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Introduction and Motivation

• Gauge/gravity duality

• After the conjecture by Maldacena in 1997, there were many 
works in this direction, such as string theory, QCD, nulcear physics, 
condensed matter physics, cosmology, etc.

d-dim. Field Theory   = (d+1)-dim. Gravity theory

Quantum GravityGauge Theories

bulk
boundary



Introduction and Motivation

• AdS/CFT Conjecture by Maldacena:

èNo restriction on
è to support this conjecture he considered the supergravity limit



Introduction and Motivation

• Three versions of conjectures:

1.  N=4 SYM in 4-dim for all            is dual to 
full quantum IIB string theory on     

2. ‘t Hooft limit of N=4 SYM is dual to 
classical type IIB string theory on 

è1/N expansion: leading order è planar limit, 
1/N correction è non-planar diagram

èPerturbation for 
èString loop expansion

Strong conjecture!

planar limit



Introduction and Motivation

3. Large ‘t Hooft coupling limit of N=4 SYM is dual to 
type IIB supergravity on 

• Other examples: 
- N=6 ABAJM theory is dual to M-theory on 
- deformations of N=4 SYM and N=6 ABJM and some other cases

èExpansion
èHigher derivative terms are neglected

weak conjecture!



Introduction and Motivation

• Duality properties of field theory and gravity theory

• Very useful but difficult to check the duality! 
For some BPS objects which have no quantum corrections, 
it was possible to check the duality using supersymmetry
and conformal symmetry in the large N limit.

Quantum field theory Quantum gravity
duality

Strongly coupled 
gauge theory

Large N Weakly curved gravity 
(classical gravity)



Introduction and Motivation

• Duality properties of field theory and gravity theory

• To test Maldacena’s conjecture, large N is necessary.
• Is Gauge/gravity duality conjecture valid for finite N?
• Is there some example to see the duality for finite N?

Quantum field theory Quantum gravity
duality

Strongly coupled 
gauge theory

Large N Weakly curved gravity 
(classical gravity)



Results: exact duality for finite N

• one example: mass-deformed ABJM theory and 11d 
gravity on the LLM geometry

• Exact correspondence for finite N between the vevs
of the chiral primary operator (CPO) with dimension   
one in the field theory side and asymptotic coefficients 
in the LLM geometry 
using holographic renormalization method. 

• We checked for all possible supersymmetric vacua
in field theory side and all LLM geometries 
in gravity side. 
è infinity examples!!



Discrete Higgs vacua of mABJM

• N=6 Aharony-Bergman-Jafferis-Maldacena(ABJM) 
theory : low energy effective action of N coincident 
M2-branes on the 𝐶"/𝑍% orbifold fixed point

N =6 ABJM

dual gravity(large N)

dual gravity(large N)

M-theory on 

IIA theory on 

N =6 mABJM

SUSY preserving 
mass deformation

[Hosomichi et al 08]
[Gomis et al 08]

è Effective action of M2-branes 
in the presence of the transverse 
self-dual 4-form flux

Still large N is necessary!!



Discrete Higgs vacua of mABJM

• N=6 Aharony-Bergman-Jafferis-Maldacena(ABJM) 
theory : low energy effective action of N coincident 
M2-branes on the 𝐶"/𝑍% orbifold fixed point

N =6 ABJM

dual gravity(large N)

dual gravity(large N)

M-theory on 

IIA theory on 

N =6 mABJM

SUSY preserving 
mass deformation

[Hosomichi et al 08]
[Gomis et al 08]

è Mass deformation è breakdown of 
conformal symmetry

Still large N is necessary!!



Discrete Higgs vacua of mABJM

• Original ABJM theory è SU(4) global symmetry
• Mass-deformation: SU(4) à SU(2)XSU(2)XU(1)

• Two gauge fields 

• Matter fields are in the bifundamental representation



Discrete Higgs vacua of mABJM

• Classical supersymmetric vacuum equation



Discrete Higgs vacua of mABJM

• Classical supersymmetric vacuum equation



Discrete Higgs vacua of mABJM

• Classical supersymmetric vacuum equation

↓

Discrete vacuum solutions (GRVV matrix)



