculate the superfluid density K
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in two ways by the London equation [13]:
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explaining both the infinite DC conductivity and the
Meissner e↵ect of superconductors. It is valid when !

and p are small compared to the scale of the condensate
of the charged scalar.
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where �
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and �
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Second, in the limit ! = 0 and p ! 0, the curl of
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implying the Meissner e↵ect. Here � is the magnetic pen-
etration depth squared which is inversely proportional to
the superfluid density. However, notice that since the
gauge field in the holographic model is external, currents
do not source electromagnetic fields and Maxell’s equa-
tion can not be applied. We have only half of the Meiss-
ner e↵ect.
Based on two limits above, the superfluid density can

be obtained by optical conductivity and magnetic pen-
etration depth. According to the AdS/CFT correspon-

dence, J
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in the limits ! ! 0 and p ! 0. (To Chao: only a
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x

is J?)
However, there is a subtle issue in the order of limit. The
two limits ! ! 0 and p ! 0 may not commute. In the
probe limit, it was shown that the two limits commute,
but in the case of full back reaction, these two limits may
not commute. (momentum: p or k?)

A. In the limit p = 0 and ! ! 0

In order to calculate the superfluid density in the limit
p = 0 and ! ! 0, we introduce a small perturbation of
the gauge field of the form [21, 22]
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which is coupled to the fluctuations of the metric and the
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FIG. 5. The bulk profile of the neutral scalar field z (z) at
T/Tc = 0.1 with �/µ = 50. From top to down the lines
represent k/µ = 2, 4, 6, 10.1, 12, 15, 20.

di↵erent k/µ. The  (z) at the boundary is 50 and the
z decreases more quickly from boundary to horizon for
larger values of k/µ. There is a phase transition, which
is metal-insulator transition, which will be explained in
the following subsection.
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FIG. 5. The bulk profile of the neutral scalar field z (z) at
T/Tc = 0.1 with �/µ = 50. From top to down the lines
represent k/µ = 2, 4, 6, 10.1, 12, 15, 20.

di↵erent k/µ. The  (z) at the boundary is 50 and the
z decreases more quickly from boundary to horizon for
larger values of k/µ. There is a phase transition, which
is metal-insulator transition, which will be explained in
the following subsection.
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FIG. 5. The bulk profile of the neutral scalar field z (z) at
T/Tc = 0.1 with �/µ = 50. From top to down the lines
represent k/µ = 2, 4, 6, 10.1, 12, 15, 20.

di↵erent k/µ. The  (z) at the boundary is 50 and the
z decreases more quickly from boundary to horizon for
larger values of k/µ. There is a phase transition, which
is metal-insulator transition, which will be explained in
the following subsection.
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Then we can identify J

x

with the London current (6)
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From (29), we can read the superfluid density
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In Figure 6 we plot the superfluid densities (K
s

, K̃

s

) as
well as the charge density n as functions of T/T

c

for dif-
ferent sets of parameters �/µ, k/µ. First, we display the
cases with no momentum relaxation in Figure 6 (a) and
(b): (a) is simply the AdS-RN geometry (�/µ = 0 and
�(z) = 0) but (b) is not, because there is a finite scalar
field �(z) with � = 5, but with k = 0, so the the bound-
ary theory is still translationally invariant. Here we find
that K

s

and K̃

s

are di↵erent and the superfluid density
should be identified with K̃

s

since it is zero for T > T

c

.
The K

s

is nonzero for T > T

c

because the DC conductiv-
ity is infinite even in normal phase due to translational
invariance. This is an interesting and useful observation,
since K̃

s

gives a way to compute the superfluid density
even in the case with translation invariance.

Next, let us turn to the case with momentum relax-
ation in Figure 6 (c) and (d). Here K

s

= K̃

s

and they
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0.0

0.5

1.0

1.5

k/�
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FIG. 7. The superfluid density Ks(= K̃s) vs k/µ for �/µ =
5, T/Tc = 0.1.

are zero for T > T

c

, which means that the contribution
to K

s

from translational invariance vanishes. Notice that
the superfluid density K̃

s

in Figure 6 (d) is similar to K̃

s

in Figure 6 (a) not in (b). It is because k ! 1 the field
� oscillate very rapidly around zero and the translation
invariance is e↵ectively restored. In this limit the value
of � becomes irrelevant and the geometry approach to
AdS-RN. ((compare with the conductivity and transition
temperatuer argument))
For our goal (Homes’ law), we need to know K

s

at zero
temperature, which can be read from Figure 6 (b),(c),(d),
for example, for �/µ = 5 and k/µ = 0, 2, 20 respectively3.

3
Because of di�culties in our numerical analysis we have obtained

3
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FIG. 1. Resistivity in insulator and metal phase. Red dotted
lines are the case without condensate. With the condensate,
there is a superconducting phase transition at critical tem-
perature and ⇢ becomes zero below Tc.

FIG. 2. Metal-insulator transition without condensate. Red
lines are for ideal metals. (To Chao: Please erase the grey
box and put “metal” and “insulator” in the figure?)

superconducting phase transition at critical temperature
and ⇢ becomes zero below T

c

.

III. CRITICAL TEMPERATURE AND DC
CONDUCTIVITY

We numerically construct explicit superconducting
background at finite temperature. For each set of pa-
rameters (�/µ, k/µ, q), we find that below some critical
temperature T

c

/µ, there exist black brane solutions with
a non-vanishing charged scalar field �, corresponding to
the superconducting phases. From now on we fix q = 6.

FIG. 3. The variation of the critical temperature with respect
to the lattice wavenumber at some fixed lattice amplitude
(q = 6).
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FIG. 4. The value of DC conductivity as a function of k/µ
for �/µ = 1, 3, 5, 10.

In Figure 3 we illustrate how the critical temperature
depends on �/µ and k/µ. First, for a fixed k/µ, the
transition temperature decreases monotonously with the
increase of �/µ. Second, for a fixed �/µ, the critical tem-
perature first decreases for small k/µ, and then increases
for large values of k/µ. When k/µ ! 1, it approaches to
the critical temperature of AdS-RN(�/µ = 0). In axion
model [23] and helical lattice model [7] the critical tem-
perature has the similar non-monotonic behavior. This
behavior was not seen in [21, 22] because the scalar field
� had much smaller charge q. (need to check)
To check the Homes’ law in our model, we need to

calculate the DC conductivity �

DC

at the critical tem-
perature, which is plotted in Figure 4 as a function of
�/µ and k/µ. When k/µ = 0, we have infinite �

DC

because in this case the system is a homogeneous the-
ory. For a fixed �/µ, �

DC

at the critical temperature
decreases when k/µ is small and increases when k/µ is
large. When k/µ ! 1, it again goes to infinity.
Note that the critical temperature and DC conductiv-

ity at the critical temperature all approach their values
of AdS-RN at large k/µ, similar to the observation made
in [7]. In fact, as we will see later, when k/µ ! 1,
all observables tend to their values of AdS-RN. This is
reasonable because in this case the neutral scalar field
 oscillates so fast that the observables can not feel the
e↵ect of Q-lattice (4). We may see the decreasing ef-
fect of k at large k holographically: in Figure 5 we plot
the bulk profile of � at T/T

c

= 0.1 with �/µ = 50 and

5

0 = a

00

x

+

"
((1� z)U)

0

(1� z)U
+

1

2

 
V

0

2

V2
� V

0

1

V1

!#
a

0

x

+

 
!

2

(1� z)2U2
� z

2((1� z)a)
0

(1� z)U

!
a

x

� 2q2�2

(1� z)U
a

x

+
2ikz2((1� z)a)

0
( 

0
��  �

0
)

!

,

0 = h

0

tx

+ ((1� z)a)
0
a

x

+

 
2

z

� V

0

1

V1

!
h

tx

� 2q2�2

(1� z)U
a

x

� 2ik(1� z)U( 
0
��  �

0
)

!

