Anomalous transport: Theory and Applications - III

Karl Landsteiner

Instituto de Física Teórica UAM-CSIC

Topological Quantum Matter and Holography, APCTP,, Pohang 2016

Friday 26 August 16

$$
\vec{J}_A = d_{ABC} \frac{\mu_B}{4\pi^2} \vec{B}_C + \left(d_{ABC} \frac{\mu_B \mu_C}{4\pi^2} + b_A \frac{T^2}{12} \right) \vec{\Omega}
$$
\n
$$
\vec{J}_\epsilon = \left(d_{ABC} \frac{\mu_B \mu_C}{8\pi^2} + b_A \frac{T^2}{24} \right) \vec{B}_A + \left(d_{ABC} \frac{\mu_A \mu_B \mu_C}{6\pi^2} + b_A \frac{\mu_A T^2}{6} \right) \vec{\Omega}
$$

$$
\vec{J}_A = d_{ABC} \frac{\mu_B}{4\pi^2} \vec{B}_C + \left(d_{ABC} \frac{\mu_B \mu_C}{4\pi^2} + b_A \frac{T^2}{12} \right) \vec{\Omega}
$$
\n
$$
\vec{J}_\epsilon = \left(d_{ABC} \frac{\mu_B \mu_C}{8\pi^2} + b_A \frac{T^2}{24} \right) \vec{B}_A + \left(d_{ABC} \frac{\mu_A \mu_B \mu_C}{6\pi^2} + b_A \frac{\mu_A T^2}{6} \right) \vec{\Omega}
$$

Today: Rendezvous with the DEVIL !!

$$
\vec{J}_A = d_{ABC} \frac{\mu_B}{4\pi^2} \vec{B}_C + \left(d_{ABC} \frac{\mu_B \mu_C}{4\pi^2} + b_A \frac{T^2}{12} \right) \vec{\Omega}
$$
\n
$$
\vec{J}_\epsilon = \left(d_{ABC} \frac{\mu_B \mu_C}{8\pi^2} + b_A \frac{T^2}{24} \right) \vec{B}_A + \left(d_{ABC} \frac{\mu_A \mu_B \mu_C}{6\pi^2} + b_A \frac{\mu_A T^2}{6} \right) \vec{\Omega}
$$

Today: Rendezvous with the DEVIL !!

• Experiment

$$
\vec{J}_A = d_{ABC} \frac{\mu_B}{4\pi^2} \vec{B}_C + \left(d_{ABC} \frac{\mu_B \mu_C}{4\pi^2} + b_A \frac{T^2}{12} \right) \vec{\Omega}
$$
\n
$$
\vec{J}_\epsilon = \left(d_{ABC} \frac{\mu_B \mu_C}{8\pi^2} + b_A \frac{T^2}{24} \right) \vec{B}_A + \left(d_{ABC} \frac{\mu_A \mu_B \mu_C}{6\pi^2} + b_A \frac{\mu_A T^2}{6} \right) \vec{\Omega}
$$

Today: Rendezvous with the DEVIL !!

• Experiment

• Condensed Matter Physics

Please, allow me

to introduce myself

...

Hot St

- Weyl semi-metals
- Physics at the Edge
- A prediction from holography?
- Summary

Weyl semi-metals

Bloch wave functions $\Psi(\vec{x}) = e^{i\vec{k} \cdot \vec{x}} u_k(\vec{x})$ $u_k(\vec{x}+\vec{a})=u_k(\vec{x})$

Physically inequivalent momenta: Brillouin zone $\vec{k} \equiv \vec{k} + \vec{K}$ $\vec{K} \cdot \vec{a} = 2\pi n$

Berry connection on Brillouin zone

$$
\mathcal{A}_i = \langle u_k | \frac{\partial}{\partial k_i} | u_k \rangle
$$

$$
u_k \to e^{\phi(k)} u_k
$$

$$
\mathcal{A}_i \to \mathcal{A}_i + \frac{\partial}{\partial k_i} \phi(k)
$$

Weyl semi-metals

Berry curvature $\mathcal{F} = d\mathcal{A}$

$$
\left(\frac{\partial}{\partial \phi}\right) \Delta \phi = \oint A = \int_{\text{upper}} \mathcal{F} = \int_{\text{lower}} \mathcal{F} + 2\pi n
$$

Flux of Berry curvature is quantized $\oint \mathcal{F} = 2\pi n$

Topological Material = non trivial Berry connection

(anti) Chiral fermion = (anti) monopole in Berry connection

Band s Band structure of WSM

FIG. 3. (Color online) Band dispersion along the *k^x* = *k^y* = 0

disappear entirely and the semimetallic state gives way to a

line for ⇥ ⁼ ⇥*c*² ⁼ ^p(*^m* ⁺ *D*)² ²

Nielsen-Ninomiya: left-right come in pairs Stable: Monopole charge can not vanish (no mass for chiral fermions)

Weyl semi-metal

Topological constraint

Berry connection
$$
\mathcal{A} = \langle \psi(k) | \frac{\partial}{\partial k_i} | \psi(k) \rangle dk_i
$$

[Kiritsis]

BZ has no boundary !

CME vanishes in equilibrium in WSM "Bloch theorem"

Negative Magnetoresitivity

$$
\text{CME} \qquad \vec{J} = \sigma \vec{E} + \frac{\delta \mu_5}{2\pi^2} \vec{B}
$$
\n
$$
\text{Anomaly} \qquad \partial_t \delta \rho_5 = \frac{1}{2\pi^2} \vec{E} \vec{B}
$$

Susceptibility $\delta \rho_5 = \chi_5 \delta \mu_5$

$$
\vec{J} = \left(\sigma + \frac{iB^2}{\omega\chi_5}\right)\vec{E}
$$

$$
\Re(\sigma_{\rm tot}) = \sigma + \frac{B^2}{\chi_5} \delta(\omega)
$$

Anomaly induces infinite DC conductivity !!

