Dirac fermions in condensed matters

Bohm Jung Yang

Department of Physics and Astronomy Seoul National University

Outline

- 1. Dirac fermions in relativistic wave equations
- 2. How do Dirac fermions appear in condensed matters?
- 3. Band crossing, symmetry, and dimensionality
- 4. Dirac fermions and topology
- 5. Interacting Dirac fermions
- 6. New low energy excitations and their classification
- 7. Summary

What is a Dirac fermion?

"Dirac equation"

Relativistic wave equation describing charged massive spin-1/2 fermions

$$
i\frac{\partial}{\partial t}\psi = [\boldsymbol{\alpha}\cdot\boldsymbol{p} + \beta m]\,\psi = [\alpha_x p_x + \alpha_y p_y + \alpha_z p_z + \beta m]\,\psi
$$

• To obtain $|E^2 = p^2 c^2 + m^2 c^4|$ $\alpha_i^2 = \beta^2 = 1$, $\{\alpha_i, \beta\} = 0$, $\{\alpha_i, \alpha_j\} = 2\delta_{ij}$, $\alpha_i = \sigma_i \otimes \tau_3$ $\beta = \sigma_0 \otimes \tau_1$

 \sim

$$
i\frac{\partial}{\partial t}\psi=\left(\begin{array}{cc} {\pmb\sigma}\cdot{\pmb p} & m \\ m & -{\pmb\sigma}\cdot{\pmb p} \end{array}\right)\psi
$$

 ψ describes a <u>four-component</u> Dirac fermion.

Weyl fermions

• Massless limit of Dirac equation

$$
i\hbar \frac{\partial}{\partial t} \psi = \begin{pmatrix} c\boldsymbol{\sigma} \cdot \boldsymbol{p} & 0 \\ 0 & -c\boldsymbol{\sigma} \cdot \boldsymbol{p} \end{pmatrix} \psi \qquad \psi = \begin{pmatrix} \chi_+ \\ \chi_- \end{pmatrix}
$$

$$
i\hbar\frac{\partial}{\partial t}\chi_{\pm}=\pm c\pmb{\alpha}\cdot\pmb{p}\chi_{\pm}
$$

"Weyl equations"

 χ_{\pm} describe two-component Weyl fermions.

Outline

- 1. Dirac fermions in relativistic wave equations
- 2. How do Dirac fermions appear in condensed matters?
- 3. Band crossing, symmetry, and dimensionality
- 4. Dirac fermions and topology
- 5. Interacting Dirac fermions
- 6. New low energy excitations and their classification
- 7. Summary

"Dirac fermions" in condensed matters

"Emergent" low energy excitations

"More is different" P.W.Anderson

Novel phenomena/effects/functions of solids which can never be expected for individual constituent elements

Electronic band structure in periodic solids

Greiner and Folling (2008)

Bloch's theorem: $\Psi_{n,k}(r+R) = e^{ik \cdot R} \Psi_{n,k}(r)$ $E_n(\mathbf{k}+\mathbf{G})=E_n(\mathbf{k})$

Low energy excitations in metals

- Electrons on a lattice form a band structure
- Low energy excitations are described by emergent particles

Massless Dirac fermions: when and why?

• Narrow –gap semiconductors

Bulk black phosphorus (J. Kim et al, Science, 2015)

"Effective two-band model" H(k)= f_0 (k)+ f_1 (k) σ_1 + f_2 (k) σ_2 + f_3 (k) σ_3 $\Delta E_{\text{gap}} = 2(\underline{f_1^2 + f_2^2 + f_3^2})^{1/2}$

Outline

- 1. Dirac fermions in relativistic wave equations
- 2. How do Dirac fermions appear in condensed matters?
- 3. Band crossing, symmetry, and dimensionality
- 4. Dirac fermions and topology
- 5. Interacting Dirac fermions
- 6. New low energy excitations and their classification
- 7. Summary

Accidental band crossing

• A Dirac particle can be created by band crossing!