, (18)

0 = �

00
+

"
((1� z)U)

0

(1� z)U
+

1

2

 
V

0

2

V2
+

V

0

1

V1

!#
�

0
+

✓
!

2

(1� z)2U2
� k

2

(1� z)UV1

◆
�

+
1

z

"
((1� z)U)

0

(1� z)U
+

1

2

 
V

0

2

V2
+

V

0

1

V1

!#
�+

2� 2(1� z)U

(1� z)z2U
�� ik!z

2
 

(1� z)2U2
V1

h

tx

,

At the boundary the asymptotic behaviour of the fluc-
tuations are as follows:
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Using di↵eomorphism (and gauge transformaion?) we

impose the following boundary conditions [16]: (a(0)
x

= 1
just for conveniece?)
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At the horizon we impose ingoing boundary conditions.
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B. In the limit ! = 0 and p ! 0

Next we study the limit ! = 0 and p ! 0. In this case
we allow for perturbations in A

x

that have momentum
dependence of the form [13, 33–36]
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which is coupled to the metric fluctuation:
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take the following form
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Note that these two equations are second order. Thus we
can solve this system of ODEs by using regular conditions
at the horizon. At the boundary we have
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And we require a

(0)
x

= 1, h(0)
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= 0. The AdS/CFT dic-
tionary tells us the vector potential and the conjugate
current of the dual field theory are given by
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(a) no momentum relaxation (b) no momentum relaxation

(c) large momentum relaxation (d) small momentum relaxation

FIG. 6. The charge density n, superfluid density Ks, and K̃s vs T/Tc

Then we can identify J

x

with the London current (6)

J

x

(0, p) = �K̃

s

A

x

(0, p). (30)

From (30), we can read the superfluid density

K̃

s

= � J

x

(0, p = 0)
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(1)
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. (31)
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. (32)

In Figure 6 we plot the superfluid densities (K
s

, K̃

s

) as
well as the charge density n as functions of T/T

c

for dif-
ferent sets of parameters �/µ, k/µ. First, we display the
cases with no momentum relaxation in Figure 6 (a) and
(b): (a) is simply the AdS-RN geometry (�/µ = 0 and
�(z) = 0) but (b) is not, because there is a finite scalar
field �(z) with � = 5, but with k = 0, so the the bound-
ary theory is still translationally invariant. Here we find
that K

s

and K̃

s

are di↵erent and the superfluid density
should be identified with K̃

s

since it is zero for T > T

c

.
The K

s

is nonzero for T > T

c

because the DC conductiv-
ity is infinite even in normal phase due to translational
invariance. This is an interesting and useful observation,
since K̃

s

gives a way to compute the superfluid density
even in the case with translation invariance.

Next, let us turn to the case with momentum relax-
ation in Figure 6 (c) and (d). Here K

s

= K̃

s

and they

FIG. 7. The superfluid density Ks(= K̃s) vs k/µ for �/µ =
5, T/Tc = 0.1.

are zero for T > T

c

, which means that the contribution
to K

s

from translational invariance vanishes. Notice that
the superfluid density K̃

s

in Figure 6 (d) is similar to K̃

s

in Figure 6 (a) not in (b). It is because k ! 1 the field
� oscillate very rapidly around zero and the translation
invariance is e↵ectively restored. In this limit the value
of � becomes irrelevant and the geometry approach to
AdS-RN. ((compare with the conductivity and transition
temperatuer argument))
For our goal (Homes’ law), we need to know K

s

at zero
temperature, which can be read from Figure 6 (b),(c),(d),
for example, for �/µ = 5 and k/µ = 0, 2, 20 respectively3.

3
Because of di�culties in our numerical analysis we have obtained

Perfect conductor: spurious contribution  
                           from translational invariance

extrapolate

[KYK, Niu: 1608.04653]
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FIG. 1. Resistivity in insulator and metal phase. Red dotted
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perature and ⇢ becomes zero below Tc.
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superconducting phase transition at critical temperature
and ⇢ becomes zero below T

c

.

III. CRITICAL TEMPERATURE AND DC
CONDUCTIVITY

We numerically construct explicit superconducting
background at finite temperature. For each set of pa-
rameters (�/µ, k/µ, q), we find that below some critical
temperature T

c

/µ, there exist black brane solutions with
a non-vanishing charged scalar field �, corresponding to
the superconducting phases. From now on we fix q = 6.
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FIG. 3. The variation of the critical temperature with respect
to the lattice wavenumber at some fixed lattice amplitude
(q = 6).

FIG. 4. The value of DC conductivity as a function of k/µ
for �/µ = 1, 3, 5, 10.

In Figure 3 we illustrate how the critical temperature
depends on �/µ and k/µ. First, for a fixed k/µ, the
transition temperature decreases monotonously with the
increase of �/µ. Second, for a fixed �/µ, the critical tem-
perature first decreases for small k/µ, and then increases
for large values of k/µ. When k/µ ! 1, it approaches to
the critical temperature of AdS-RN(�/µ = 0). In axion
model [23] and helical lattice model [7] the critical tem-
perature has the similar non-monotonic behavior. This
behavior was not seen in [21, 22] because the scalar field
� had much smaller charge q. (need to check)
To check the Homes’ law in our model, we need to

calculate the DC conductivity �

DC

at the critical tem-
perature, which is plotted in Figure 4 as a function of
�/µ and k/µ. When k/µ = 0, we have infinite �

DC

because in this case the system is a homogeneous the-
ory. For a fixed �/µ, �

DC

at the critical temperature
decreases when k/µ is small and increases when k/µ is
large. When k/µ ! 1, it again goes to infinity.
Note that the critical temperature and DC conductiv-

ity at the critical temperature all approach their values
of AdS-RN at large k/µ, similar to the observation made
in [7]. In fact, as we will see later, when k/µ ! 1,
all observables tend to their values of AdS-RN. This is
reasonable because in this case the neutral scalar field
 oscillates so fast that the observables can not feel the
e↵ect of Q-lattice (4). We may see the decreasing ef-
fect of k at large k holographically: in Figure 5 we plot
the bulk profile of � at T/T

c

= 0.1 with �/µ = 50 and
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FIG. 2. Metal-insulator transition without condensate. Red
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superconducting phase transition at critical temperature
and ⇢ becomes zero below T

c

.

III. CRITICAL TEMPERATURE AND DC
CONDUCTIVITY

We numerically construct explicit superconducting
background at finite temperature. For each set of pa-
rameters (�/µ, k/µ, q), we find that below some critical
temperature T

c

/µ, there exist black brane solutions with
a non-vanishing charged scalar field �, corresponding to
the superconducting phases. From now on we fix q = 6.

FIG. 3. The variation of the critical temperature with respect
to the lattice wavenumber at some fixed lattice amplitude
(q = 6).
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FIG. 4. The value of DC conductivity as a function of k/µ
for �/µ = 1, 3, 5, 10.

