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2. Engineering Holographic Phase Diagrams

1. Holographic Properties of Black Hole 

3. Discussion and Outlook

Outline

see from the phase diagram 4, that the quantum critical point is covered by a dome with
non-zero condensation of O2 6= 0, which normally happens in real physical systems. One
also notices that there exists an overlapping phase which we left for future studies. The
other motivation of the choices of parameters in our second model refer to the schematic
diagram on the scaling symmetries in Appendix C, where the quantum critical point at
zero source J can emerge a nature V-shape area at the finite temperature.
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Figure 4: The phase diagram of model II around a natural quantum critical point. It
is the density plot phase 1(blue) and phase 2 (orange) with coupling functions F1(�) =
�(�+ 2), F2(�) = �2/2. The green parts are the overlap region.

Once we numerically compute various condensations for the di↵erent phases, one needs
to compare the free energy among various phases in Figure 4. As we have calculated the
free energy for various phase, in the Figure 5 we have plotted them using the expressions
(25) and (26). We show the free energy density di↵erence �⌦��⌦

�

at a particular value
(T/µ

q

) ' 0.028⇥ 10�3. The blue and orange lines correspond to the free energy di↵erence
of phase 1 and phase 2, respectively. And the dashed black line stands for the baseline of
the free energy of the normal phase with only � condensate.

One notices that in the region J
�

< 0, �⌦ � �⌦
�

< 0. Therefore, the ground state
of the system will be in the phase with O1 6= 0. On the other hand near J

�

= 0 region,
we found that the free energy �⌦ becomes almost comparable to �⌦

�

, as one sees from
the Figure 5. But still O2 6= 0 is preferable near the J

�

= 0, T = 0. The green region
is the overlap region, and usually there exist some competing and coexistence orders. see
references e.g. [22] -[27]. This region is not the main purpose of our model, and it would
be interesting to explore more on this issue in future work.
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Figure 10: Left: the 3D schematic diagram of Figure 4 in terms of {µ
q

, J̃
�

, T}, where the
blue, orange and green region correspond to ordered phase 1, phase 2 and the overlap
phase. Three light green surfaces indicate parameter constrain of constant r

h

; Right: T vs.
J̃
�

diagram with a fixed µ
q

/T . The dashed line indicate the scalings, and the solid gray
line indicate parameter constrain of constant r

h

.

As indicated in Figures 9 and 10, the di↵erent colour shapes correspond to di↵erent
ordered phases. Blue region is phase 1 and orange region is phase 2. And the three
light green surfaces indicate parameter constraint of constant r

h

. In more detail, if we
assuming T̃ = T/r

h

, µ̃
q

= µ
q

/r
h

, then from relation (7) we obtain T̃ = 3⇡
4 (1� µ̃2

q

/3). This

indicate that T̃ and µ̃
q

are not independent any more. The light green surfaces indicate
the constraint relation between T = T̃ r

h

and µ
q

= µ̃
q

r
h

, with three di↵erent constants r
h

.
The 2 dimensional phase diagram crossed by di↵erent light green surfaces can be related
through scaling along with r

h

.
Although we introduce the external scaler fields in probe limit, our whole system still

have the scaling symmetries. However, in the real condensed matters systems, the scaling
symmetry only excites in the V-shape quantum critical region, and it is destroyed at large
J and large T . Thus, in order to compare with the full phase diagram holographically, it
is interesting to study how to destroy the scalings naturally at large J and large T , or how
to embed our V-shape region in to a whole condensed matter system.
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1. Holographic Properties of Black Hole 
(Relevant topics)



Figures credit: World Science Festival

 Newton’s Gravity (1687)

  Einstein’s Gravity (1915)
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(see, e.g., Figure 1 of [27]). As we have already discussed above, at low temperature,
distinct phases can be obtained by tuning the doping parameter. In order to understand
the basic mechanism of quantum phase transition near zero temperature, we consider
interacting order parameter fields.