Accidental band crossing is not easy to achieve !

Band crossing in generic systems

H=
$$
f_0 + f_1\sigma_1 + f_2\sigma_2 + f_3\sigma_3
$$

\n
$$
\Delta E = 2(\underline{f_1^2 + f_2^2 + f_3^2})^{1/2}
$$
\nGap closing :
$$
\begin{cases}\nf_1(k_x, k_y, k_z) = 0 \\
f_2(k_x, k_y, k_z) = 0 \\
f_3(k_x, k_y, k_z) = 0\n\end{cases}
$$

Symmetry and band degeneracy

 $\mathsf{E}_{\mathsf{n},\uparrow}(\mathsf{k})\mathsf{=}\mathsf{E}_{\mathsf{n},\downarrow}(\mathsf{k})$

- Time-reversal(T): $\mathsf{E}_{\mathsf{n},\uparrow}(\mathsf{k})$ = $\mathsf{E}_{\mathsf{n},\downarrow}(\mathsf{-k})$
- Inversion(P): $\mathsf{E}_{\mathsf{n},\sigma}(\mathsf{k})$ = $\mathsf{E}_{\mathsf{n},\sigma}(\mathsf{-k})$

Four bands should cross to generate a Dirac point!

Band crossing and T, P symmetries

• The effective Hamiltonian should be a 4 by 4 matrix!

Gap-closing condition : $b_1(k) = b_2(k) = b_3(k) = b_4(k) = b_5(k) = 0$

In general, a band crossing is impossible unless additional symmetries other than T, P

SU(2) symmetry and graphene

• Graphene has both T and P symmetries

H = $b_1(k) \Gamma_1$ + $b_2(k) \Gamma_2$ + $b_3(k) \Gamma_3$ + $b_4(k) \Gamma_4$ + $b_5(k) \Gamma_5$ = b₁(k) $\tau_z \sigma_x$ + b₂(k) $\tau_z \sigma_y$ + b₃(k) $\tau_z \sigma_z$ + b₄(k) τ_x + b₅(k) τ_y $\sigma_{x,y,z}$ describe spin degrees of freedom

Spin SU(2) symmetry requires $b_1(k) = b_2(k) = b_3(k) = 0$

In the presence of spin-orbit coupling, graphene is a gapped quantum spin Hall insulator!

Massless fermion and rotation symmetry

Wang, Dai, Fang (2012, 2013);

• C_n : rotation by $2\pi/n$ about an axis $C_nH(\mathbf{k})C_n^{-1} = H(R_n\mathbf{k})$

[H(k), C_n]=0 with ${\sf k}$ on the rotation axis

• Bands carry quantized rotation eigenvalues

Observation of 3D Dirac semimetals $Cd₃As₂$, Na $₃Bi$ are confirmed as a 3D Dirac SM!</sub> **3D Dirac semimetal** D(i) D(ii) D(iii) $D(iv)$ (Cd_3As_2, Na_3Bi) 0.2 0.4 0.6 $k^Dx = 0.11$ $v_{x=0.0}$ $k^0x = 0.08$ Energy (eV) $\frac{1}{2}$ \mathbf{E} (i) Max $E(iv)$ $E(i)$ $E(iii)$ \bullet k_z **Alberta Contractor** Binding \sim \sim \sim \sim 0.6 Γ Min $\begin{array}{c}\n\bullet \\
\hline\n\end{array}$ $F(iii)$ $F(iv)$ F(ii) $F(i)$ 0.2 $=0.0$ -0.2 -0.2 -0.2 $\mathbf{0}$ 0.2 $\mathbf{0}$ 0.2 $\mathbf{0}$ 0.2 -0.2 $\mathbf{0}$ 0.2 Neupane, Hasan (Nat. Comm. 2014) Liu, Shen, Chen (Science,2014) k $(1/\text{\AA})$

D

Ε

F

Outline

- 1. Dirac fermions in relativistic wave equations
- 2. How do Dirac fermions appear in condensed matters?
- 3. Band crossing, symmetry, and dimensionality
- 4. Dirac fermions and topology
- 5. Interacting Dirac fermions
- 6. New low energy excitations and their classification
- 7. Summary

2 by 2 matrix description is possible!