In Figure 3 we illustrate how the critical temperature
depends on �/µ and k/µ. First, for a fixed k/µ, the
transition temperature decreases monotonously with the
increase of �/µ. Second, for a fixed �/µ, the critical tem-
perature first decreases for small k/µ, and then increases
for large values of k/µ. When k/µ ! 1, it approaches to
the critical temperature of AdS-RN(�/µ = 0). In axion
model [23] and helical lattice model [7] the critical tem-
perature has the similar non-monotonic behavior. This
behavior was not seen in [21, 22] because the scalar field
� had much smaller charge q. (need to check)
To check the Homes’ law in our model, we need to

calculate the DC conductivity �

DC

at the critical tem-
perature, which is plotted in Figure 4 as a function of
�/µ and k/µ. When k/µ = 0, we have infinite �

DC

because in this case the system is a homogeneous the-
ory. For a fixed �/µ, �

DC

at the critical temperature
decreases when k/µ is small and increases when k/µ is
large. When k/µ ! 1, it again goes to infinity.
Note that the critical temperature and DC conductiv-

ity at the critical temperature all approach their values
of AdS-RN at large k/µ, similar to the observation made
in [7]. In fact, as we will see later, when k/µ ! 1,
all observables tend to their values of AdS-RN. This is
reasonable because in this case the neutral scalar field
 oscillates so fast that the observables can not feel the
e↵ect of Q-lattice (4). We may see the decreasing ef-
fect of k at large k holographically: in Figure 5 we plot
the bulk profile of � at T/T

c

= 0.1 with �/µ = 50 and
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(c)large momentum relaxation (d)small momentum relaxation

FIG. 6. The charge density n, superfluid density Ks, and K̃s vs T/Tc

Then we can identify J

x

with the London current (6)

J

x

(0, p) = �K̃

s

A

x

(0, p). (29)

From (29), we can read the superfluid density
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= � J
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(0, p = 0)
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In Figure 6 we plot the superfluid densities (K
s

, K̃

s

) as
well as the charge density n as functions of T/T

c

for dif-
ferent sets of parameters �/µ, k/µ. First, we display the
cases with no momentum relaxation in Figure 6 (a) and
(b): (a) is simply the AdS-RN geometry (�/µ = 0 and
�(z) = 0) but (b) is not, because there is a finite scalar
field �(z) with � = 5, but with k = 0, so the the bound-
ary theory is still translationally invariant. Here we find
that K

s

and K̃

s

are di↵erent and the superfluid density
should be identified with K̃

s

since it is zero for T > T

c

.
The K

s

is nonzero for T > T

c

because the DC conductiv-
ity is infinite even in normal phase due to translational
invariance. This is an interesting and useful observation,
since K̃

s

gives a way to compute the superfluid density
even in the case with translation invariance.

Next, let us turn to the case with momentum relax-
ation in Figure 6 (c) and (d). Here K

s

= K̃

s

and they

0 5 10 15 20
0.0

0.5

1.0

1.5

k/�

Ks

T/Tc=0.1

FIG. 7. The superfluid density Ks(= K̃s) vs k/µ for �/µ =
5, T/Tc = 0.1.

are zero for T > T

c

, which means that the contribution
to K

s

from translational invariance vanishes. Notice that
the superfluid density K̃

s

in Figure 6 (d) is similar to K̃

s

in Figure 6 (a) not in (b). It is because k ! 1 the field
� oscillate very rapidly around zero and the translation
invariance is e↵ectively restored. In this limit the value
of � becomes irrelevant and the geometry approach to
AdS-RN. ((compare with the conductivity and transition
temperatuer argument))
For our goal (Homes’ law), we need to know K

s

at zero
temperature, which can be read from Figure 6 (b),(c),(d),
for example, for �/µ = 5 and k/µ = 0, 2, 20 respectively3.

3
Because of di�culties in our numerical analysis we have obtained
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FIG. 10. The charge density n and superfluid density Ks and
K̃s as a function of k/µ for �/µ = 5, T/Tc = 0.1.
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superconducting phase transition at critical temperature
and ⇢ becomes zero below T

c

.

III. CRITICAL TEMPERATURE AND DC
CONDUCTIVITY

We numerically construct explicit superconducting
background at finite temperature. For each set of pa-
rameters (�/µ, k/µ, q), we find that below some critical
temperature T

c

/µ, there exist black brane solutions with
a non-vanishing charged scalar field �, corresponding to
the superconducting phases. From now on we fix q = 6.

FIG. 3. The variation of the critical temperature with respect
to the lattice wavenumber at some fixed lattice amplitude
(q = 6).
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FIG. 4. The value of DC conductivity as a function of k/µ
for �/µ = 1, 3, 5, 10.

In Figure 3 we illustrate how the critical temperature
depends on �/µ and k/µ. First, for a fixed k/µ, the
transition temperature decreases monotonously with the
increase of �/µ. Second, for a fixed �/µ, the critical tem-
perature first decreases for small k/µ, and then increases
for large values of k/µ. When k/µ ! 1, it approaches to
the critical temperature of AdS-RN(�/µ = 0). In axion
model [23] and helical lattice model [7] the critical tem-
perature has the similar non-monotonic behavior. This
behavior was not seen in [21, 22] because the scalar field
� had much smaller charge q. (need to check)
To check the Homes’ law in our model, we need to

calculate the DC conductivity �

DC

at the critical tem-
perature, which is plotted in Figure 4 as a function of
�/µ and k/µ. When k/µ = 0, we have infinite �

DC

because in this case the system is a homogeneous the-
ory. For a fixed �/µ, �

DC

at the critical temperature
decreases when k/µ is small and increases when k/µ is
large. When k/µ ! 1, it again goes to infinity.
Note that the critical temperature and DC conductiv-

ity at the critical temperature all approach their values
of AdS-RN at large k/µ, similar to the observation made
in [7]. In fact, as we will see later, when k/µ ! 1,
all observables tend to their values of AdS-RN. This is
reasonable because in this case the neutral scalar field
 oscillates so fast that the observables can not feel the
e↵ect of Q-lattice (4). We may see the decreasing ef-
fect of k at large k holographically: in Figure 5 we plot
the bulk profile of � at T/T

c

= 0.1 with �/µ = 50 and

Homes’ law?

Homes’ law Ks(T = 0) = C�DC(Tc)Tc

Small variation of C 
At fixed    , plateau for large k �

C =
⇢s(T = 0)

�DC(Tc)Tc

Insulator

Metal
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Figure 6. The charge density n and superfluid density Ks and K̃s as a function of k/µ for
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law does not hold in this sense. The Uemura’s law does not hold either (Figure 11 (right)
)

The qualitative behaviours of these plots can be understood by looking at Figure 2,
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Figure 1. The variation of the critical temperature with respect to the lattice wavenumber at some
fixed lattice amplitude (q = 6).

2.1 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field  , corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 2 we illustrate how

0 5 10 15 20
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

k/μ

Tc/μ
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the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
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the critical temperature first decreases for small k/µ, and then increases for large values
of k/µ. When k/µ ! 1, it approaches to the critical temperature of AdS-RN(�/µ = 0).
In axion model [3] and helical lattice model [4] the critical temperature has the similar
non-monotonic behavior. This behavior was not seen in [1, 2] because the scalar field  
had much smaller charge q.

2.2 DC conductivity at critical temperature

To check the Homes’ law in our model, we need to calculate the DC conductivity �DC at
the critical temperature. A formula for �DC in terms of the background solution data at
the horizon can be derived [5]

�DC =

 r
V2

V1
+

µ

2
a

2
p
V1V2

2k2�2

!�����
z=1

. (2.7)

In Figure 3, we plot the DC conductivity �DC and resistivity ⇢ at the critical temperature
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Figure 3. The value of DC conductivity and DC resistivity as a function of k/µ for �/µ = 1, 3, 5, 10.

as a function of �/µ and k/µ. When k/µ = 0, we have infinite �DC because in this case
the system is a homogeneous theory. For a fixed �/µ, �DC at the critical temperature
decreases when k/µ is small and increases when k/µ is large. When k/µ ! 1, it again
goes to infinity.

