SUPERSYMMETRIC GAUGED DOUBLE FIELD THEORY: SYSTERMATIC DERIVATION BY VIRTUE OF TWIST

Wonyoung Cho

August 19, 2016.

Sogang University

• Series of DFT papers written by Imtak Jeon, Kanghoon Lee and Jeong-Hyuck Park:

1011.1324, 1102.0419, 1105.6294, 1109.2035, 1112.0069, 1206.3478, 1210.5078, 1304.5946, 1307.8377.

• Supersymmetric gauged Double Field Theory: Systematic derivation by virtue of *Twist*

with J.J. Fernandez-Melgarejo, Imtak Jeon and Jeong-Hyuck Park, JHEP 08 (2015) 084, arXiv:1505.01301

INTRODUCTION

INTRODUCTION

- \cdot In Riemannian geometry, the fundamental object is the metric, $g_{\mu
 u}.$
 - · Diffeomorphism: $\partial_{\mu} \longrightarrow \nabla_{\mu} = \partial_{\mu} + \Gamma_{\mu}$

$$\cdot \ \nabla_{\lambda} g_{\mu\nu} = 0, \ \Gamma^{\lambda}_{[\mu\nu]} = 0 \ \longrightarrow \ \Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\mu} g_{\nu\rho} + \partial_{\nu} g_{\mu\rho} - \partial_{\rho} g_{\mu\nu})$$

· Curvature: $[\nabla_{\mu}, \nabla_{\nu}] \longrightarrow R_{\kappa\lambda\mu\nu} \longrightarrow R$

- \cdot In Riemannian geometry, the fundamental object is the metric, $g_{\mu\nu}$.
 - · Diffeomorphism: $\partial_{\mu} \longrightarrow \nabla_{\mu} = \partial_{\mu} + \Gamma_{\mu}$

$$\cdot \ \nabla_{\lambda} g_{\mu\nu} = 0, \ \Gamma^{\lambda}_{[\mu\nu]} = 0 \ \longrightarrow \ \Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\mu} g_{\nu\rho} + \partial_{\nu} g_{\mu\rho} - \partial_{\rho} g_{\mu\nu})$$

• Curvature: $[\nabla_{\mu}, \nabla_{\nu}] \longrightarrow R_{\kappa\lambda\mu\nu} \longrightarrow R$

- \cdot In Riemannian geometry, the fundamental object is the metric, $g_{\mu
 u}.$
 - · Diffeomorphism: $\partial_{\mu} \longrightarrow \nabla_{\mu} = \partial_{\mu} + \Gamma_{\mu}$

$$\cdot \ \nabla_{\lambda} \boldsymbol{g}_{\mu\nu} = \boldsymbol{0}, \ \boldsymbol{\Gamma}^{\lambda}_{[\mu\nu]} = \boldsymbol{0} \ \longrightarrow \ \boldsymbol{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} \boldsymbol{g}^{\lambda\rho} (\partial_{\mu} \boldsymbol{g}_{\nu\rho} + \partial_{\nu} \boldsymbol{g}_{\mu\rho} - \partial_{\rho} \boldsymbol{g}_{\mu\nu})$$

· Curvature: $[\nabla_{\mu}, \nabla_{\nu}] \longrightarrow R_{\kappa\lambda\mu\nu} \longrightarrow R$

- \cdot In Riemannian geometry, the fundamental object is the metric, $g_{\mu
 u}.$
 - · Diffeomorphism: $\partial_{\mu} \longrightarrow \nabla_{\mu} = \partial_{\mu} + \Gamma_{\mu}$

$$\cdot \ \nabla_{\lambda} \boldsymbol{g}_{\mu\nu} = \boldsymbol{0}, \ \boldsymbol{\Gamma}^{\lambda}_{[\mu\nu]} = \boldsymbol{0} \ \longrightarrow \ \boldsymbol{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} \boldsymbol{g}^{\lambda\rho} (\partial_{\mu} \boldsymbol{g}_{\nu\rho} + \partial_{\nu} \boldsymbol{g}_{\mu\rho} - \partial_{\rho} \boldsymbol{g}_{\mu\nu})$$

· Curvature: $[\nabla_{\mu}, \nabla_{\nu}] \longrightarrow R_{\kappa\lambda\mu\nu} \longrightarrow R$

• In general relativity, the metric is the only geometric object . All other fields are viewed as matter or radiation.