Emergence of Weyl fermions

A Weyl point is a k-space magnetic monopole

• Berry phase and adiabatic evolution

• A Weyl point as a k-space magnetic monopole

$$
\mathbf{B} = \nabla \times \mathbf{A}(\mathbf{k}) \qquad \mathbf{A}(\mathbf{k}) = i \langle u_{\mathbf{k}} | \nabla_{\mathbf{k}} | u_{\mathbf{k}} \rangle
$$

$$
\frac{1}{2\pi} \nabla_{\mathbf{k}} \cdot \mathbf{B}(\mathbf{k}) = \pm \delta(\mathbf{k}) \qquad (\mathbf{B}(\mathbf{k}) \propto \frac{1}{k^2} \hat{k})
$$

A Weyl point has a quantized topological (chiral) charge (± 1) !

Quantum Hall effect in Weyl semimetals

Quantum Hall effect?

$$
C = \frac{1}{2\pi} \oint d\mathbf{S}_k \cdot \mathbf{B}(\mathbf{k}) \quad \left(\because \mathbf{B}(\mathbf{k}) \propto \frac{1}{k^2} \hat{k} \right)
$$

- = Chern number of the torus
- = Total monopole charge in the torus

$$
\sigma_{xy} = \frac{e^2}{h} N_C = \frac{e^2}{h} \sum_{m \in \text{occupied}} \int \frac{d^2 k}{2\pi} \left[\nabla_k \times \mathbf{A}_m(\mathbf{k}) \right]_z
$$

Quantum Hall Effect and chiral edge states

Surface Fermi arc of 3D Weyl SM

• A sample with finite length along z direction

W.Witczak-Krempa, G.Chen, Y.B.Kim, L.Balents

Observation of Fermi arcs

• TaAs, NbP, NbAs, TaP

Band calculation predicts 12 Weyl points

Lv,Ding (PRX, 2015)

Outline

- 1. Dirac fermions in relativistic wave equations
- 2. How do Dirac fermions appear in condensed matters?
- 3. Band crossing, symmetry, and dimensionality
- 4. Dirac fermions and topology
- 5. Interacting Dirac fermions
- 6. New low energy excitations and their classification
- 7. Summary

Quantum critical point of topological PT "Criticality of interacting Weyl/Dirac fermions"

$$
H_{QCP} = v_1 k_1 \sigma_1 + v_2 k_2 \sigma_2 + v_3 k_3 \sigma_3
$$

Coulomb interaction in Dirac systems

Coupling constant

$$
E_{\text{kin}} = \upsilon |\vec{k}| \qquad E_{\text{C}} = \frac{e^2}{\varepsilon r} \qquad \frac{E_{\text{C}}}{E_{\text{kin}}} \sim \frac{e^2}{\varepsilon \upsilon} \equiv \alpha
$$
\n"Then, is a single dimensionless coupling constant.

There is a single dimensionless coupling constant α'' $v=c/300$, $\varepsilon=1$ ~100, $\alpha=0.1$ ~1

• Effective Lagrangian: "Quantum electrodynamics" $\mathcal{L} = \bar{\psi} \left(\gamma^0 p_0 - v \vec{\gamma} \cdot \vec{p} - m \right) \psi + \frac{1}{2} \left(\varepsilon \vec{E}^2 - \frac{1}{\mu} \vec{B}^2 \right) - e \bar{\psi} \gamma^0 \psi A_0 - e \frac{v}{c} \bar{\psi} \gamma^i \psi A_i$

Fermi velocity << Light velocity (No Lorentz invariance)