Note that the critical temperature and DC conductivity at the critical temperature all
approach their values of AdS-RN at large k/µ, similar to the observation made in [4]. In
fact, as we will see later, when k/µ ! 1, all observables tend to their values of AdS-RN.
This is reasonable because in this case the neutral scalar field � oscillates so fast that the
observables can not feel the effect of Q-lattice (2.6). We may see the decreasing effect of
k at large k holographically: in Figure 4 we plot the bulk profile of � at T/Tc = 0.1 with
�/µ = 5 and different k/µ. The � decreases more quickly from boundary to horizon for
larger values of k/µ.
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Figure 6. The charge density n and superfluid density Ks and K̃s as a function of k/µ for
�/µ = 5, T/Tc = 0.1.
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law does not hold in this sense. The Uemura’s law does not hold either (Figure 11 (right)
)

The qualitative behaviours of these plots can be understood by looking at Figure 2,
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Figure 9. The value of C = Ks/(�DCTc) as a function of k/µ for �/µ = 1, 3, 5, 10.
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2.1 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field  , corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 2 we illustrate how

Figure 2. The variation of the critical temperature with respect to the lattice wavenumber at some
fixed lattice amplitude (q = 6).

the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
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Figure 15. A log-log-plot of the superfluid density ⇢s with respect to �DC(Tc)Tc. The color coding
for �/µ is identical to the phase-diagram plots presented in Figure 5, �/µ = 4.5, 4.8, 5.1, 5.4, 5.7
, whereas values of different p/µ are not resolved, except for the outliers where the value of p/µ is
explicitly attached to the point. If Homes’ relation holds, the points should roughly fall on a line
with a slope of unity, according to log(⇢s) = logC + log(�DCTc) denoted by the black line. The
inset shows the value of Homes’ constant C for �/µ = 4.5, 4.8, 5.1, 5.4, 5.7. The relation is not
expected to hold in the limits of p/µ ! 0 and p/µ ! 1. There the constant approaches zero due to
the absence of momentum relaxation and the corresponding divergence of �DC. These data points
may be faithfully discarded. Doing so, we see that, in the reasonably applicable range of p/µ 2 [1, 2]
Homes’ relation seems to hold within the dashed lines given by C ⇡ 6.17± 0.31. This value for the
constant is extracted from a least-squares fit represented by the thick black line in the main figure.

be almost the arithmetic mean of the two experimentally determined values. Additionally,
one may compare to the most recent results found for organic superconductors in [57], i.e.
C = (110 ± 60)

cm�1/⌦�1K, again in dimensionful units. Converting to our dimensionless
Homes’ constant and including the additional factor of 8, we find C = 4±2.1, which is very
close to the original result in [33].

constants, e.g . for the conversion of the temperature we have

T [K] =
c · h
KB

· 100 T

⇥
cm�1⇤

,

which amounts to 1K = 0.695 cm�1. Similarly, 1⌦�1cm�1 = 4.935 cm�1 and our final conversion factor
reads 1⌦�1K = 3.42983 cm�1. Thus, the values given in [33] are converted by

(120± 25)
cm�1

⌦�1K
=

120± 25
3.43

⇡ 35± 7.3.

Taking into account the correction factor for our different definition of ⇢s we arrive at C = 35±7.3
/8 ⇡

4.4± 0.9.
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Figure 16. The nature of the zero-temperature ground state from the finite temperature conduc-
tivity. The surprise is that for fixed helix amplitude � the system transitions from an insulating to
a metallic and then back to an insulating phase. For p/µ ⌧ 1 and �/µ ⌧ 1, we expect a metallic
phase designated by the shaded green area due to the fact that momentum relaxation is removed
in the limit where either of these parameters vanishes. This part of the metallic phase could not
be distinguished from the insulating phase since we are using very coarse measure to determine
the nature of the ground state i.e. a qualitative measure of the conductivity. The thick blue line
denotes the location of the minimal critical temperature Tmin

c extracted from Figure 5. In the case
 = 0, shown in the left panel, this minimum tracks qualitatively the metallic phase inferred from
the conductivity, whereas for  =

1/
p
2 the minimal critical temperature Tmin

c is invariant under
changes in p/µ and �/µ. Note that at high values for �/µ the critical temperature is very low and
thus our numerical code cannot reach Tmin

c anymore. Homes’ relation holds in the region marked
by the white dashed box.

nicely stable, indicating that it is the true ground state [26]. The insulating IR geometry is
indeed unstable towards superconductivity, but curiously not for the mass of the scalar field
considered here. We suspect, however, that in this case the superconducting IR geometry,
is still the thermodynamically preferred ground state, i.e. the state of lowest free energy.
The insulating but not superconducting geometry of [26] is hence dynamically stable, but
thermodynamically unstable. This would indicate that they are separated by a first order
transition. We will support this claim by an analysis of the thermodynamics and transport
at zero temperature in a forthcoming work [37].

5.2 Transport

In our system, the linear momentum relaxation introduced by the Bianchi VII
0

structure of
the geometry allows us to reliably analyse the physics behind the low-frequency transport
properties of our system. Our computation reveals that the superconducting system is well
described by a two-fluid Drude model at small frequencies in the regime of weak momentum
relaxation �/µ ⌧ 1, a fact also observed in the models of [29, 30]. On the other hand, in
the regime of stronger momentum relaxation, �/µ ⇡ 1, the two-fluid Drude model seems to
work less and less well, again similar to [29, 30].
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2 Holographic superconductor on a Q-lattice

Total action S = SHHH + Sm

SHHH =

Z
d

4
x

p
�g


R+ 6� 1

4
F

2 � |(@ � iqA)�|2 �m

2
���

⇤
�
, (2.1)

Sm:
Q-lattice

SQ =

Z
d

4
x

p
�g

⇥
�|@ |2 �m

2
 | |2

⇤
, (2.2)

Axion

SA =

Z
d

4
x

p
�g

2

4�1

2

X

I=1,2

(@ I)
2

3

5
, (2.3)

Hellical lattice

SH =

Z
d

4
x

p
�g


�1

4
W

µ⌫
Wµ⌫ �m

2
BB

µ
Bµ

�
� 1

2

Z
B ^ F ^W, (2.4)

In this section we briefly review the holographic superconductor model that dualizes
to a field theory in the presence of a Q-lattice, which has been studied in detail in [1, 2].
The action is given by

S =

Z
d4x

p
�g


R+ 6� 1

4
F

2 � |(@ � iqA)�|2 �m

2
���

⇤ � |@ |2 �m

2
 | |2

�
, (2.5)

where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e

ikx
'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
phase. We will always set the mass of these two scalar fields m

2
 = m

2
� = �2.

We take the following anisotropic ansatz

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�

A = µ(1� z)a(z)dt � = z�(z)  = e

ikx
z (z)

(2.6)

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�
,

A = µ(1� z)a(z)dt ,  = e

ikx
z (z) , � = z�(z) ,

(2.7)

where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
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where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e
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'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
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where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
k is the lattice wavenumber and µ is the chemical potential of the dual field theory. The
normal phase of the system corresponds to the solution with a vanishing charged scalar
field �. If U = 1 + z + z

2 � µ

2
z

3
/4, V1 = V2 = a = 1,  = � = 0, we recover the

familiar planar AdS-Reissner-Nordström(AdS-RN) black hole. The non-trivial Q-lattice
backgrounds can be obtained by setting a non-trivial boundary condition at infinity for
the scalar field  (0) = � and regular boundary conditions on the horizon z = 1. We will
refer to � as the lattice amplitude. The black hole temperature is T/µ = U(1)/(4⇡µ).
Due to conformal invariance, the solutions of the system are specified by four dimensionless
parameters, namely (T/µ,�/µ, k/µ, q). We will set µ = 1 in numerical calculation.