• On the other hand, string theory puts $g_{\mu\nu}$, $B_{\mu\nu}$ and ϕ on an equal footing, as they, the massless NS-NS sector form a multiplet of T-duality.

• In general relativity, the metric is the only geometric object . All other fields are viewed as matter or radiation.

• On the other hand, string theory puts $g_{\mu\nu}$, $B_{\mu\nu}$ and ϕ on an equal footing, as they, the massless NS-NS sector form a multiplet of T-duality.

- This may indicate the existence of an alternative gravitational theory where the whole massless NS-NS sector becomes geometric as the gravitational unity.
- Such an idea has been materialize in recent years through the developments of Double Field Theory .

- This may indicate the existence of an alternative gravitational theory where the whole massless NS-NS sector becomes geometric as the gravitational unity.
- Such an idea has been materialize in recent years through the developments of Double Field Theory .

 \cdot A "generalized metric" and a redefined dilaton,

$$\mathcal{H}_{AB} = \left(\begin{array}{cc} g^{-1} & -g^{-1}B \\ Bg^{-1} & g - Bg^{-1}B \end{array}\right), \qquad e^{-2d} = \sqrt{-g}e^{-2\phi}$$

 $\cdot O(D, D)$ metric,

$$\mathcal{J}_{AB} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right),$$

freely raises or lowers the (D + D)-dimensional vector indices, A, B.

 \cdot A "generalized metric" and a redefined dilaton,

$$\mathcal{H}_{AB}=\left(egin{array}{cc} g^{-1}&-g^{-1}B\ Bg^{-1}&g-Bg^{-1}B \end{array}
ight)\,,\qquad e^{-2d}=\sqrt{-g}e^{-2\phi}$$

 \cdot O(D, D) metric,

$$\mathcal{J}_{AB} = \left(egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight),$$

freely raises or lowers the (D + D)-dimensional vector indices, A, B.

· DFT action for NS-NS sector is,

$$S_{
m DFT} = \int dy^{2D} e^{-2d} L_{
m DFT} \left(\mathcal{H}, d
ight)$$

where

$$\begin{split} L_{\rm DFT} &= \mathcal{H}^{AB} \left(4 \partial_A \partial_B d - 4 \partial_A d \partial_B d + \frac{1}{8} \partial_A \mathcal{H}^{CD} \partial_B \mathcal{H}_{CD} - \frac{1}{2} \partial_A \mathcal{H}^{CD} \partial_C \mathcal{H}_{BD} \right) \\ &+ 4 \partial_A \mathcal{H}^{AB} \partial_B d - \partial_A \partial_B \mathcal{H}^{AB} \end{split}$$

Hull & Zwiebach later with Hohm

- \cdot O(D, D) structure is manifest and background independent.
- · All spacetime dimension is 'formally doubled', $y^A = (\tilde{x}_{\mu}, x^{\nu}),$ $A = 1, 2, \dots, D + D.$

 \cdot DFT action for NS-NS sector is ,

$$S_{
m DFT} = \int dy^{2D} e^{-2d} L_{
m DFT} \left(\mathcal{H}, d
ight)$$

where

$$\begin{split} L_{\rm DFT} &= \mathcal{H}^{AB} \left(4 \partial_A \partial_B d - 4 \partial_A d \partial_B d + \frac{1}{8} \partial_A \mathcal{H}^{CD} \partial_B \mathcal{H}_{CD} - \frac{1}{2} \partial_A \mathcal{H}^{CD} \partial_C \mathcal{H}_{BD} \right) \\ &+ 4 \partial_A \mathcal{H}^{AB} \partial_B d - \partial_A \partial_B \mathcal{H}^{AB} \end{split}$$

Hull & Zwiebach later with Hohm

- \cdot O(D, D) structure is manifest and background independent.
- \cdot All spacetime dimension is 'formally doubled', y^A = ($\widetilde{x}_{\mu}, x^{
 u}$),

