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ABSTRACT

A picture of gravity as an analog of quantum entanglement has been a subject
of great interest. In this talk we provide a simple model of a quantum-entangled
system, built by means of a new method, �Information Geometry�: a kind of
di�erential geometry specially devised to construct virtual manifolds that rep-
resent the physical states of our quantum system. We compare our model with
the gravity-analogs based on AdS/CFT, presented by Ryu and Takayanagi, Van
Raamsdonk, etc., and �nd remarkable correspondences between them. Among
other things, (i) the correlation of degrees of freedom and (ii) the entanglement
entropy show excellent agreement between the two di�erent physical phenom-
ena: (i) the exponentially decaying pattern suggests a quantitative connection
between entanglement measures and the structure of the dual spacetime, (ii) the
information content of a region depends on its surface area rather than on its
volume - holographic principle.
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1. Einstein-Podolsky-Rosen Paradox and Quantum Entanglement

• EPR argument - Einstein's critique of the orthodox Copenhagen interpreta-
tion of quantum mechanics: violation of classical causality.

• EPR paradox draws on a phenomenon known as quantum entanglement, to
show that measurements performed on spatially separated parts of a quantum
system can apparently have an instantaneous in�uence on one another.

• This e�ect is known as non-local behavior (or quantum weirdness or spooky
action at a distance).
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• Entangled pair - any change to one particle will be instantly re�ected in the
other, no matter how far apart they might be:
e.g. anti-alignment of spins of an electron-positron pair from pion decay.

• This seems to run counter to a central tenet of Einstein's theory of relativity:
nothing, not even information, can travel faster than the speed of light.

• The notion of entanglement leads to correlation

⟨ψ |AB|ψ⟩ − ⟨ψ |A|ψ⟩ ⟨ψ |B|ψ⟩ ̸= 0,

given observables A and B [Kaplan, arXiv:quant-ph/0508078v1 ].
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2. Quantum Entangled Wave-Packets and Probability Distribution
Functions

Before collision:

ψbefore (p1,p2) =

(
1

2πσ2o

)3/2

exp

[
−(p1 − po)

2 + (p2 + po)
2

4σ2o

]
e
i
[
−(p1−po)Ro

2~ +
(p2+po)Ro

2~

]

After collision [Wang et al., Phys. Rev. A73, 034302 (2006)]:

ψafter (p1,p2, t) = (N)−1/2
[
ψbefore (p1,p2) e

−ip
2
1+p

2
2

2~m t + εψscat (p1,p2, t)

]
;
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εψscat (p1,p2, t) ≈
(

1

2πσ2o

)3/2

exp

[
−P

2 + 4 (p− pop̂)2

8σ2o

]

×
4i
(
~po − iσ2oRo

)
p2f (p)

~2σ2o
e
−i
[
(p−po)Ro

~ + K2

2~M t+ k2

2~µt
]
.

P ≡ p1 + p2, p ≡ 1
2 (p1 − p2), M = 2m, µ = m/2,

f (p) ≡ ~(ei2θ(p)−1)
2ip : s-wave scattering amplitude, θ (p): s-wave scattering phase shift.

E�ectively reducing to 1-D,

P before
QM = |ψbefore (p1, p2)|2=

1

2πσ2
o

exp

[
−(p1 − po)

2 + (p2 + po)
2

2σ2o

]
,

P after
QM = |ψafter (p1, p2, t)|2

≃ 1

2πσ2
o

√
1− r2QM

exp

−(p1 − po)2 − 2rQM (p1 − po) (p2 + po) + (p2 + po)
2

2
(
1− r2QM

)
σ2o


with rQM ≡

√
8 (2p2o + σ2o)Ro |f (p)| /~2 ≪ 1.
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3. Information Geometry of Quantum Systems

If microvariables (observables) ξ1 and ξ2 are uncorrelated to each other,

P0 (ξ1, ξ2| ⟨ξ1⟩ , σ1, ⟨ξ2⟩ , σ2) =
1

2πσ1σ2
exp

[
−(ξ1 − ⟨ξ1⟩)

2

2σ21
− (ξ2 − ⟨ξ2⟩)2

2σ22

]

⇔ P before
QM = |ψbefore (p1, p2)|2 =

1

2πσ2o
exp

[
−(p1 − po)

2

2σ2o
− (p2 + po)

2

2σ2o

]
.