3 Critical temperature and DC conductivity

3.1 Metal-insulator transition without condensate

To check the Homes’ law in our model, we need to calculate the DC conductivity �DC at
the critical temperature. A formula for �DC in terms of the background solution data at
the horizon can be derived [3]

�DC =

 r
V2

V1
+

µ

2
a

2
p
V1V2

2k2 2

!�����
z=1

. (3.1)

3.2 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field �, corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 3 we illustrate how
the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
the critical temperature first decreases for small k/µ, and then increases for large values
of k/µ. When k/µ ! 1, it approaches to the critical temperature of AdS-RN(�/µ = 0).
In axion model [4] and helical lattice model [5] the critical temperature has the similar
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Summary and outlook

⇢s(T = 0) = C�DC(Tc)Tc

⇢s(T = 0) = BTc

Homes’ law
Uemura’s law

that the c-axis data11,17–20 for all of the single and double-
layer materials (Supplementary Table 2) are again well described
by a line with slope of unity. What is perhaps most remarkable is
that the a–b-plane and c-axis results may all be described by
the same universal line shown in Fig. 2, even though the two
results correspond to very different ranges of r s. The combined
data span nearly five orders of magnitude, from the insulating
behaviour along the c axis in the underdoped systems, to the
metallic behaviour in the a–b planes of the overdoped copper
oxides.
The scaling relation for the a–b planes can be interpreted in a

number of different ways. One of the most direct is the assumption
that all of the spectral weight (the area obtained from the integral of
the optical conductivity) associated with the free-carriers of the
normal state (nn) collapses into the superconducting condensate21

(n s ; nn) below T c. Allowing that the low-frequency conductivity
at T < T c can be described by the simple Drude theory for a metal,

j1(q) ¼ jdc/(1 þ q2t2) (where q is frequency), which has the
shape of a lorentzian centred at zero frequency with a width at
half-maximum given by the scattering rate 1/t, the area under
this curve may be approximated simply as j dc/t. Transport
measurements for the copper oxides22 suggest that 1/t near the
transition scales linearly with T c, so the strength of the condensate
is just r s / jdc T c, in agreement with the observed scaling relation.
This result requires that these materials approach the clean limit
(1/t ,, 2D, where 2D is the superconducting energy gap).

However, this approach cannot be applied to the properties along
the c axis, because it is generally conceded that transport in this
direction is incoherent, and therefore hopping rather than scatter-
ing governs the physics15. The quasi-two-dimensional nature of the
copper oxides, which often includes a semiconducting or activated
response of the resistivity along the c axis, has motivated the
description of the superconductivity in this direction in terms of
a Josephson-coupling picture16,17,23–26. The c-axis penetration depth
l is then determined by the Josephson current density J c and is
l 2 ¼ !c2/8pdeJ c, where J c ¼ (pD/2eRn)tanh(D/2kBT), d is the
separation between the planes, and Rn ¼ d/jdc is the normal-state
tunnelling resistance24. There is convincing evidence that the energy
gap in the copper oxides is d-wave in nature, containing nodes at the
Fermi surface27,28, making the determination of J c difficult. How-
ever, if the coupling between the planes originates at the (0,p), (p,0)
points29 where the gap is a maximum, D0, then we can approximate
D < D0. Furthermore, if D0 /Tc, then Jc /Tc=Rn and rs / jdcTc,
which yields the observed scaling behaviour in the c-axis direction.
Despite the different nature of the transport properties parallel and
perpendicular to the a–b planes, the universal scaling pertaining to
both directions is an unusual and surprising result that should
provide new insights into the origins of the superconductivity in
these materials. A

Figure 1 Plot of the superfluid density (rs) versus the product of the d.c. conductivity
(jdc) and the superconducting transition temperature (Tc) for a variety of copper oxides and

some simple metals. (jdc is measured just above the transition, and parallel to the

copper–oxygen (a–b) planes; data are shown on a log–log plot; see Supplementary

Table 1 for details, including errors.) The values for jdc and rs are obtained from optical

measurements of the reflectance. The reflectance is a complex quantity consisting of an

amplitude and a phase; in an experiment only the amplitude is usually measured.

However, if the reflectance is measured over a wide frequency range, the Kramers–

Kronig relation may be used to obtain the phase. Once the complex reflectance is

known, then other complex optical functions may be calculated (for example, the

dielectric function or the conductivity). The jdc used in this scaling relation has been

extrapolated from the real part of the optical conductivity jdc ¼ j1(q ! 0) at T < Tc.

For T ,, Tc, the response of the dielectric function to the formation of a condensate is

expressed purely by the real part, e1(q) ¼ e1 2 qps
2 /q 2, which allows the

superconducting plasma frequency qps to be calculated from qps
2 ¼ 2q 2e1(q) in the

q ! 0 limit, where qps
2 ¼ 4pn se

2/m* is proportional to the number of carriers in the

condensate. The strength of the condensate (rs) is simply rs ; qps
2 . The dashed and

dotted lines are described by rs ¼ (120 ^ 25)jdcTc. Within error, all the data for the

copper oxides are described by the dashed line. The data for the conventional

superconductors Nb and Pb, indicated by the atomic symbols within the circles, lie

slightly above the dashed line.

Figure 2 As Fig. 1 but for copper oxides only, and including data for the poorly conducting
c axis. The values for rs and jdc are obtained from optical measurements, as described in

Fig. 1 legend. In addition to the published results, new data are also included for

HgBa2CuO4þd and La22xSrxCuO4. Within error, all of the data fall on the same universal

(dashed) line with slope of unity, defined by rs ¼ 120jdcTc; the dotted lines are from

rs ¼ (120 ^ 25)jdcTc. See Supplementary Table 2 for details, including errors.
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2.1 Holographic setup

The holographic model that dualizes to a field theory in the presence of a helical lattice

has the action [26]

Shelix =

∫
d4+1x

√
−g

[
R+ 12− 1

4
FµνFµν −

1

4
WµνWµν −m2BµB

µ

]

− κ

2

∫
B ∧ F ∧W. (2.1)

Here gµν is the metric of a 5-dimensional asymptotically anti-de-Sitter spacetime including

the 3 + 1 field theory dimensions and the additional radial coordinate r. R is the Ricci

scalar of this metric. There are two field strengths: Fµν = ∂µAν − ∂νAµ is the Maxwell

field which accounts for the U(1) charge dynamics. The additional massive Proca field

Bµ generates the ‘helix U(1)’ with field strength Wµν = ∂µBν − ∂νBµ, and supports the

helical structure. In addition, there is a Chern-Simons term which couples the fields Aµ

and Bµ with coupling constant κ. In the above action, the AdS radius L has been set to

one. Furthermore, Newton’s constant has been fixed to κ25 = 1/2. This can be achieved

by redefining the remaining couplings such that 1/(2κ2
5) becomes a total factor multiplying

the action. To encode the U(1) order parameter, we add to this action a scalar field with

charge q and mass mρ minimally coupled to Aµ,

Stotal = Shelix+

∫
d4+1x

√
−g

[
− |∂ρ− iqAρ|2 −m2

ρ|ρ|2
]
. (2.2)

The equations of motion following from the action (2.2) are

Rµν −
1

2
Rgµν − 6gµν = T (A)

µν + T (B)
µν + T (ρ)

µν , (2.3)

where

T (A)
µν =

1

2
FµαF

α
ν − 1

8
gµνF

2,

T (B)
µν =

1

2
WµαW

α
ν − 1

8
gµνW

2 − m2

2
BµBν ,

T (ρ)
µν = Re

[
(∇µρ

∗ + iqAµρ
∗)(∇νρ− iqAνρ)

]
− 1

2
gµν

(
|∂ρ− iqAρ|2 +m2

ρ|ρ|2
)
, (2.4)

are the energy-momentum tensors of the two vector fields A and B, and of the complex

scalar ρ. Furthermore, we have the scalar equation

0 =
[
(∇µ − iqAµ)(∇µ − iqAµ)−m2

ρ

]
ρ, (2.5)

and the Maxwell equations

∇µF
µν = iq [ρ∗(∂ν − iqAν)ρ− ρ(∂ν + iqAν)ρ∗] +

κ

4
√
−g

ϵ̃µναβγ∂α(BµWβγ), (2.6)

∇µW
µν = m2Bν +

κ

8
√
−g

ϵ̃µναβγ [2∂γ(BµFαβ)− FµαWβγ ] . (2.7)
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ω2-one form field
in yz-plane

x

Figure 2. Plot of the one-form ω2 along the x-axis for one period. Being periodic with period
2π/p, ω2 is not translationally invariant for p ̸= 0. The vector field B = w(r)ω2 acts as a source for
the helix and imprints the helical, translational symmetry breaking structure on the system.