 $A = 1, 2, \cdots, D + D.$

· DFT action for NS-NS sector is,

$$S_{
m DFT} = \int dy^{2D} e^{-2d} L_{
m DFT} \left(\mathcal{H}, d
ight)$$

where

$$\begin{split} L_{\rm DFT} &= \mathcal{H}^{AB} \left(4 \partial_A \partial_B d - 4 \partial_A d \partial_B d + \frac{1}{8} \partial_A \mathcal{H}^{CD} \partial_B \mathcal{H}_{CD} - \frac{1}{2} \partial_A \mathcal{H}^{CD} \partial_C \mathcal{H}_{BD} \right) \\ &+ 4 \partial_A \mathcal{H}^{AB} \partial_B d - \partial_A \partial_B \mathcal{H}^{AB} \end{split}$$

Hull & Zwiebach later with Hohm

- \cdot O(D, D) structure is manifest and background independent.
- \cdot All spacetime dimension is 'formally doubled', y^A = ($ilde{x}_{\mu}, x^{
 u}$),

 $A=1,2,\cdots,D+D.$

- · DFT is a *D*-dimensional theory written in terms of (D + D)-dimensional language, i.e. tensors.
- In order to eliminate the doubled spacetime, the condition is needed. It is called section condition .

- DFT is a *D*-dimensional theory written in terms of (D + D)-dimensional language, i.e. tensors.
- In order to eliminate the doubled spacetime, the condition is needed. It is called section condition .

 $\cdot\,$ A characteristic of DFT is the section condition ,

$$\partial_A\partial^A\sim 0\,.$$

• Explicitly, the section condition implies

 $\partial^A \varphi \partial_A \Phi = 0$ (strong constraint), $\partial_A \partial^A \Phi = 0$ (weak constraint). \cdot A characteristic of DFT is the section condition ,

$$\partial_A \partial^A \sim 0$$
 .

 \cdot Explicitly, the section condition implies

$$\partial^{A}\varphi\partial_{A}\Phi = 0$$
 (strong constraint),
 $\partial_{A}\partial^{A}\Phi = 0$ (weak constraint).

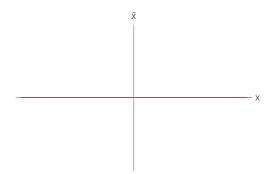


Figure: We choose *x*-coordinate with $\frac{\partial}{\partial \tilde{x}_u} \sim 0$.

• The section condition ensures that DFT lives not on the doubled (D + D)-dimensional space but on a *D*-dimensional null hyperspace, *i.e. section*.

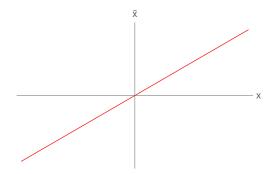


Figure: Other section.

 \cdot There is isometry, we can choose any section.

 \cdot DFT action is (locally) equivalent to the effective action:

$$S_{\rm DFT} \Rightarrow S_{eff} = \int dx^D \sqrt{-g} e^{-2\phi} \left(R_g + 4 \left(\partial \phi \right)^2 - \frac{1}{12} H^2 \right)$$

• The geometric objects in DFT consist of a dilaton, *d*, and a pair of symmetric projection operators,

$$P_{AB} = P_{BA}, \qquad \bar{P}_{AB} = \bar{P}_{BA}, \qquad P_A{}^B P_B{}^C = P_A{}^C, \qquad \bar{P}_A{}^B \bar{P}_B{}^C = \bar{P}_A{}^C.$$

· Further, the projectors are orthogonal and complementary,

$$P_A{}^B\bar{P}_B{}^C=0\,,\qquad \quad P_{AB}+\bar{P}_{AB}=\mathcal{J}_{AB}\,.$$

• The geometric objects in DFT consist of a dilaton, *d*, and a pair of symmetric projection operators,

$$P_{AB} = P_{BA}, \qquad \bar{P}_{AB} = \bar{P}_{BA}, \qquad P_A{}^B P_B{}^C = P_A{}^C, \qquad \bar{P}_A{}^B \bar{P}_B{}^C = \bar{P}_A{}^C.$$

· The difference of the two projectors, $P_{AB} - \bar{P}_{AB} = \mathcal{H}_{AB}$, corresponds to the "generalized metric".

