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Introduction

We are interested in the tunneling process on the hilltop type of potential with
the quartic scalar field term only, which corresponds to the decay of vacuum.

S. Fubini was studied it first in the absence of gravity and the tunneling solution
is so-called Fubini instanton. We have been extended the study of Fubini
instanton into the presence of Einstein and Diliatonic Einstein–Gauss–Bonnet
(DEGB) gravity.

We try to understand the effects of gravitation into the tunneling process and
want to know further the modifications of the solutions under the DEGB
gravity. We hope that the solutions in DEGB gravity will prescribe the problems
of the solutions in Einstein gravity.

This presentation is based on arXiv:1409.3935 and arXiv:1607.01125.
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Fubini instantons

Let us consider the following Euclidean action in the absence of gravity as
follows:

SE =
∫
M

√
det ηµνd4x

[1
2∂

µφ∂µφ+ U(φ)
]
,

where the potential is given by

U(φ) = −λ4φ
4 + U0.

In order to find the equation of motion, we assume the O(4) symmetry to get
the maximized tunneling probability,

ds2 = dη2 + η2 [dχ2 + sin2 χ
(
dθ2 + sin2 θdϕ2)] .

The equation of motion is

0 = φ̈+ 3
η
φ̇− U ′(φ),

where the boundary conditions are,

dφ

dη

∣∣∣∣
η=0

= 0 and φ
∣∣
η=∞

= 0.

Daeho Ro (APCTP) STCOS 2016 August 18, 2016 6 / 34



Fubini instantons

For the given potential, there is an analytic solution which is called Fubini
instanton which has the following form

φ(η) =
√

8
λ

a

η2 + a2 .

Here, η is Euclidean time parameter and a is an arbitrary length scale that
characterizes the size of the instanton.
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(b) Numerical solutions

Figure: Fubini instantons with the values of a and corresponding initial values of scalar field φ0.
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Fubini instantons in DEGB gravity

Let us consider the Euclidean action that the scalar field is interacting with the
Gauss–Bonnet (GB) term as follows:

SE = −
∫
M
d4x
√

det gµν
[
R

2κ −
1
2∂µφ∂

µφ− U(φ) + f(φ)R2
GB

]
,

where GB term is given by R2
GB = RµνρσRµνρσ − 4RµνRµν +R2.

The potential is same as before,

U(φ) = −λ4φ
4 + U0,

but U0 now gives an effect to the cosmological constant.
The coupling function is setted as follows:

f(φ) = αe−γφ,

where α is the GB coefficient and γ is the coupling constant between the scalar
field and GB term.
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Fubini instantons in DEGB gravity

The equation of motion for scalar field and the Einstein’s equations are
0 = ∇2φ− U ′(φ) + f ′(φ)R2

GB ,

0 =
1

2κ

(
Rµν −

1
2
gµνR

)
−

1
2
∂µφ∂νφ+

1
4
gµν∂ρφ∂

ρφ+
1
2
gµνU(φ) + (GB)µν .

The last term of Einstein’s equation is obtained by the GB term variation and
that in four-dimensional space is

(GB)µν = −2(∇µ∇νf(φ))R+ 2gµν(∇2f(φ))R+ 4(∇ρ∇µf(φ))Rνρ

+4(∇ρ∇νf(φ))Rµρ − 4(∇2f(φ))Rµν − 4gµν(∇ρ∇σf(φ))Rρσ

+4(∇ρ∇σf(φ))Rµρνσ.

There were terms linear in f(φ) but those terms are cancelled each other in
four-dimensional space.
Thus, (GB)µν in four-dimensional space appears only when the scalar field and
GB term are non-minimally coupled.

Daeho Ro (APCTP) STCOS 2016 August 18, 2016 9 / 34



Fubini instantons in DEGB gravity

We also consider the O(4)-symmetric metric

ds2 = dη2 + ρ(η)2(dθ2 + sin2 θ(dχ2 + sin2 χdϕ2)
)
.

which minimizes the Euclidean action.
It give the scalar curvature and GB term as follows:

R = − ρ̇
2 − 1 + ρρ̈

ρ2 , and R2
GB = 24 ρ̈(ρ̇2 − 1)

ρ3 .