According to the standard AdS/CFT dictionary, the chemical potential µ
q

, conjugate to
the charge density n

q

, is dual to a bulk gauge fieldA
µ

, such that µ
q

and n
q

are encoded in the
non-normalizable and normalizable modes of the asymptotic behavior of A

µ

respectively.
Similarly, in our model in this section, the doping parameter should be dual to a bulk scalar
field �. In the asymptotic solution of this so-called “tuning field” �, the non-normalizable
mode is dual to the source J

�

on the boundary, interpreted as the doping parameter since it
is an intensive quantity, just like the role of the chemical potential as the non-normalizable
mode of the asymptotic A

µ

. The normalizable mode of �, on the other hand, is dual to
the expectation value of the conjugate variable to the doping parameter, which we do not
specify.

We consider two order parameter fields to be neutral scalar fields  1, 2 in AdS bulk.
We also conjecture that the controlling parameter of our system is dual to another neutral
field � which is coupled to  1, 2 with a certain degree of fine tuning, such that we can
reproduce the experimental phase diagram.

Our goal is to understand the phase diagram and the scaling behavior near the quantum
critical point in such a system. In order for the two order parameters to be controlled by
tuning the external parameter, it requires  1,  2 interact with the tuning field � in some
non-linear way. Therefore, we introduce the following minimal Lagrangian density

L
M

=
X

i=1,2

L
 i + L

�

+ L
int

, (14)

where

g2
M

L
 i = �1

2
(@ 

i

)2 � V ( 
i

), V ( 
i

) =
1

2
m2

i

 2
i

+
1

4
�
i

 4
i

, (15)

g2
M

L
�

= �1

2
(@�)2 � V (�), V (�) =

1

2
m2
�

�2 +
1

4
�
�

�4, (16)

with g2
M

indicate the coupling constant, m2
i

,m2
�

< 0 and �
i

,�
�

> 0. The interaction terms
between  1,  2 and � are given by

g2
M

L
int

=� 1

2

X

i=1,2

F
i

(�) 2
i

, (17)

where the detailed form of the coupling function F
i

(�) will be given later. Di↵erent F
i

(�)
implies di↵erent ways that the condensation of  1 and  2 are controlled by � via shifting
their e↵ective masses. Consequently, di↵erent phase structures arise. We will work in the
probe limit of the scalar fields, namely 22/g2

M

! 0.
The equations of motion for the scalar fields turn out to be

0 = r�2@
r

⇥
r4f(r)@

r

 
i

⇤
�
⇥
m2

i

+ F
i

(�)
⇤
 
i

� �
i

 3
i

, (18)
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3 Phase diagrams near quantum critical region

In this section, we aim to holographically realize the phase diagram of quantum phase
transition ( e.g. Figure 1 of [21]). As we have already discussed before, at low tempera-
ture, distinct phases can be obtained by tuning the doping parameter. We also show the
existence of a quantum critical region extended from the quantum critical point in the
phase diagram. In order to understand the basic mechanism of quantum phase transi-
tion near zero temperature, we consider interacting order parameter fields. Our simplified
model would be a stepping stone toward a realistic holographic model for the cuperate
superconductor phase diagram.
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We also conjecture that the controlling parameter of our system is dual to another neutral
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Figure 4: The phase diagram of model II around a natural quantum critical point. It
is the density plot phase 1(blue) and phase 2 (orange) with coupling functions F1(�) =
�(�+ 2), F2(�) = �2/2. The green parts are the overlap region.

Once we numerically compute various condensations for the di↵erent phases, one needs
to compare the free energy among various phases in Figure 4. As we have calculated the
free energy for various phase, in the Figure 5 we have plotted them using the expressions
(25) and (26). We show the free energy density di↵erence �⌦��⌦
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at a particular value
(T/µ
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) ' 0.028⇥ 10�3. The blue and orange lines correspond to the free energy di↵erence
of phase 1 and phase 2, respectively. And the dashed black line stands for the baseline of
the free energy of the normal phase with only � condensate.
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< 0. Therefore, the ground state
of the system will be in the phase with O1 6= 0. On the other hand near J
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the Figure 5. But still O2 6= 0 is preferable near the J
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is the overlap region, and usually there exist some competing and coexistence orders. see
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be interesting to explore more on this issue in future work.
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Although we introduce the external scaler fields in probe limit, our whole system still

have the scaling symmetries. However, in the real condensed matters systems, the scaling
symmetry only excites in the V-shape quantum critical region, and it is destroyed at large
J and large T . Thus, in order to compare with the full phase diagram holographically, it
is interesting to study how to destroy the scalings naturally at large J and large T , or how
to embed our V-shape region in to a whole condensed matter system.
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