• The geometric objects in DFT consist of a dilaton, *d*, and a pair of symmetric projection operators,

$$P_{AB} = P_{BA}, \qquad \bar{P}_{AB} = \bar{P}_{BA}, \qquad P_A{}^B P_B{}^C = P_A{}^C, \qquad \bar{P}_A{}^B \bar{P}_B{}^C = \bar{P}_A{}^C.$$

• In supersymmetric double field theories, it appears that the projectors are more fundamental than the "generalized metric".

 \cdot The six-index projection operators are

$$\begin{split} \mathcal{P}_{CAB}{}^{DEF} &:= P_C{}^D P_{[A}{}^{[E} P_{B]}{}^{F]} + \frac{2}{D-1} P_{C[A} P_{B]}{}^{[E} P^{F]D}, \qquad \mathcal{P}_{ABC}{}^{DEF} \mathcal{P}_{DEF}{}^{GHI} = \mathcal{P}_{ABC}{}^{GHI}, \\ \bar{\mathcal{P}}_{CAB}{}^{DEF} &:= \bar{P}_C{}^D \bar{P}_{[A}{}^{[E} \bar{P}_{B]}{}^{F]} + \frac{2}{D-1} \bar{P}_{C[A} \bar{P}_{B]}{}^{[E} \bar{P}^{F]D}, \qquad \bar{\mathcal{P}}_{ABC}{}^{DEF} \bar{\mathcal{P}}_{DEF}{}^{GHI} = \bar{\mathcal{P}}_{ABC}{}^{GHI}. \end{split}$$

They are symmetric and traceless,

$$\begin{split} \mathcal{P}_{ABCDEF} &= \mathcal{P}_{DEFABC} \,, & \mathcal{P}_{ABCDEF} &= \mathcal{P}_{A[BC]D[EF]} \,, & P^{AB}\mathcal{P}_{ABCDEF} &= 0 \,, \\ \bar{\mathcal{P}}_{ABCDEF} &= \bar{\mathcal{P}}_{DEFABC} \,, & \bar{\mathcal{P}}_{ABCDEF} &= \bar{\mathcal{P}}_{A[BC]D[EF]} \,, & \bar{P}^{AB}\bar{\mathcal{P}}_{ABCDEF} &= 0 \,. \end{split}$$

Integral measure.

• While the projectors are weightless, the dilaton gives rise to the O(D, D) invariant integral measure with weight one, after exponentiation,

 e^{-2d} .

 \cdot Naturally the cosmological constant term in DFT $% \left({{\mathbf{D}}_{\mathbf{F}}} \right)$ is given by

 $\textit{e}^{-2\textit{d}}\Lambda_{\rm \tiny DFT}$

which deviates from the conventional one in Riemannian GR, and hence reformulates the cosmological constant problem in a novel manner.

Jeon-Lee-JHP 2011

c.f. Meissner-Veneziano 1991

Integral measure.

 \cdot Naturally the cosmological constant term in DFT $% \left({{\mathbf{D}}_{\mathbf{F}}} \right)$ is given by

 $e^{-2d}\Lambda_{\rm \scriptscriptstyle DFT}\,.$

 $\label{eq:scherk-Schwarz-type dimensional reductions from $D=10$ half-maximal SDFT can produce $\Lambda_{\rm DFT}>0$ (as well as $\Lambda_{\rm DFT}<0$), $Cho-Fernández-Melgarejo-Jeon-Park 2015$ once the section condition is 'relaxed' for the twisting ansatz. $Geissbuhler, Grana-Marques, Berman-Lee$ }$

Diffeomorphism.