Discrete Higgs vacua of mABJM



Discrete Higgs vacua of mABJM

Block-diagonal N X N matrices



Discrete Higgs vacua of mABJM

• Constraint:
• Condition for supersymmetric vacua:

[Kim-Kim 10]



Discrete Higgs vacua of mABJM

Vacua are classified by occupation numbers 

Number of vacua for a given N (k=1)= partition of N 

P(N)

For large N, P(N)



LLM geometry in 11-dim. SUGRA

• Half-BPS solutions with SO(2,1)XSO(4)XSO(4) isometry
in 11-dimensional supergravity
[04, Lin-Lunin-Maldacena]



LLM geometry in 11-dim. SUGRA

• This solution is completely determined by two 
functions:

Vacuum is identified by 
the occupation numbers :  

[Cheon-Kim-Kim 2011]

y = 0 case

z =

1

2

or z = �1

2

white strip black strip



LLM geometry in 11-dim. SUGRA

• This solution is completely determined by two 
functions:

droplet Young diagram new parametrization



LLM geometry in 11-dim. SUGRA

• Known results up to now: 
– LLM geometry can be dual to the massive M2-brane theory

– one-to-one correspondence between vacua of the mABJM
theory and the LLM geometry

• To show the dual relation of two theories,                 
correspondence between vacua of QFT 
and BPS solutions in gravity is not enough. 
– mABJM theory: 3-dim. gauge theory
– LLM geometry: BPS solution in 11-dim. SUGRA

[Lin-Lunin-Maldacena, 2004]

[Cheon-Kim-Kim 2011] 

4-dim. Gravity theory

KK-reduction



Kaluza-Klein Reduction

• Equation of motion for                  :

• Fluctuations around                 (k=1)

gpq and Cpqr

3 KK Reduction on S7

KKred

In 11-dimensional supergravity, the equations of motion for the metric g
pq

and the 3-form gauge

field C
pqr
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3.1 Fluctuation equations with cubic interactions and KK modes

We consider fluctuations of 11-dimensional supergravity fields on the AdS4 ⇥ S7 background,
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and implement the KK reduction on the S7 to construct the 4-dimensional gravity theory. In

order to check of the validity of the resulting 4-dimensional gravity theory, we consider the LLM

geometry in 11-dimensional supergravity, which is asymptotic to AdS4 ⇥ S7. The LLM geometry

near the asymptotic limit can be regarded as a deformed solution from the AdS4 ⇥ S7 solution

due to a non-vanishing flux with SO(4)⇥SO(4) symmetry. For this reason, the solutions for the

fluctuations fields, h
pq

and f
pqrs

, can be identified with the asymptotic expansions of the LLM

geometry. Then, as we will see later, the leading contribution in the asymptotic limit only comes

from f 2-terms in the equations of motion for the metric fluctuation h
pq

. In order to extract the
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• LLM geometry is asymptotically               + fluctuations
• From the asymptotic expansion of the LLM geometry, 

we can read all  



Kaluza-Klein Reduction

• Expansion in     spherical harmonics: S7

leading contribution of the non-vanishing flux in the LLM geometry, we consider the equations of

motion for fluctuations,
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µ

(x)r[aY
I7
b] (y),

c
abc

(x, y) = T̃ I35(x)Y I35
[abc](y) + T̃ I21(x)r[aY

I21
bc] (y), (3.15) hpqexp

where x is the AdS4 coordinate and y is the S7 coordinate and we divide the 11-dimensional indices

p, q, r, · · · into the indices of AdS4, µ, ⌫, ⇢, · · · and those of S7, a, b, c, · · · , and use the convention

of [1, 2]. The notation (ab) is for symmetrized traceless combination which is defined as

T(ab) =
1

2
(T

ab

+ T
ba

)� 1

7
g
ab

T c

c

, (3.16)

where g
ab

is a metric on S7. The notation [abc · · · ] is for anti-symmetrization among indices,

a, b, c, · · · . For the definitions of the spherical harmonics on S7, see Appendix
SHS7
A. We read the

fluctuations of 4-form field strength as

f
µ⌫⇢�

(x, y) = 4r[µS̃
I1
⌫⇢�](x)Y

I1(y),

f
µ⌫⇢a

(x, y) = 3r[µṼ
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µ⌫

(x)Y I7
a

(y) + S̃I1
µ⌫

(x)r
a

Y I1(y),

c
µab

(x, y) = T̃ I21
µ

(x)Y I21
[ab] (y) + Ṽ I7
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µ⌫

(x)Y I7
a

(y) + S̃I1
µ⌫

(x)r
a

Y I1(y),

c
µab

(x, y) = T̃ I21
µ

(x)Y I21
[ab] (y) + Ṽ I7
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(x, y) = T̃ I35(x)Y I35
[abc](y) + T̃ I21(x)r[aY

