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ABSTRACT

A picture of gravity as an analog of quantum entanglement has been a subject
of great interest. In this talk we provide a simple model of a quantum-entangled
system, built by means of a new method, “Information Geometry”: a kind of
differential geometry specially devised to construct virtual manifolds that rep-
resent the physical states of our quantum system. We compare our model with
the gravity-analogs based on AdS/CFT, presented by Ryu and Takayanagi, Van
Raamsdonk, etc., and find remarkable correspondences between them. Among
other things, (i) the correlation of degrees of freedom and (ii) the entanglement
entropy show excellent agreement between the two different physical phenom-
ena: (i) the exponentially decaying pattern suggests a quantitative connection
between entanglement measures and the structure of the dual spacetime, (ii) the
information content of a region depends on its surface area rather than on its
volume - holographic principle.



1. Einstein-Podolsky-Rosen Paradox and Quantum Entanglement

. EPR argument - Einstein’s critique of the orthodox Copenhagen interpreta-
tion of quantum mechanics: violation of classical causality.

. EPR paradox draws on a phenomenon known as quantum entanglement, to
show that measurements performed on spatially separated parts of a quantum
system can apparently have an instantaneous influence on one another.

. This effect is known as non-local behavior (or quantum weirdness or spooky
action at a distance).



Observed Affected
"here’ "over there'

. Entangled pair - any change to one particle will be instantly reflected in the
other, no matter how far apart they might be:
e.g. anti-alignment of spins of an electron-positron pair from pion decay.

. This seems to run counter to a central tenet of Einstein’s theory of relativity:
nothing, not even information, can travel faster than the speed of light.

. The notion of entanglement leads to correlation

(W [AB[ ) = (& |Alv) (¢ [B| ) # 0,
given observables A and B [Kaplan, arXiv:quant-ph/0508078v1|.
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2. Quantum Entangled Wave-Packets and Probability Distribution

Functions
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3. Information Geometry of Quantum Systems

If microvariables (observables) & and & are uncorrelated to each other,
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However, if & and & are correlated to each other,
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We can model our QM systems by (Gaussian statistical systems via PQbeNfIOI"e =

P and Pé%fr = P,y with rqu = 7 < 1 (weak scattering < weak correlation) and
01 — 09 = 0.

Then out of
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The geodesic equations for ©* = (p, po, o) on M3V

corr.
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Two sets of solutions are joined at the junction, 7 = 0 (at the instant of collision):

() Uncorrelated Gaussian system; 7 < 0 (before collision)

(P1vetore(T)) = w1 (750) = —+/p2+ 202 tanh (A
<p2bef0re<7-)> — :LLQ T, O \/ pg+20 tanh A 7'
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(i2) Correlated Gaussian system; 7 > 0 (after collision)
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4. Application of Information Geometry to Quantum Entanglement

Momentum curves attenuate after collision due to the correlation:

VD2 + 202tanh (A,m) (7 <0) — \/(1 — 1) (p? + 202) tanh (A,7) (7 > 0).

That is, the correlation renders p, — /1 — rp,.

Draw a connection between the correlation and s-wave scattering potential such

that
k, cot (kL) = k,cot (koL + 0) ,

where
T — 9 _
k, = 1hrpoz\/,u(;;: V>,O<:1:<L,
o V2
]‘COE%: hug,aj>L,

£ =1p*/(2u), V: potential height, L: potential range, 0: scattering phase shift.
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Then we obtain

e scattering potential height: V = r—,
24%
3h3°

. . 2
e scattering cross-section: Y = 47 |f|” ~ r*

e scattering phase shift: 0 ~ r

L A4mpiLo
Ont

e purity (a measure of entanglement):
P ="Tr ([Trs () )

/// Y (p1, p2,t) ¥ (p3, pa, t) V™ (p1, pa, t) Y™ (p3, P2, t) dprdpadpsdp,

—1—§T+O( r)

with

r=rqm= 8202+ 02 R, |f (p)| /n? < 1.
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7. Conclusions and Discussion

. Information about low energy quantum scattering and entanglement is en-
coded in the statistical correlation. Information geometry provides a useful
tool to analyze the correlation.

. Quantum entanglement can be interpreted as a perturbation in statistical
momentum space geometry, which is analogous to linearized gravity. Infor-
mation geometry utilizes this analogy to provide an interpretation of our
quantum-entangled system, which shows good agreement with a well-known
QM analysis.

. Our entanglement model shows remarkable correspondences with the gravity-
analogs based on AdS/CFT by Ryu and Takayanagi, Van Raamsdonk, etc.:
(i) correlation of degrees of freedom: the exponentially decaying pattern sug-
gests a quantitative connection between entanglement measures and the struc-
ture of the dual spacetime.

(ii) entanglement entropy: the information content of a region depends on its
surface area rather than on its volume - holographic principle.

Some other issues have yet to be investigated: modular Hamiltonian, geomet-
rical structures, etc.
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