• Diffeomorphism symmetry in O(D, D) DFT is generated by a generalized Lie derivative Siegel, Courant, Grana

$$\begin{split} \hat{\mathcal{L}}_{X} \mathsf{T}_{\mathsf{A}_{1}\cdots\mathsf{A}_{n}} &:= \mathsf{X}^{\mathsf{B}} \partial_{\mathsf{B}} \mathsf{T}_{\mathsf{A}_{1}\cdots\mathsf{A}_{n}} & + \quad \omega_{\tau} \partial_{\mathsf{B}} \mathsf{X}^{\mathsf{B}} \mathsf{T}_{\mathsf{A}_{1}\cdots\mathsf{A}_{n}} \\ & + \quad \sum_{i=1}^{n} (\partial_{\mathsf{A}_{i}} \mathsf{X}_{\mathsf{B}} - \partial_{\mathsf{B}} \mathsf{X}_{\mathsf{A}_{i}}) \mathsf{T}_{\mathsf{A}_{1}\cdots\mathsf{A}_{i-1}}{}^{\mathsf{B}}_{\mathsf{A}_{i+1}\cdots\mathsf{A}_{n}} \,, \end{split}$$

where ω_{τ} denotes the weight.

Diffeomorphism.

· In particular, the generalized Lie derivative of the O(D, D) invariant metric is trivial,

$$\hat{\mathcal{L}}_X \mathcal{J}_{AB} = 0$$
 .

· The commutator is closed by C-bracket Hull-Zwiebach

$$\left[\hat{\mathcal{L}}_X,\hat{\mathcal{L}}_Y\right]=\hat{\mathcal{L}}_{[X,Y]_{\mathrm{C}}}\,,\qquad [X,Y]_{\mathrm{C}}^A=X^B\partial_BY^A-Y^B\partial_BX^A+\tfrac{1}{2}Y^B\partial^A X_B-\tfrac{1}{2}X^B\partial^A Y_B\,.$$

Semi-covariant derivative.

· We define <u>a semi-covariant derivative</u>,

$$\nabla_{C} T_{A_{1}A_{2}\cdots A_{n}} := \partial_{C} T_{A_{1}A_{2}\cdots A_{n}} - \omega_{\tau} \Gamma^{B}{}_{BC} T_{A_{1}A_{2}\cdots A_{n}} + \sum_{i=1}^{n} \Gamma_{CA_{i}}{}^{B} T_{A_{1}\cdots A_{i-1}BA_{i+1}\cdots A_{n}}.$$

 \cdot It is compatible with the O(D, D) quatities,

$$\begin{aligned} \nabla_{C}\boldsymbol{d} &= \boldsymbol{0}, \qquad \nabla_{C}\boldsymbol{P}_{AB} = \boldsymbol{0}, \qquad \nabla_{C}\bar{\boldsymbol{P}}_{AB} = \boldsymbol{0}, \\ \nabla_{C}\mathcal{J}_{AB} &= \boldsymbol{0} \quad (\Leftrightarrow \Gamma_{ABC} + \Gamma_{ACB} = \boldsymbol{0}), \end{aligned}$$

· With the torsionless condition,

$$\Gamma_{[ABC]} = 0 \quad (\Leftrightarrow \hat{\mathcal{L}}_X(\partial) = \hat{\mathcal{L}}_X(\nabla)),$$

we may uniquely determine the (torsionelss) connection,

$$\begin{split} \Gamma_{CAB} = & 2\left(P\partial_C P\bar{P}\right)_{[AB]} + 2\left(\bar{P}_{[A}{}^D\bar{P}_{B]}{}^E - P_{[A}{}^DP_{B]}{}^E\right)\partial_D P_{EC} \\ & -\frac{4}{D-1}\left(\bar{P}_{C[A}\bar{P}_{B]}{}^D + P_{C[A}P_{B]}{}^D\right)\left(\partial_D d + (P\partial^E P\bar{P})_{[ED]}\right)\,, \end{split}$$

satisfying

$$\mathcal{P}_{ABC}{}^{DEF}\Gamma_{DEF}=0\,,\qquad \bar{\mathcal{P}}_{ABC}{}^{DEF}\Gamma_{DEF}=0\,.$$

Jeon-Lee-Park 2011

· It is the DFT generalization of the Christoffel connection.