I21
bc] (y), (3.15) hpqexp

where x is the AdS4 coordinate and y is the S7 coordinate and we divide the 11-dimensional indices

p, q, r, · · · into the indices of AdS4, µ, ⌫, ⇢, · · · and those of S7, a, b, c, · · · , and use the convention

of [1, 2]. The notation (ab) is for symmetrized traceless combination which is defined as

T(ab) =
1

2
(T

ab

+ T
ba

)� 1

7
g
ab

T c

c

, (3.16)

where g
ab

is a metric on S7. The notation [abc · · · ] is for anti-symmetrization among indices,

a, b, c, · · · . For the definitions of the spherical harmonics on S7, see Appendix
SHS7
A. We read the

fluctuations of 4-form field strength as

f
µ⌫⇢�

(x, y) = 4r[µS̃
I1
⌫⇢�](x)Y

I1(y),

f
µ⌫⇢a

(x, y) = 3r[µṼ
I7
⌫⇢](x)Y

I7
a

(y) +
⇥
3r[µS̃

I1
⌫⇢](x)� S̃I1

µ⌫⇢

(x)
⇤
r

a

Y I1(y),

f
µ⌫ab

(x, y) = 2r[µT̃
I21
⌫] (x)Y I21

[ab] (y) + 2
⇥
r[µṼ

I7
⌫] (x) + Ṽ I7

µ⌫

(x)
⇤
r[aY

I7
b] (y),

f
µabc

(x, y) = r
µ

T̃ I35(x)Y I35
[abc](y) +

⇥
r

µ

T̃ I21(x)� 3T̃ I21
µ

(x)
⇤
r[aY

I21
bc] (y),

f
abcd

(x, y) = 4T̃ I35(x)r[aY
I35
bcd](y), (3.17) F4-exp

7

[H.J. Kim et al 1985, S.Lee et al 1998
Skenderis-Taylor 2006,…]



Kaluza-Klein Reduction

…........

è Equations of motion 
with gauge invariant fluctuations!!



Scalar field equations

• We concentrate on the scalar field equations. 

è diagonalized scalar field equations



Scalar field equations

è diagonalized scalar field equations

11-dim gravity fields 4-dim gravity fields



Field equations and action in 4-dim

EOM in 4-dim gravity

Infinity number of KK-scalar fields 
è We have to choose one of them.



Vevs of CPO with     = 1

• The mass m^2 of a scalar field on the gravity side is related to 
a gauge invariant operator with the conformal dimension      :   

L is the radius of S^7



Vevs of CPO with     = 1

• Scalar field 

• Scalar field 



Vevs of CPO with     = 1

• Scalar field 

• Scalar field 



Vevs of CPO with     = 1

• Holographic renormalization:

Asymptotic expansion 
near the boundary 

dual gravity field

Gauge/gravity mapping
(GKP-W relation)



Vevs of CPO with     = 1

• Asymptotic expansion of the general LLM geometry:

Read from general LLM



Exact holography for finite N

GKP-W gauge/gravity mapping



Exact holography for finite N

• Read the normalization factor 
from the field theory calculations (k=1):

chiral primary operator

reflect the broken symmetry of mABJM
SU(4)       SU(2)XSU(2)XU(1)



Exact holography for finite N

• Read the normalization factor 
from the field theory calculation:

è Exact relation without 1/N correction for finite N! 

Field theory side Gravity side



Conclusion

• Origin of this exact duality for finite N? supersymmetry?    
Other reason?

• cas case for general vacua? 
• case for symmetric vacua?

• Correlation functions? And other issue for gauge/gravity 
duality

• Entanglement entropy?

• Physical phenomena of Chern-Simons theory 
with massive matter fields in strong coupling limit?