However, if ξ1 and ξ2 are correlated to each other,

Pr (ξ1, ξ2| ⟨ξ1⟩ , σ1, ⟨ξ2⟩ , σ2) =

exp

{
− 1

2(1−r2)

[
(ξ1−⟨ξ1⟩)2

σ21
− 2r(ξ1−⟨ξ1⟩)(ξ2−⟨ξ2⟩)

σ1σ2
+ (ξ2−⟨ξ2⟩)2

σ22

]}
2πσ1σ2

√
1− r2

⇔ P after
QM = |ψafter (p1, p2, t)|2 =

exp

{
− 1

2
(
1−r2

QM

) [(p1−po)2
σ2o
− 2rQM(p1−po)(p2+po)

σ2o
+ (p2+po)

2

σ2o

]}
2πσ2

o

√
1− r2QM

with r = r (ξ1, ξ2) ≡ ⟨ξ1ξ2⟩−⟨ξ1⟩⟨ξ2⟩
σ1σ2

, σi =

√⟨
(ξi − ⟨ξi⟩)2

⟩
(i = 1, 2) and r ∈ (−1, 1)

⇔ rQM =
√

8 (2p2o + σ2o)Ro |f (p)| /~2 ≪ 1 (weak correlation ⇔ weak scattering).
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We can model our QM systems by Gaussian statistical systems via P before
QM =

P(0) and P
after
QM = P(r) with rQM = r ≪ 1 (weak scattering ⇔ weak correlation) and

σ1 = σ2 = σ.

Then out of

P(0) (p1, p2|µ1, µ2, σ) =
1

2πσ2
exp

[
−(p1 − µ1)

2

2σ2
− (p2 − µ2)2

2σ2

]
,

P(r) (p1, p2|µ1, µ2, σ) =

exp

{
− 1

2(1−r2)

[
(p1−µ1)2

σ2
− 2r(p1−µ1)(p2−µ2)

σ2
+ (p2−µ2)2

σ2

]}
2πσ2

√
1− r2

we can construct

gµν (Θ) =

∫
dXP (X|Θ) ∂µ lnP (X|Θ) ∂ν lnP (X|Θ) ; ∂µ =

∂

∂Θµ
,

the Fisher-Rao metric associated with P(0) and P(r):

gµν (µ1, µ2, σ; 0) =
1

σ2

 1 0 0
0 1 0
0 0 4

, gµν (µ1, µ2, σ; r) =
1

σ2

 1
1−r2 −

r
1−r2 0

− r
1−r2

1
1−r2 0

0 0 4

.
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The geodesic equations for Θµ = (µ1, µ2, σ) onM3D
corr. with gµν (µ1, µ2, σ; r) read

d2Θµ

dτ 2
+ Γµνρ

dΘν

dτ

dΘρ

dτ
= 0

⇔ 0 =
d2µ1 (τ )

dτ 2
− 2

σ (τ )

dµ1 (τ )

dτ

dσ (τ )

dτ
,

0 =
d2µ2 (τ )

dτ 2
− 2

σ (τ )

dµ2 (τ )

dτ

dσ (τ )

dτ
,

0 =
d2σ (τ )

dτ 2
− 1

σ (τ )

(
dσ (τ )

dτ

)2

+
1

4σ (τ ) (1− r2)

[(
dµ1 (τ )

dτ

)2

+

(
dµ2 (τ )

dτ

)2
]
+

− r

2σ (τ ) (1− r2)
dµ1 (τ )

dτ

dµ2 (τ )

dτ
.

⇔ µ′1 = C1σ
2,

0 = µ′1 +
C1

4 (r2 − 1)

[
C2

C1

(
2r − C2

C1

)
− 1

]
µ21 + 2D1µ1 + E1 ; (1↔ 2) .