The equation of motion for φ and (η, η), (χ, χ) components of Einstein’s
equation are

0 = φ̈+ 3 ρ̇
ρ
φ̇− U ′(φ) + 24f ′(φ) ρ̈(ρ̇2 − 1)

ρ3 ,

0 = 3
2κ

(ρ̇2 − 1)
ρ2 − 1

4 φ̇
2 + 1

2U(φ)− 12ḟ(φ) ρ̇(ρ̇2 − 1)
ρ3 ,

0 = ρ̇2 − 1 + 2ρρ̈
2κ + ρ2

4 φ̇
2 + ρ2

2 U(φ)− 8ḟ(φ)ρ̇ρ̈− 4f̈(φ)(ρ̇2 − 1).
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Setup

We have to impose appropriate boundary conditions which are depending on the
background spaces, i.e. AdS, flat, and dS space.
For the flat and AdS background, we can impose the boundary conditions as
follows:

ρ(0) = 0, ρ̇(0) = 1, φ̇(0) = 0, and φ(∞) = φv.

where φv is the value of scalar field at vacuum.
For dS background, we can impose the boundary conditions as follows:

ρ(0) = 0, ρ(ηmax) = 0, φ̇(0) = 0, and φ̇(ηmax) = 0.

In order to use a numerical method, make the variables dimensionless such as

λU0 → U0,
√
λφ→ φ,

κ

λ
→ κ, λα→ α, and γ√

λ
→ γ.

We set the initial value of η to be ε where ε� 1 to avoid the initial divergence:

φ(ε) ≈ φ0 −
ε2

8 λφ
3
0 + · · · , φ′(ε) ≈ − ε4λφ

3
0 + · · · ,

ρ(ε) ≈ ε+ · · · , ρ′(ε) ≈ 1− ε2

6 κU(φ0) + · · · .
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Details of numerical method

We have to cut the Euclidean time for the numerical calculation because the
evolution parameter is infinite in AdS background.

In order to find the initial value of scalar field φ0 which satisfy the boundary
condition in the equations of motion, we use the shooting method.

12 14 16
0.0

0.1

0.2

0.3

0.4

0.5(b)

 

 1=-3.9   1=-4.1
 0=-4.31876
 2=-4.5   2=-4.7

16.6 16.8 17.0
2

3

4

5

6(a)

 

 1=-0.21    1=-0.22
 0=-0.22912
 2=-0.24    2=-0.25

Figure: Shooting method examples in dS background
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Tunneling probability

To get the tunneling probability, we need to calculate Euclidean action

SE =
∫
M

√
gE d4x

[
− RE

2κ + 1
2φ
′2 + U

]
= 2π2

∫
ρ3dη[−U ].

In the semiclassical approximation, the decay probability is represented as Ae−B
where the exponent B is the difference between Euclidean action of a bounce
solution and background action, B = SbsE − SbgE .

From the technical reason in AdS background, we change the expression of the
exponent B by using constraint equation

B = 2π2
∫
ρ2dρ

 −U√
1
ρ2 + κ

3

(
1
2φ
′2 − U

) − −U0√
1
ρ2 + κ

3 (−U0)

 .
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Vacuum

We first determine the value of φv with the given potential U(φ) and GB
coupling function f(φ).
Since φv represent the vacuum, it is a static solution of equations of motion.
We first obtain the analytic form of ρ(η) by solving static equations of motion.
For AdS and dS background,

ρ(η) =
√

3
Λ sinh

√
Λ
3 η, and ρ(η) =

√
3
Λ sin

√
Λ
3 η.