Here ϵ̃µναβγ is the totally antisymmetric Levi-Civita symbol in 5 dimensions with ϵ̃01234 = 1.

As in [26], the wedge product in the action (2.2) is normalized such that the Chern-Simons

term evaluated on the chosen Ansatz equals SCS =
∫
dr pκw2a′/2.

We now construct solutions to the equations that have the following properties. First

we aim to study the system with the helix structure in order to break translational sym-

metry. For this purpose, the one-forms

ω1 = dx ,

ω2 = cos(px) dy − sin(px) dz ,

ω3 = sin(px) dy +cos(px) dz , (2.8)

are introduced. They provide a basis for the spatial (x, y, z) part of the metric and the two

vector fields Aµ and Bµ. In figure 2, one period of ω2 is plotted along the x-coordinate.

The forms ω2 and ω3 have the structure of a helix with periodicity 2π/p. In the following, we

focus on the case m = 0, i.e. we are considering a massless helix field B. In our setup, the

role of B is to introduce a lattice in a phenomenological way and thus break translational

symmetry. Since this can be achieved with a massless helix field, m = 0 is chosen for

simplicity. This choice follows [26]. Using these one-forms we make the Ansatz for the

helix field B = Bµdxµ to be

B = w(r)ω2, w(∞) = λ, (2.9)

where r = ∞ denotes the boundary of the asymptotically anti-de-Sitter space. Since this

Ansatz shows that By and Bz do not vanish at the boundary, the field theory interpretation

is that we explicitly introduce a source λ for the operator dual to B, i.e. we are deforming

the homogeneous theory by a lattice operator. λ can be interpreted as the lattice strength.

The field B extends along ω2 and therefore breaks translational symmetry in the x-direction

for p ̸= 0. Via backreaction on the metric, this helical structure is imprinted on the whole
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Figure 15. A log-log-plot of the superfluid density ⇢s with respect to �DC(Tc)Tc. The color coding
for �/µ is identical to the phase-diagram plots presented in Figure 5, �/µ = 4.5, 4.8, 5.1, 5.4, 5.7
, whereas values of different p/µ are not resolved, except for the outliers where the value of p/µ is
explicitly attached to the point. If Homes’ relation holds, the points should roughly fall on a line
with a slope of unity, according to log(⇢s) = logC + log(�DCTc) denoted by the black line. The
inset shows the value of Homes’ constant C for �/µ = 4.5, 4.8, 5.1, 5.4, 5.7. The relation is not
expected to hold in the limits of p/µ ! 0 and p/µ ! 1. There the constant approaches zero due to
the absence of momentum relaxation and the corresponding divergence of �DC. These data points
may be faithfully discarded. Doing so, we see that, in the reasonably applicable range of p/µ 2 [1, 2]
Homes’ relation seems to hold within the dashed lines given by C ⇡ 6.17± 0.31. This value for the
constant is extracted from a least-squares fit represented by the thick black line in the main figure.

be almost the arithmetic mean of the two experimentally determined values. Additionally,
one may compare to the most recent results found for organic superconductors in [57], i.e.
C = (110 ± 60)

cm�1/⌦�1K, again in dimensionful units. Converting to our dimensionless
Homes’ constant and including the additional factor of 8, we find C = 4±2.1, which is very
close to the original result in [33].

constants, e.g . for the conversion of the temperature we have

T [K] =
c · h
KB

· 100 T

⇥
cm�1⇤

,

which amounts to 1K = 0.695 cm�1. Similarly, 1⌦�1cm�1 = 4.935 cm�1 and our final conversion factor
reads 1⌦�1K = 3.42983 cm�1. Thus, the values given in [33] are converted by

(120± 25)
cm�1

⌦�1K
=

120± 25
3.43

⇡ 35± 7.3.

Taking into account the correction factor for our different definition of ⇢s we arrive at C = 35±7.3
/8 ⇡

4.4± 0.9.
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In this section we briefly review the holographic superconductor model that dualizes
to a field theory in the presence of a Q-lattice, which has been studied in detail in [1, 2].
The action is given by

S =

Z
d4x

p
�g


R+ 6� 1

4
F

2 � |(@ � iqA)�|2 �m
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���
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where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e

ikx
'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
phase. We will always set the mass of these two scalar fields m

2
 = m

2
� = �2.

We take the following anisotropic ansatz

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�

A = µ(1� z)a(z)dt � = z�(z)  = e

ikx
z (z)

(2.6)

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�
,

A = µ(1� z)a(z)dt ,  = e

ikx
z (z) , � = z�(z) ,

(2.7)

where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
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ikx
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where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
k is the lattice wavenumber and µ is the chemical potential of the dual field theory. The
normal phase of the system corresponds to the solution with a vanishing charged scalar
field �. If U = 1 + z + z

2 � µ

2
z

3
/4, V1 = V2 = a = 1,  = � = 0, we recover the

familiar planar AdS-Reissner-Nordström(AdS-RN) black hole. The non-trivial Q-lattice
backgrounds can be obtained by setting a non-trivial boundary condition at infinity for
the scalar field  (0) = � and regular boundary conditions on the horizon z = 1. We will
refer to � as the lattice amplitude. The black hole temperature is T/µ = U(1)/(4⇡µ).
Due to conformal invariance, the solutions of the system are specified by four dimensionless
parameters, namely (T/µ,�/µ, k/µ, q). We will set µ = 1 in numerical calculation.

3 Critical temperature and DC conductivity

3.1 Metal-insulator transition without condensate

To check the Homes’ law in our model, we need to calculate the DC conductivity �DC at
the critical temperature. A formula for �DC in terms of the background solution data at
the horizon can be derived [3]

�DC =

 r
V2

V1
+

µ

2
a

2
p
V1V2

2k2 2

!�����
z=1

. (3.1)

3.2 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field �, corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 3 we illustrate how
the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
the critical temperature first decreases for small k/µ, and then increases for large values
of k/µ. When k/µ ! 1, it approaches to the critical temperature of AdS-RN(�/µ = 0).
In axion model [4] and helical lattice model [5] the critical temperature has the similar
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2.1 Holographic setup

The holographic model that dualizes to a field theory in the presence of a helical lattice

has the action [26]

Shelix =

∫
d4+1x

√
−g

[
R+ 12− 1

4
FµνFµν −

1

4
WµνWµν −m2BµB

µ

]

− κ

2

∫
B ∧ F ∧W. (2.1)

Here gµν is the metric of a 5-dimensional asymptotically anti-de-Sitter spacetime including

the 3 + 1 field theory dimensions and the additional radial coordinate r. R is the Ricci

scalar of this metric. There are two field strengths: Fµν = ∂µAν − ∂νAµ is the Maxwell

field which accounts for the U(1) charge dynamics. The additional massive Proca field

Bµ generates the ‘helix U(1)’ with field strength Wµν = ∂µBν − ∂νBµ, and supports the

helical structure. In addition, there is a Chern-Simons term which couples the fields Aµ

and Bµ with coupling constant κ. In the above action, the AdS radius L has been set to

one. Furthermore, Newton’s constant has been fixed to κ25 = 1/2. This can be achieved

by redefining the remaining couplings such that 1/(2κ2
5) becomes a total factor multiplying

the action. To encode the U(1) order parameter, we add to this action a scalar field with

charge q and mass mρ minimally coupled to Aµ,

Stotal = Shelix+

∫
d4+1x

√
−g

[
− |∂ρ− iqAρ|2 −m2

ρ|ρ|2
]
. (2.2)

