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What is a Dirac fermion? 

• Relativistic wave equation describing charged massive spin-1/2 fermions

p

E

Egap =2mc2

2-fold
degenerate

“Dirac equation”

• To obtain



Weyl fermions 

• Massless limit of Dirac equation

“Weyl equations”

A massless Dirac fermion

4-fold
degenerate

A massless Weyl fermion

2-fold
degenerate
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“Dirac fermions” in condensed matters 

Novel phenomena/effects/functions of solids
which can never be expected for individual constituent elements

Fig. from C. Terakura

“More is different“ P.W.Anderson

“Emergent” low energy excitations



Electronic band structure in periodic solids 

Greiner and Folling (2008)

Bloch’s theorem:

Insulator

Metal



Low energy excitations in metals 

• Electrons on a lattice form a band structure
• Low energy excitations are described by emergent particles

Schrodinger particles

EF

Electrons

Holes

e.g.) Ordinary metals

Dirac particles

e.g.) 2D graphene



Bulk black phosphorus 
(J. Kim et al, Science, 2015) 

• Narrow –gap semiconductors 

Massless Dirac fermions: when and why? 

“Effective two-band model” 

H(k)= f0 (k)+ f1(k)1 + f2(k)2 + f3(k)3

Egap =2(f1
2 +f2

2 +f3
2 )1/2
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Accidental band crossing is not easy to achieve !

Accidental band crossing
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Band crossing Band anti-crossing

v.s.

(m: tuning parameter)

• A Dirac particle can be created by band crossing!



Band crossing in generic systems

k

E



H= f0 + f11 + f22 + f33

E =2(f1
2 +f2

2 +f3
2 )1/2

Gap closing :

f1 (kx , ky , kz ) = 0

f2 (kx , ky , kz ) = 0

f3 (kx , ky , kz ) = 0

Weyl points can exist!

In 2D : crossing of three lines

No solution!

In 3D : crossing of three planes



Symmetry and band degeneracy

k

E(k)

0

• Time-reversal(T): En,(k)=En,(-k)
En,(k)=En,(k)

• Inversion(P): En,(k)=En,(-k)

-k

2-fold
degenerate

Four bands should cross to generate a Dirac point! 



Band crossing and T, P symmetries

k

E



2-fold
degenerate

Gap-closing condition : b1(k) = b2(k) = b3(k) = b4(k) = b5(k) = 0

In general, a band crossing is impossible unless 
additional symmetries other than T, P 

H= b0(k) +b1(k)1+ b2(k)2+ b3(k)3+ b4(k)4+ b5(k)5

where i is 4 by 4 matrix satisfying  {i ,j}=2ij

e.g.) 1=zx, 2=zy, 3=zz, 4 =x, 5=y

𝐸𝐶𝐵−𝐸𝑉𝐵= 2 𝑏1
2+𝑏2

2+𝑏3
2+𝑏4

2+𝑏5
2

H2= b1(k)2+b2(k)2+b3(k)2+b4(k)2+b5(k)2=E2

• The effective Hamiltonian should be a 4 by 4 matrix! 



SU(2) symmetry and graphene

Spin SU(2) symmetry requires b1(k) = b2(k) = b3(k) = 0

H = b1(k) 1+ b2(k) 2+ b3(k) 3+ b4(k) 4+ b5(k) 5

= b1(k) zx + b2(k) zy + b3(k) zz + b4(k) x + b5(k) y

• Graphene has both T and P symmetries 

x,y,z describe spin degrees of freedom 

Gap closing condition:
b4 (kx , ky ) = 0

b5 (kx , ky ) = 0

Dirac point!

In the presence of spin-orbit coupling, graphene is a gapped 
quantum spin Hall insulator! 



Massless fermion and rotation symmetry
Wang, Dai, Fang (2012, 2013); 

Cn=2,3,4,6

J1

J2

Band inversion 

Cn

k

k’=Rnk

k=k’

• Cn : rotation by 2/n about an axis

[H(k), Cn]=0 with k on the rotation axis

• Bands carry quantized rotation eigenvalues

𝐻 =
𝐻𝐶𝐵 𝑉𝑚𝑖𝑥

𝑉𝑚𝑖𝑥 𝐻𝑉𝐵
=

𝐻𝐽1 0

0 𝐻𝐽2

J1 J2



Observation of 3D Dirac semimetals
Cd3As2, Na3Bi are confirmed as a 3D Dirac SM!

Liu, Shen, Chen (Science,2014)
Neupane, Hasan (Nat. Comm. 2014) 

C3 C4
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Let’s break P or T symmetry

k

E(k)

0-k

PT symmetric

k

E(k)

0-k

P-breaking

k

E(k)

0-k

T-breaking

2 by 2 matrix description is possible!



Emergence of Weyl fermions 

H(k)= (v1k)x + (v2k) y + (v3k) z

“Weyl fermion”

Band inversion 

+1 -1

v2

v1

v3

v1 v2

v3

Right-handed (+1) Left-handed (-1)

“Handedness (or chirality)”

Chirality =   
v1  (v2  v3)

|v1  (v2  v3)|



A Weyl point is a k-space magnetic monopole 

+B

• A Weyl point as a k-space magnetic monopole

A Weyl point has a quantized topological (chiral) charge (1) !

k-space gauge field 

k-space

e-

B(k)

C

“Berry phase”

• Berry phase and adiabatic evolution  



Quantum Hall effect in Weyl semimetals 

Quantum Hall effect?