By substituting those scale functions into the scalar field equation of motion, we
can simplify that such as

0 = U ′(φv) + 8
3αγe

−γφv Λ2,

where the cosmological constant is defined by

Λ = κU(φv).
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Vacuum

U
′(ϕ)
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ϕ
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(a) Finding vacuum states

ϕ(η)

Ueff (ϕ)

(b) Sketch of effective potential
for α < 0

ϕ(η)

Ueff (ϕ)

(c) Sketch of effective potential
for α > 0

Figure: (a) The red and blue line represent the first term in Eq. (15) for the case of α < 0
and α > 0, and the black line represents the second term in Eq. (15). Since they cross each
other twice and once for red and blue, respectively, there exist two vacuums for α < 0 and
one vacuum for α > 0. Those are the static solutions in Eq. (15). The parameters are fixed
as κ = 0.1, α = ±0.1, γ = 1.0 and U0 = −0.3. (b) Through the previous plot, we sketch the
rough figure of the expected effective potential for α < 0 and (c) for α > 0.
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Vacuum
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Figure: (a) The black and red line represent the vacuum states which are obtained from the
simplified scalar field equation. The red line is appeared only for α < 0. This plot shows the
values of vacuum state with respect to α with fixed parameter γ = 1.0 for AdS background
and (b) for dS background. (c) When γ = 8.0, it is shown that the number of vacuums
become one at specific negative α and disappear when α further decreases for AdS
background and (d) the number of vacuums increases at specific range of negative α and
decreases again when α further decreases for dS background. κ = 1.0 for all figures.
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Solutions for Einstein gravity

We numerically solve the coupled equations of the scalar field φ and scale factor
ρ which comes from gravity.

As we said before, there are three parameters κ, U0 and φ0. Each parameters
correspond to the gravitational constant, cosmological constant, and initial value
of scalar field, respectively.

In AdS background, any set of parameter values always give the solutions with
finite number of oscillation. So, we are focused to classify the number of
solutions. Especially, we are interested in the oscillating solutions which
correspond to the boundary of oscillating numbers.

In dS background, specific set of parameter values give the solutions with
different number of oscillation. Thus, we are focused to find the solutions.
Interestingly, there are two types of solutions which are symmetric and
asymmetric.

For each solutions, we get the action difference B. It might be infinite or finite.
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Solutions in AdS background
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Figure: (a) Numerical solutions for φ, (b) for ρ, (c) phase diagram of φ′ vs. φ, and (d)
Euclidean energy Eξ in AdS background. We take κ = 0.30 and U0 = −0.30.
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Solutions in AdS background

Late time behavior of φ is linear in log-log scale for all solutions. This means
that the solutions are approaching to zero when the time goes to infinity.

From the analysis of action difference B, we notice that the marginal solutions
only have the finite action difference and the others looks have infinity.
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Figure: Log-Log graph of (a) φ and (b) B versus ρ for AdS solutions.
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Solutions in dS background
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Figure: (a) Numerical solutions for φ, (b) for ρ, (c) phase diagram of φ′ vs. φ, and (d)
Euclidean energy Eξ of Z2 symmetric cases in dS background.
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Solutions in dS background
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Figure: (a) Numerical solutions for φ, (b) for ρ, (c) phase diagram of φ′ vs. φ, and (d)
Euclidean energy Eξ of Z2 asymmetric cases in dS background.
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Solutions in dS background
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Figure: (a) Numerical solutions for φ, (b) for ρ, (c) phase diagram of φ′ vs. φ, and (d)
Euclidean energy Eξ of Z2 asymmetric cases in dS background.
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Details of numerical method

We are tested the behavior of solutions with different parameter values. By using
this result, we draw a map which visualize the information about solutions.

Figure: Matrix plots in (a) AdS background with white, gray and black colors which are
correspond to the different number of oscillation such as 1, 2, and 3, respectively, and in
(b) dS background with white and black colors which are correspond to the direction of
divergence such as negative and positive, respectively

Through the matrix plot, we modify our code to find the phase diagram easily.
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Phase diagram in AdS background
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Figure: Parametric phase diagram in AdS background with (a) κ = 0.05, (b) κ = 0.10, (c)
κ = 0.30, and (d) κ = 0.50, respectively
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Phase diagram in dS background
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Figure: Parametric phase diagrams in dS background with (a) κ = 0.05, (b) κ = 0.10, (c)
κ = 0.30, and (d) κ = 0.50, respectively
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Solutions in AdS background

α=0.10

α=0.06

α=0.03

α=0.01

α=0.00

α=-0.01

α=-0.03

α=-0.06

α=-0.10

0.010 0.100 1 10 100 1000
η

-1.5

-1.0

-0.5

0.0

ϕ(η)