The equations of motion following from the action (2.2) are

Rµν −
1

2
Rgµν − 6gµν = T (A)

µν + T (B)
µν + T (ρ)

µν , (2.3)

where

T (A)
µν =

1

2
FµαF

α
ν − 1

8
gµνF

2,

T (B)
µν =

1

2
WµαW

α
ν − 1

8
gµνW

2 − m2

2
BµBν ,

T (ρ)
µν = Re

[
(∇µρ

∗ + iqAµρ
∗)(∇νρ− iqAνρ)

]
− 1

2
gµν

(
|∂ρ− iqAρ|2 +m2

ρ|ρ|2
)
, (2.4)

are the energy-momentum tensors of the two vector fields A and B, and of the complex

scalar ρ. Furthermore, we have the scalar equation

0 =
[
(∇µ − iqAµ)(∇µ − iqAµ)−m2

ρ

]
ρ, (2.5)

and the Maxwell equations

∇µF
µν = iq [ρ∗(∂ν − iqAν)ρ− ρ(∂ν + iqAν)ρ∗] +

κ

4
√
−g

ϵ̃µναβγ∂α(BµWβγ), (2.6)

∇µW
µν = m2Bν +

κ

8
√
−g

ϵ̃µναβγ [2∂γ(BµFαβ)− FµαWβγ ] . (2.7)
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ω2-one form field
in yz-plane

x

Figure 2. Plot of the one-form ω2 along the x-axis for one period. Being periodic with period
2π/p, ω2 is not translationally invariant for p ̸= 0. The vector field B = w(r)ω2 acts as a source for
the helix and imprints the helical, translational symmetry breaking structure on the system.

Here ϵ̃µναβγ is the totally antisymmetric Levi-Civita symbol in 5 dimensions with ϵ̃01234 = 1.

As in [26], the wedge product in the action (2.2) is normalized such that the Chern-Simons

term evaluated on the chosen Ansatz equals SCS =
∫
dr pκw2a′/2.

We now construct solutions to the equations that have the following properties. First

we aim to study the system with the helix structure in order to break translational sym-

metry. For this purpose, the one-forms

ω1 = dx ,

ω2 = cos(px) dy − sin(px) dz ,

ω3 = sin(px) dy +cos(px) dz , (2.8)

are introduced. They provide a basis for the spatial (x, y, z) part of the metric and the two

vector fields Aµ and Bµ. In figure 2, one period of ω2 is plotted along the x-coordinate.

The forms ω2 and ω3 have the structure of a helix with periodicity 2π/p. In the following, we

focus on the case m = 0, i.e. we are considering a massless helix field B. In our setup, the

role of B is to introduce a lattice in a phenomenological way and thus break translational

symmetry. Since this can be achieved with a massless helix field, m = 0 is chosen for

simplicity. This choice follows [26]. Using these one-forms we make the Ansatz for the

helix field B = Bµdxµ to be

B = w(r)ω2, w(∞) = λ, (2.9)

where r = ∞ denotes the boundary of the asymptotically anti-de-Sitter space. Since this

Ansatz shows that By and Bz do not vanish at the boundary, the field theory interpretation

is that we explicitly introduce a source λ for the operator dual to B, i.e. we are deforming

the homogeneous theory by a lattice operator. λ can be interpreted as the lattice strength.

The field B extends along ω2 and therefore breaks translational symmetry in the x-direction

for p ̸= 0. Via backreaction on the metric, this helical structure is imprinted on the whole
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Figure 10. Checking Uemura’s law. Uemura’s law holds in coherent regime (red dots: µ/� =
2, 3, 5, 7, 10, 15, 20) while it does not hold in incoherent regime (blue dots: µ/� = 0.3, 0.4, 0.5, 0.7, 1).
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2 Holographic superconductor on a Q-lattice
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In this section we briefly review the holographic superconductor model that dualizes
to a field theory in the presence of a Q-lattice, which has been studied in detail in [1, 2].
The action is given by

S =

Z
d4x

p
�g


R+ 6� 1

4
F

2 � |(@ � iqA)�|2 �m

2
���

⇤ � |@ |2 �m

2
 | |2

�
, (2.5)

where the radius of curvature of AdS is set to unity and F = dA.  is neutral with respect
to the Maxwell field and will be used to introduce a lattice structure by the ansatz  = e

ikx
'

with x-independent '. � is charged under the Maxwell field and will be responsible for the
spontaneous breaking of the U(1) gauge symmetry and the formation of a superconducting
phase. We will always set the mass of these two scalar fields m

2
 = m

2
� = �2.

We take the following anisotropic ansatz

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�

A = µ(1� z)a(z)dt � = z�(z)  = e

ikx
z (z)

(2.6)

ds2 =
1

z

2


�(1� z)U(z)dt2 +

dz2

(1� z)U(z)
+ V1(z)dx

2 + V2(z)dy
2

�
,

A = µ(1� z)a(z)dt ,  = e

ikx
z (z) , � = z�(z) ,

(2.7)

where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
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A = µ(1� z)a(z)dt ,  = e

ikx
z (z) , � = z�(z) ,

(2.9)

where U, V1, V2, a, and � are functions of the radial coordinate z only. Notice that
k is the lattice wavenumber and µ is the chemical potential of the dual field theory. The
normal phase of the system corresponds to the solution with a vanishing charged scalar
field �. If U = 1 + z + z

2 � µ

2
z

3
/4, V1 = V2 = a = 1,  = � = 0, we recover the

familiar planar AdS-Reissner-Nordström(AdS-RN) black hole. The non-trivial Q-lattice
backgrounds can be obtained by setting a non-trivial boundary condition at infinity for
the scalar field  (0) = � and regular boundary conditions on the horizon z = 1. We will
refer to � as the lattice amplitude. The black hole temperature is T/µ = U(1)/(4⇡µ).
Due to conformal invariance, the solutions of the system are specified by four dimensionless
parameters, namely (T/µ,�/µ, k/µ, q). We will set µ = 1 in numerical calculation.

3 Critical temperature and DC conductivity

3.1 Metal-insulator transition without condensate

To check the Homes’ law in our model, we need to calculate the DC conductivity �DC at
the critical temperature. A formula for �DC in terms of the background solution data at
the horizon can be derived [3]

�DC =

 r
V2

V1
+

µ

2
a

2
p
V1V2

2k2 2

!�����
z=1

. (3.1)

3.2 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field �, corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 3 we illustrate how
the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
the critical temperature first decreases for small k/µ, and then increases for large values
of k/µ. When k/µ ! 1, it approaches to the critical temperature of AdS-RN(�/µ = 0).
In axion model [4] and helical lattice model [5] the critical temperature has the similar
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2.1 Holographic setup

The holographic model that dualizes to a field theory in the presence of a helical lattice

has the action [26]

Shelix =

∫
d4+1x

√
−g

[
R+ 12− 1

4
FµνFµν −

1

4
WµνWµν −m2BµB

µ

]

− κ

2

∫
B ∧ F ∧W. (2.1)

Here gµν is the metric of a 5-dimensional asymptotically anti-de-Sitter spacetime including

the 3 + 1 field theory dimensions and the additional radial coordinate r. R is the Ricci

scalar of this metric. There are two field strengths: Fµν = ∂µAν − ∂νAµ is the Maxwell

field which accounts for the U(1) charge dynamics. The additional massive Proca field