(← Riccati equations )
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Two sets of solutions are joined at the junction, τ = 0 (at the instant of collision):

(i) Uncorrelated Gaussian system; τ < 0 (before collision)

⟨p1 before(τ )⟩ = µ1 (τ ; 0) = −
√
p2o + 2σ2o tanh (Aoτ ) ,

⟨p2 before(τ )⟩ = µ2 (τ ; 0) =
√
p2o + 2σ2o tanh (Aoτ ) ,

⟨σbefore(τ )⟩ = σ (τ ; 0) =
1√
2

√
p2o + 2σ2o sech (Aoτ ) ,

(ii) Correlated Gaussian system; τ ≥ 0 (after collision)

⟨p1 after(τ )⟩ = µ1 (τ ; r) = −
√
(1− r) (p2o + 2σ2o) tanh (Aoτ ) ,

⟨p2 after(τ )⟩ = µ2 (τ ; r) =
√
(1− r) (p2o + 2σ2o) tanh (Aoτ ) ,

⟨σafter(τ )⟩ = σ (τ ; r) =
1√
2

√
p2o + 2σ2o sech (Aoτ ) ,

where po ≡ ⟨p1 before(−τo)⟩, σo ≡ ⟨σbefore(−τo)⟩ and

Ao =
1

τo
sinh−1

(
po√
2σo

)
σo
po
≪1
=

1

τo

{
ln

(√
2po
σo

)
+
1

2

(
σo
po

)2

− 3

8

(
σo
po

)4

+O

[(
σo
po

)6
]}

.
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4. Application of Information Geometry to Quantum Entanglement

Momentum curves attenuate after collision due to the correlation:√
p2o + 2σ2o tanh (Aoτ ) (τ < 0) →

√
(1− r) (p2o + 2σ2o) tanh (Aoτ ) (τ ≥ 0).

That is, the correlation renders po →
√
1− rpo.

Draw a connection between the correlation and s-wave scattering potential such
that

kr cot (krL) = ko cot (koL + θ) ,

where

kr ≡
√
1− rpo
~

=

√
2µ (E − V)

~
, 0 < x < L,

ko ≡
po
~

=

√
2µE
~

, x > L,

E = p2o/ (2µ), V: potential height, L: potential range, θ: scattering phase shift.
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Then we obtain

• scattering potential height: V = r
p2o
2µ
,

• scattering phase shift: θ ≈ r
p3oL

3

3~3
,

• scattering cross-section: Σ = 4π|f |2 ≈ r2
4πp4oL

6

9~4
,

• purity (a measure of entanglement):

P = Tr
(
[Tr2 (ρ12)]

2
)

=

∫∫∫∫
ψ (p1, p2, t)ψ (p3, p4, t)ψ

∗ (p1, p4, t)ψ
∗ (p3, p2, t) dp1dp2dp3dp4

=1− 1

2
r2+O

(
r4
)

with
r = rQM =

√
8 (2p2o + σ2o)Ro |f (p)| /~2 ≪ 1.
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7. Conclusions and Discussion

• Information about low energy quantum scattering and entanglement is en-
coded in the statistical correlation. Information geometry provides a useful
tool to analyze the correlation.

• Quantum entanglement can be interpreted as a perturbation in statistical
momentum space geometry, which is analogous to linearized gravity. Infor-
mation geometry utilizes this analogy to provide an interpretation of our
quantum-entangled system, which shows good agreement with a well-known
QM analysis.

• Our entanglement model shows remarkable correspondences with the gravity-
analogs based on AdS/CFT by Ryu and Takayanagi, Van Raamsdonk, etc.:
(i) correlation of degrees of freedom: the exponentially decaying pattern sug-
gests a quantitative connection between entanglement measures and the struc-
ture of the dual spacetime.
(ii) entanglement entropy: the information content of a region depends on its
surface area rather than on its volume - holographic principle.
Some other issues have yet to be investigated: modular Hamiltonian, geomet-
rical structures, etc.
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