10 100 1000

-0.2

-0.1

0.0

0.1

0.2

(a) φ vs. η for φ0 < 0

α=0.10

α=0.06

α=0.03

α=0.01

α=0.00

α=-0.01

α=-0.03

α=-0.06

α=-0.10

-1.5 -1.0 -0.5
ϕ(η)

-0.2

0.2

0.4

ϕ′(η)

-0.1 0.1

0.005

0.01

(b) φ′ vs. φ for φ0 < 0

α=0.10

α=0.06

α=0.03

α=0.01

α=0.00

α=-0.01

α=-0.03

α=-0.06

α=-0.10

0.010 0.100 1 10 100 1000
η0.0

0.5

1.0

1.5

ϕ(η)

10 100 1000

-0.2

-0.1

0.0

0.1

0.2

(c) φ vs. η for φ0 > 0

α=0.10

α=0.06

α=0.03

α=0.01

α=0.00

α=-0.01

α=-0.03

α=-0.06

α=-0.10

0.5 1.0 1.5
ϕ(η)

-0.4

-0.2

0.2

ϕ′(η)

-0.1 0.1

-0.005

-0.01

(d) φ′ vs. φ for φ0 > 0

Figure: Solutions are plotted with respect to α. The other parameters are fixed as κ = 0.1,
γ = 1.0 and U0 = −0.3.
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Solutions in AdS background

We calculate the exponent B which is an Euclidean action difference between
the solution and background where the form is given by

B = 2π2
∫ ρm

0
dρ
ρ3

ρ̇

(
SE |η→ρ−1 − SE |

η→
√

3
|Λ| sinh−1

√
|Λ|
3 ρ,φ→φv

)
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Figure: Exponent B of decay rate for the marginal solutions in AdS background with respect
to α.
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Solutions in dS background
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Figure: Selected type of solutions in dS background with respect to α. The parameters are
fixed as κ = 0.1, γ = 1.0 and U0 = 0.3.
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Forbidden solutions

Recall the equations of motion,

0 = φ̈+ 3 ρ̇
ρ
φ̇− U ′(φ) + 24f ′(φ) ρ̈(ρ̇2 − 1)

ρ3 ,

0 = 3
2κ

(ρ̇2 − 1)
ρ2 − 1

4 φ̇
2 + 1

2U(φ)− 12ḟ(φ) ρ̇(ρ̇2 − 1)
ρ3 ,

0 = ρ̇2 − 1 + 2ρρ̈
2κ + ρ2

4 φ̇
2 + ρ2

2 U(φ)− 8ḟ(φ)ρ̇ρ̈− 4f̈(φ)(ρ̇2 − 1).
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Figure: Solutions are forbidden in gray regions. The parameters are fixed as κ = 0.1, γ = 1.0
and U0 = ∓0.3.
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New type of solutions
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Figure: New type of solutions in AdS and dS background are appeared. The parameters are
fixed as κ = 0.1, α = −0.1, γ = 8.0 and U0 = ±0.3.
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Summary and Discussion

In the absence of gravity, a hilltop type of quartic potential makes infinitely
many solutions which is called Fubini instanton.

However, inclusion of the Einstein gravity changes the situation abruptly.
Depending on the sign of Λ, solution space changed or get reduced.

In AdS background, there always exist the oscillating solutions but the
oscillating numbers are fixed by the choice of parameters. This means that the
solution space is changed.

Interestingly, the action difference B is finite when the solution is a marginal
solution. The other solutions looks have infinite action difference.

In dS background, there are Z2 symmetric and asymmetric solutions with
specific set of parameter values. This means that the solution space is reduced.
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Summary and Discussion

We have also studied about Fubini instantons in DEGB gravity which makes
several changes of the solutions in Einstein gravity.

In AdS background, the solution converges to moved vacuum where the moved
direction depends on the value of α. Still the oscillating behavior appears.

In dS background, the solution shows an oscillating behavior but now
Z2-symmetry is broken.

From the coupling function, there appears new vacuum and it allows to have a
new type of solution.

We hope to control the decay probability by adjusting the GB parameters α and
γ. Indeed, the exponent B is decreased or increased by changing the value of α.

Further studies are needed to investigate more detail characteristics of AdS, dS
and new type of solutions.
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