Bµ generates the ‘helix U(1)’ with field strength Wµν = ∂µBν − ∂νBµ, and supports the

helical structure. In addition, there is a Chern-Simons term which couples the fields Aµ

and Bµ with coupling constant κ. In the above action, the AdS radius L has been set to

one. Furthermore, Newton’s constant has been fixed to κ25 = 1/2. This can be achieved

by redefining the remaining couplings such that 1/(2κ2
5) becomes a total factor multiplying

the action. To encode the U(1) order parameter, we add to this action a scalar field with

charge q and mass mρ minimally coupled to Aµ,

Stotal = Shelix+

∫
d4+1x

√
−g

[
− |∂ρ− iqAρ|2 −m2

ρ|ρ|2
]
. (2.2)

The equations of motion following from the action (2.2) are

Rµν −
1

2
Rgµν − 6gµν = T (A)

µν + T (B)
µν + T (ρ)

µν , (2.3)

where

T (A)
µν =

1

2
FµαF

α
ν − 1

8
gµνF

2,

T (B)
µν =

1

2
WµαW

α
ν − 1

8
gµνW

2 − m2

2
BµBν ,

T (ρ)
µν = Re

[
(∇µρ

∗ + iqAµρ
∗)(∇νρ− iqAνρ)

]
− 1

2
gµν

(
|∂ρ− iqAρ|2 +m2

ρ|ρ|2
)
, (2.4)

are the energy-momentum tensors of the two vector fields A and B, and of the complex

scalar ρ. Furthermore, we have the scalar equation

0 =
[
(∇µ − iqAµ)(∇µ − iqAµ)−m2

ρ

]
ρ, (2.5)

and the Maxwell equations

∇µF
µν = iq [ρ∗(∂ν − iqAν)ρ− ρ(∂ν + iqAν)ρ∗] +

κ

4
√
−g

ϵ̃µναβγ∂α(BµWβγ), (2.6)

∇µW
µν = m2Bν +

κ

8
√
−g

ϵ̃µναβγ [2∂γ(BµFαβ)− FµαWβγ ] . (2.7)
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ω2-one form field
in yz-plane

x

Figure 2. Plot of the one-form ω2 along the x-axis for one period. Being periodic with period
2π/p, ω2 is not translationally invariant for p ̸= 0. The vector field B = w(r)ω2 acts as a source for
the helix and imprints the helical, translational symmetry breaking structure on the system.

Here ϵ̃µναβγ is the totally antisymmetric Levi-Civita symbol in 5 dimensions with ϵ̃01234 = 1.

As in [26], the wedge product in the action (2.2) is normalized such that the Chern-Simons

term evaluated on the chosen Ansatz equals SCS =
∫
dr pκw2a′/2.

We now construct solutions to the equations that have the following properties. First

we aim to study the system with the helix structure in order to break translational sym-

metry. For this purpose, the one-forms

ω1 = dx ,

ω2 = cos(px) dy − sin(px) dz ,

ω3 = sin(px) dy +cos(px) dz , (2.8)

are introduced. They provide a basis for the spatial (x, y, z) part of the metric and the two

vector fields Aµ and Bµ. In figure 2, one period of ω2 is plotted along the x-coordinate.

The forms ω2 and ω3 have the structure of a helix with periodicity 2π/p. In the following, we

focus on the case m = 0, i.e. we are considering a massless helix field B. In our setup, the

role of B is to introduce a lattice in a phenomenological way and thus break translational

symmetry. Since this can be achieved with a massless helix field, m = 0 is chosen for

simplicity. This choice follows [26]. Using these one-forms we make the Ansatz for the

helix field B = Bµdxµ to be

B = w(r)ω2, w(∞) = λ, (2.9)

where r = ∞ denotes the boundary of the asymptotically anti-de-Sitter space. Since this

Ansatz shows that By and Bz do not vanish at the boundary, the field theory interpretation

is that we explicitly introduce a source λ for the operator dual to B, i.e. we are deforming

the homogeneous theory by a lattice operator. λ can be interpreted as the lattice strength.

The field B extends along ω2 and therefore breaks translational symmetry in the x-direction

for p ̸= 0. Via backreaction on the metric, this helical structure is imprinted on the whole
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vector fields Aµ and Bµ. In figure 2, one period of ω2 is plotted along the x-coordinate.

The forms ω2 and ω3 have the structure of a helix with periodicity 2π/p. In the following, we

focus on the case m = 0, i.e. we are considering a massless helix field B. In our setup, the

role of B is to introduce a lattice in a phenomenological way and thus break translational

symmetry. Since this can be achieved with a massless helix field, m = 0 is chosen for

simplicity. This choice follows [26]. Using these one-forms we make the Ansatz for the

helix field B = Bµdxµ to be

B = w(r)ω2, w(∞) = λ, (2.9)

where r = ∞ denotes the boundary of the asymptotically anti-de-Sitter space. Since this

Ansatz shows that By and Bz do not vanish at the boundary, the field theory interpretation

is that we explicitly introduce a source λ for the operator dual to B, i.e. we are deforming

the homogeneous theory by a lattice operator. λ can be interpreted as the lattice strength.

The field B extends along ω2 and therefore breaks translational symmetry in the x-direction

for p ̸= 0. Via backreaction on the metric, this helical structure is imprinted on the whole
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Figure 9. The value of C = Ks/(�DCTc) as a function of k/µ for �/µ = 1, 3, 5, 10.

Figure 10. The value of C = Ks/(�DCTc) as a function of k/µ for �/µ = 1, 3, 5, 10.

Figure 11. The value of C = Ks/(�DCTc) as a function of k/µ for �/µ = 1, 3, 5, 10.
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Figure 1. The variation of the critical temperature with respect to the lattice wavenumber at some
fixed lattice amplitude (q = 6).

2.1 Critical temperature

We numerically construct explicit superconducting background at finite temperature. For
each set of parameters (�/µ, k/µ, q), we find that below some critical temperature Tc/µ,
there exist black brane solutions with a non-vanishing charged scalar field  , corresponding
to the superconducting phases. From now on we fix q = 6. In Figure 2 we illustrate how

Figure 2. The variation of the critical temperature with respect to the lattice wavenumber at some
fixed lattice amplitude (q = 6).

the critical temperature depends on �/µ and k/µ. First, for a fixed k/µ, the transition
temperature decreases monotonously with the increase of �/µ. Second, for a fixed �/µ,
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FIG. 8. C = Ks/(�DCTc) vs k/µ

(a)Ks/(�DCTc) vs k/µ (To Chao: What is the

meaning of two dotted lines?)

(b)Ks vs (�DCTc): log-log plot (To

Chao: What is the range of k/µ?.)

FIG. 9. C = Ks/(�DCTc) for parameters within the grey window in Figure 8

FIG. 10. The charge density n and superfluid density Ks and
K̃s as a function of k/µ for �/µ = 5, T/Tc = 0.1.
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Figure 8. The value of C = Ks/(�DCTc) as a function of k/µ for �/µ = 1, 3, 5, 10.
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Figure 6. The charge density n and superfluid density Ks and K̃s as a function of k/µ for
�/µ = 5, T/Tc = 0.1.
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Figure 7. The charge density n and superfluid density Ks and K̃s as a function of k/µ for
�/µ = 5, T/Tc = 0.1.

In Figure 11 (left) we show that C = Ks/(�DCTc) depends on �/µ and k/µ and the Homes’
law does not hold in this sense. The Uemura’s law does not hold either (Figure 11 (right)
)

The qualitative behaviours of these plots can be understood by looking at Figure 2,
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⇢s(T = 0) = C�DC(Tc)Tc
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Further investigation on metal/insulator 
transition including charge density wave 
Other models with linear T resistivity

At given    , plateau for large k �

⇢s(T = 0) = C�DC(Tc)Tc

�DC ⇠ n⌧ ⇠ n/Tc

Tanner’s law [Tanner et al. :1998 Physica B]
⇢s(T = 0) ⇠ n(Tc)