Negative Magnetoresitivity

$$
\text{CME} \qquad \vec{J} = \sigma \vec{E} + \frac{\delta \mu_5}{2\pi^2} \vec{B}
$$
\n
$$
\text{Anomaly} \qquad \partial_t \delta \rho_5 = \frac{1}{2\pi^2} \vec{E} \vec{B} - \tau_c \delta \rho_5
$$

Susceptibility $\delta \rho_5 = \chi_5 \delta \mu_5$

$$
\vec{J} = \left(\sigma + \frac{\tau_c B^2}{\chi_5}\right) \vec{E}
$$

Anomaly induces finite DC conductivity !!

Qiang Li,¹ Dmitri E. Kharzeev,^{2,3} Cheng Zhang,¹ Yuan Huang,⁴ I. Pletikosić,^{1,5} A. V. Fedorov,⁶ R. D. Zhong,¹ J. A. Schneeloch,¹ G. D. Gu,¹ and T. Valla¹

[D. Kharzeev: Lectures at Schladming Winterschool 2015]

9

6

3

 $B(T)$

fits to $1/(a+b B^2)$ B^2 behaviour!

 -3

 -6

 -9

[Li, Kharzeev at al. NaturePhysics 3648 (2016)]

AHE in WSMs

$$
J^\mu_{cons}=J^\mu_{cov}+\frac{1}{4\pi^2}\epsilon^{\mu\nu\rho\lambda}A^5_\nu F_{\rho\lambda}
$$

 \overline{A}^5 Separation of Weyl nodes in Brillouin zone

$$
\vec{J}=\frac{1}{2\pi^2}\vec{A}_5\times\vec{E}
$$

No contribution from covariant current (no analog of chemical potential in momentum)

•Vacuum: (infinitely) massive Dirac fermions •Need gradient in axial vector = axial magnetic field

$$
\vec{J} = \frac{\mu}{2\pi^2} \vec{B}_5 \qquad \qquad \vec{B}_5 = \nabla \times \vec{A}_5
$$

- Edge current
- States: "Fermi arcs" (degeneracy $= |A_5|$)

 $J_{\text{thermal}} =$

T

 $\frac{2}{6}$ $|A_5|\Delta T$

- Net energy current at edge
- Effect of *gravitational anomaly!!*

WSM

 $\epsilon(k_z)$ In crystal left- and right-handed chiralities are connected along the band dispersions

the ladder operators, the Hamiltonian takes the form:

where ⌃*^B* = *v^F /B*. It is clear from Eq. (27), that its

|n = *zn*+⌅*|n* 1*,* +*,* ⇧ + *zn*+⇧*|n,* +*,* ⌃ + *zⁿ*⌅*|n* 1*, ,* ⇧

eigenstates have the following general form:

+[*m*+ˆ (*kz*)]⌅*^z*+⇥⇧ *^y*

 \Box \cap ET and a bolographic me **k** α α = 0 and a moderate applies moderate FIG. 3. (Color online) Band dispersion along the *k^x* = *k^y* = 0 $|C|$ with this disappear entirely and the semimetallic state gives way to a Can we find a QFT and a holographic model with this property?

Action of HoloWSM

$$
\mathcal{L} = \frac{1}{2\kappa^{2}} (\mathcal{R} + 12) - \frac{1}{4} \mathcal{F}^{2} - \frac{1}{4} F_{5}^{2} +
$$

$$
|(\partial_{\mu} + iqA_{\mu}^{5})\Phi|^{2} - V(|\Phi|) +
$$

$$
+ A_{5} \wedge \left(\frac{\alpha}{3} F_{5} \wedge F_{5} + \alpha \mathcal{F} \wedge \mathcal{F} + \zeta R \wedge R\right)
$$

- Cosmological constant = AdS
- Very specific CS term $=$ form of Anomaly
- Scalar potential determines dimension of dual scalar operator (we chose dim=3) i.e. mass deformation

A holographic topological quantum phase transition

Running of axial gauge field:

Running of scalar field:

Holographic WSM

Smoking gun of topological state of matter : AHE

Odd viscosity

- Hall viscosity in 2D Quantum Hall states [Avron, Seiler, Zograf]
- Time reversal breaking necessary
- 2D : invariant ϵ tensor
- 3D: need some additional vector
- Hydrodynamics of magnetized plasmas

[Landau, Lifshytz Vol. 10]

$$
\tau_{xy} = \eta_{\perp} V_{xy} - \eta_{\perp}^H (V_{xx} - V_{yy})
$$
\n
$$
\tau_{xz} = \eta_{\parallel} V_{xz} + \eta_{\parallel}^H V_{yz}
$$
\n
$$
\tau_{yz} = \eta_{\parallel} V_{yz} - \eta_{\parallel}^H V_{xz}
$$
\n
$$
V_{ij} = \frac{1}{2} (\partial_i v_j + \partial_j v_i)
$$
\nodd viscosities

• In total: 3 shear, 2 "bulk" and 2 odd viscosities • $\eta_{odd}(-B) = -\eta_{odd}(B)$

Odd viscosity

- Odd viscosities
- Probe IR region of geometry: Low T

Summary