Instantaneous Coulomb potential

Marginal interaction and log-corrections

• Coulomb interaction is marginally irrelevant

(V. N. Kotov et al., RMP (2012);D.T.Son ,PRB (2007); Gonzalez et al., Nucl.Phys.B (1994)) "Logarithmic enhancement of various physical quantities"

• Velocity renormalization and emergent Lorentz invariance

QCP between a Weyl SM to an insulator

The chiral charge of a Weyl point guarantees its stability

A pair-annihilation is required

Anisotropic Weyl fermions at QCP

$$
H_{QCP} = v k_1 \sigma_1 + v k_2 \sigma_2 + A k_3 \sigma_3
$$

Correlation effect at Q

• Polarization

• Screened Coulomb interaction

$$
V_C(\mathbf{q}) \sim \frac{1}{q_\perp^{3/2} + \eta q_3^2}
$$

"Anisotropic partial screening!"

In real space : $V_{\rm C}(r_{\perp},z=0) \sim \frac{1}{r_{\perp}^{5/4}}, \quad V_{\rm C}(r_{\perp}=0,z) \sim \frac{1}{|z|^{5/3}},$

"Effective interaction between fermions became weaker!"

Electrons behaves like free particles!

(**B.-J. Yang,** N. Nagaosa et al., Nature Physics, 2014)

Outline

- 1. Dirac fermions in relativistic wave equations
- 2. How do Dirac fermions appear in condensed matters?
- 3. Band crossing, symmetry, and dimensionality
- 4. Dirac fermions and topology
- 5. Interacting Dirac fermions
- 6. New low energy excitations and their classification
- 7. Summary

New Weyl/Dirac fermions

"Double Weyl SM"

- Chiral charge= ± 2
- $H=(k^2_{x}-k^2)$ _y)σ₁+2k_xk_yσ₂+k_z σ₃

- c_4 or c_6 rotation symmetry is required
- HgCr₂Se₄, SrSi₂

X. Gu, X. Dai, Z. Fang, PRL (2012)

"Type-II Weyl SM"

• Tilted Dirac cone

$$
\varepsilon_{\pm}(\mathbf{k}) = \sum_{i=x,y,z} k_i A_{i0} \pm \sqrt{\sum_{j=x,y,z} \left(\sum_{i=x,y,z} k_i A_{ij}\right)^2}
$$

 $WTe₂$

Soluyanov, Dai, Bernevig, Nature (2015)

Line node semimetals

Classification based on crystalline symmetry

• Variety of Dirac semimetals protected by symmetries!

Summary

- Variety of nodal semimetals protected by symmetries
- New emerging fermionic particles
- New topological responses
- New correlated phenomena

Band crossing and phase diagram

• Condition for accidental band crossing

$$
f_1(x_1, x_2, ..., x_D, m) = 0
$$

\n
$$
f_2(x_1, x_2, ..., x_D, m) = 0
$$

\n
$$
\vdots
$$

\n
$$
f_N(x_1, x_2, ..., x_D, m) = 0
$$

Solve "N" coupled equations with "D+1" variables

 m_{c1} m_{c2} m

Applications

• Dirac fermions are a basis for non-dissipative electronics!

1D Chiral Dirac fermions on the sample boundary!

K. v. Klitzing, G. Dorda, and M. Pepper (1980); K. v. Klitzing (2005)

- 1. Quantized Hall Resistance ($R_H =$ \boldsymbol{h} e^2 $\mathbf{1}$ N_c **, NC=integer)**
- **2. Zero longitudinal resistance (No back scattering, dissipationless)**

Emergent physics in the future

Electron correlation

- Symmetry breaking
- Quantum criticality
- High-T $_{\mathcal{C}}$ superconductivity

Topology

- Quantum Hall physics
- Dirac/Weyl semimetals
- Berry phase effects

"Emergent physics in strongly correlated topological systems"

Transition from a Weyl SM to an insulator

The chiral charge of a Weyl point guarantees its stability

A pair-annihilation is required