· With the torsionless condition,

$$\Gamma_{[ABC]} = 0 \quad (\Leftrightarrow \hat{\mathcal{L}}_X(\partial) = \hat{\mathcal{L}}_X(\nabla)),$$

we may uniquely determine the (torsionelss) connection,

$$\begin{split} \Gamma_{CAB} = & 2\left(P\partial_C P\bar{P}\right)_{[AB]} + 2\left(\bar{P}_{[A}{}^D\bar{P}_{B]}{}^E - P_{[A}{}^DP_{B]}{}^E\right)\partial_D P_{EC} \\ & -\frac{4}{D-1}\left(\bar{P}_{C[A}\bar{P}_{B]}{}^D + P_{C[A}P_{B]}{}^D\right)\left(\partial_D d + (P\partial^E P\bar{P})_{[ED]}\right)\,, \end{split}$$

satisfying

$$\mathcal{P}_{ABC}{}^{DEF}\Gamma_{DEF}=0\,,\qquad \bar{\mathcal{P}}_{ABC}{}^{DEF}\Gamma_{DEF}=0\,.$$

Jeon-Lee-Park 2011

 $\cdot\,$ It is the DFT generalization of the Christoffel connection.

Master semi-covariant derivative.

• We generalize the semi-covariant with the spin connections, Φ_A and $\overline{\Phi}_A$, for the two local Lorentz groups, $\text{Spin}(1, D - 1)_L$ and $\text{Spin}(1, D - 1)_R$, called <u>a master 'semi-covariant' derivative</u>,

$$\mathcal{D}_{A} = \nabla_{A} + \Phi_{A} + \bar{\Phi}_{A} = \partial_{A} + \Gamma_{A} + \Phi_{A} + \bar{\Phi}_{A} \,.$$

· It is also compatible with these quantities,

$$\begin{split} \mathcal{D}_{A}V_{Bp} &= \partial_{A}V_{Bp} + \Gamma_{AB}{}^{C}V_{Cp} + \Phi_{Ap}{}^{q}V_{Bq} = 0, \\ \mathcal{D}_{A}\bar{V}_{Bp} &= \partial_{A}\bar{V}_{Bp} + \Gamma_{AB}{}^{C}\bar{V}_{Cp} + \bar{\Phi}_{Ap}{}^{q}\bar{V}_{Bq} = 0, \\ \mathcal{D}_{A}d &= 0, \quad \mathcal{D}_{A}\mathcal{J}_{BC} = 0, \quad \mathcal{D}_{A}\eta_{pq} = 0, \quad \mathcal{D}_{A}\bar{\eta}_{\bar{p}\bar{q}} = 0, \\ \mathcal{D}_{A}(\gamma^{p})^{\alpha}{}_{\beta} &= 0, \quad \mathcal{D}_{A}(\bar{\gamma}^{\bar{p}})^{\bar{\alpha}}{}_{\bar{\beta}} = 0. \end{split}$$

Master semi-covariant derivative.

• We generalize the semi-covariant with the spin connections, Φ_A and $\overline{\Phi}_A$, for the two local Lorentz groups, $\text{Spin}(1, D - 1)_L$ and $\text{Spin}(1, D - 1)_R$, called <u>a master 'semi-covariant' derivative</u>,

$$\mathcal{D}_A = \nabla_A + \Phi_A + \bar{\Phi}_A = \partial_A + \Gamma_A + \Phi_A + \bar{\Phi}_A \,.$$

 $\cdot\,$ It is also compatible with these quantities,

$$\begin{split} \mathcal{D}_{A}V_{Bp} &= \partial_{A}V_{Bp} + \Gamma_{AB}{}^{C}V_{Cp} + \Phi_{Ap}{}^{q}V_{Bq} = 0, \\ \mathcal{D}_{A}\bar{V}_{Bp} &= \partial_{A}\bar{V}_{Bp} + \Gamma_{AB}{}^{C}\bar{V}_{Cp} + \bar{\Phi}_{Ap}{}^{q}\bar{V}_{Bq} = 0, \\ \mathcal{D}_{A}d &= 0, \quad \mathcal{D}_{A}\mathcal{J}_{BC} = 0, \quad \mathcal{D}_{A}\eta_{pq} = 0, \quad \mathcal{D}_{A}\bar{\eta}_{\bar{p}\bar{q}} = 0, \\ \mathcal{D}_{A}(\gamma^{p})^{\alpha}{}_{\beta} &= 0, \quad \mathcal{D}_{A}(\bar{\gamma}^{\bar{p}})^{\bar{\alpha}}{}_{\bar{\beta}} = 0. \end{split}$$

Semi-covariant curvature.