= Chern number of the torus
= Total monopole charge in the torus

kx

C=1

kx

ky



Quantum Hall Effect and chiral edge states 

Lx

Momentum spaceReal space



Surface Fermi arc of 3D Weyl SM 

• Surface states : Fermi Arc

• Topological invariant
: chiral charge

+1
-1

W.Witczak-Krempa, G.Chen, Y.B.Kim, L.Balents

• A sample with finite length along z direction

k

Lx

Top surface

+1

-1



Observation of Fermi arcs
• TaAs, NbP, NbAs, TaP

Lv,Ding (PRX, 2015) 

Band calculation predicts
12 Weyl points 
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Quantum critical point of topological PT 

“Criticality of interacting Weyl/Dirac fermions” 

HQCP = v1 k1 1 + v2 k2 2 + v3 k3 3

Fermi points (similar to 1D system)

Non-Fermi liquid (Luttinger liquid)

k 
EF

E(k)
Vanishing density of states

Long-range Coulomb potential!

𝑉𝑠𝑐(𝑟) =
𝑒2

𝜖0

1

𝑟
𝑒−𝑞𝑇𝐹𝑟 , 𝑞𝑇𝐹

2∝ D 𝐸𝐹 = 0



Coulomb interaction in Dirac systems 

• Effective Lagrangian: “Quantum electrodynamics” 

Fermi velocity  << Light velocity (No Lorentz invariance)

“There is a single dimensionless coupling constant ”

• Coupling constant

v=c/300, ε=1~100, =0.1~1

Instantaneous Coulomb potential



Marginal interaction and log-corrections 

0

(V. N. Kotov et al., RMP (2012);D.T.Son ,PRB (2007); Gonzalez  et al., Nucl.Phys.B (1994))

• Coulomb interaction is marginally irrelevant  

“Logarithmic enhancement of various physical quantities”  

• Velocity renormalization and emergent Lorentz invariance  

Elias, Geim et al.(2011)

v/c

1



QCP between a Weyl SM to an insulator 

The chiral charge of a Weyl point guarantees its stability

H = k1 1 + k2 2 + [(m-mc)+ k2
3]3

A pair-annihilation is required 

m

kC=kC (m)
+1

-1

mc

(+1)+(-1)=0

Pair-annihilation

Weyl-SM Insulator



Anisotropic Weyl fermions at QCP

Anisotropic dispersion at QCP 
: direct consequence of zero chiral charge !

HQCP = v k1 1 + v k2 2 + A k2
3 3

k2
3

k2

k1

H+Weyl = v k1 1 + v k2 2 + v k3 3

H-Weyl = v k1 1 + v k2 2 - v k3 3

+

m

+1

-1

mc

Pair-annihilation



Correlation effect at QCP
• Polarization  

• Screened Coulomb interaction  

“Anisotropic partial screening!”  

In real space :  

“Effective interaction between fermions became weaker!”

Electrons behaves like free particles!

(A.A. Abrikosov)



Density 
of states

Specific 
heat

Compressibility

Diamagnetic
susceptibility

(B.-J. Yang, N. Nagaosa et al., Nature Physics, 2014)

Interacting anisotropic Dirac fermions 

Unconventional screening,
free quasi-particles

“Unconventional quantum criticality”  
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New Weyl/Dirac fermions 

X. Gu, X. Dai, Z. Fang, PRL (2012)

• HgCr2Se4, SrSi2

“Double Weyl SM”

• WTe2

“Type-II Weyl SM”

• Chiral charge=2

• H=(k2
x - k2

y)1+2kxky2+kz 3

• C4 or C6 rotation symmetry 
is required 

Type I Type II

Soluyanov, Dai, Bernevig, Nature (2015)

• Tilted Dirac cone



Line node semimetals 

• BaTaS3 • Ca3P2

Liang, Weng, PRB (2016) Chan, Schnyder, PRB (2016) 

Surface flat band



• Variety of Dirac semimetals protected by symmetries!

Class I Class II Class III 

Classification based on crystalline symmetry 

Symmorphic
rotation 

symmetry 

Type-II 
nonsymmorphic

symmetry 

Type-I 
nonsymmorphic

symmetry 



• Variety of nodal semimetals protected by symmetries

• New emerging fermionic particles

• New topological responses

• New correlated phenomena

Summary 



Band crossing and phase diagram
• Condition for accidental band crossing 

f1 (x1 , x2 , …, xD ,m) = 0

f2 (x1 , x2 , …, xD ,m) = 0

fN (x1 , x2 , …, xD ,m) = 0



Solve “N” coupled equations 
with “D+1” variables 

(1) N >D+1

(3) N <D+1

(2) N =D+1

• No solution
• Gapped always

• Unique solution
• Critical point

• Many solution 
• Critical phase

Insulator Insulator 

mc
m

Insulator Insulator 

mc1 m

Topological
semimetal 

mc2

Insulator 

m



Applications 

• Dirac fermions are a basis for non-dissipative electronics!

1. Quantized Hall Resistance (𝑹𝑯 =
𝒉

𝒆𝟐
𝟏

𝑵𝒄
, NC=integer )

2. Zero longitudinal resistance (No back scattering, dissipationless)

K. v. Klitzing, G. Dorda, and M. Pepper (1980); K. v. Klitzing (2005)

1D Chiral Dirac fermions 
on the sample boundary!

Quantum Hall



“Emergent physics 
in strongly correlated topological systems”

Emergent physics in the future

Electron correlation
• Symmetry breaking
• Quantum criticality
• High-TC superconductivity

Topology
• Quantum Hall physics
• Dirac/Weyl semimetals
• Berry phase effects



Transition from a Weyl SM to an insulator 

The chiral charge of a Weyl point guarantees its stability

H = k1 1 + k2 2 + [(m-mc)+ k2
3]3

A pair-annihilation is required 

m

+1 -1

mc
Weyl-SM Insulator

(+1)+(-1)=0

Pair-annihilation