· A semi-covariant Riemann curvature is defined by,

$$S_{ABCD} := \tfrac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}{}_{AB} \Gamma_{ECD} \right).$$

· Here R_{ABCD} denotes the ordinary "field strength" of a connection,

$$R_{CDAB} = \partial_A \Gamma_{BCD} - \partial_B \Gamma_{ACD} + \Gamma_{AC}{}^E \Gamma_{BED} - \Gamma_{BC}{}^E \Gamma_{AED} \,.$$

Semi-covariant curvature.

· A semi-covariant Riemann curvature is defined by,

$$S_{ABCD} := \tfrac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}{}_{AB} \Gamma_{ECD} \right).$$

· It satisfies, just like the Riemann curvature,

$$S_{ABCD} = \frac{1}{2} \left(S_{[AB][CD]} + S_{[CD][AB]} \right) \,, \label{eq:same_state}$$

 $S_{A[BCD]} = 0$: Bianchi identity.

Semi-covariant curvature.

· A semi-covariant Riemann curvature is defined by,

$$S_{ABCD} := \tfrac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}{}_{AB} \Gamma_{ECD} \right).$$

· A semi-covariant curvature of the spin connections is,

$$\begin{split} \mathcal{G}_{ABCD} &= \mathsf{S}_{ABCD} + \tfrac{1}{2} (\Gamma - \Phi - \bar{\Phi})_{EAB} (\Gamma - \Phi - \bar{\Phi})^E{}_{CD} \\ &= \mathsf{S}_{ABCD} + \tfrac{1}{2} (\mathsf{V}_A{}^P \partial_E \mathsf{V}_{Bp} + \bar{\mathsf{V}}_A{}^{\bar{p}} \partial_E \bar{\mathsf{V}}_{B\bar{p}}) (\mathsf{V}_C{}^q \partial^E \mathsf{V}_{Dq} + \bar{\mathsf{V}}_C{}^{\bar{q}} \partial^E \bar{\mathsf{V}}_{D\bar{q}}) \,, \end{split}$$

Semi-covariant curvature.

· A semi-covariant Riemann curvature is defined by,

$$S_{ABCD} := \tfrac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}{}_{AB} \Gamma_{ECD} \right).$$

• These are Not covariant tensors, but contracting with projection operators, we can obtain covariant quatities.

Semi-covariant curvature.

· A semi-covariant Riemann curvature is defined by,

$$S_{ABCD} := \tfrac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}{}_{AB} \Gamma_{ECD} \right).$$

- These are Not covariant tensors, but contracting with projection operators, we can obtain covariant quatities.
- The ordinary derivative of a covariant tensor is no longer covariant under diffeomorphisms.

Semi-covariant curvature.

· A semi-covariant Riemann curvature is defined by,

$$S_{ABCD} := \tfrac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}{}_{AB} \Gamma_{ECD} \right).$$

· With projectors,

$$\begin{split} \left(P^{AB}P^{CD}+\bar{P}^{AB}\bar{P}^{CD}\right)S_{ACBD} &\sim 0\,,\\ P_{I}^{\ A}P_{J}^{\ B}\bar{P}_{K}^{\ C}\bar{P}_{L}^{\ D}S_{ABCD} &\sim 0\,,\\ P_{I}^{\ A}\bar{P}_{J}^{\ B}P_{K}^{\ C}\bar{P}_{L}^{\ D}S_{ABCD} &\sim 0\,, etc \end{split}$$

Semi-covariant curvature.

 \cdot A semi-covariant Riemann curvature is defined by,

$$S_{ABCD} := \tfrac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}{}_{AB} \Gamma_{ECD} \right).$$

· Rank two-tensor:

$$P_I^A \overline{P}_J^B S_{AB}$$
, where $S_{AB} := S^C_{ACB}$,

· Scalar curvature:

$$\left(P^{AB}P^{CD}-\bar{P}^{AB}\bar{P}^{CD}\right)S_{ACBD}\,.$$

 $\cdot\,$ Upon the section condition,

$$\begin{split} &(\delta_X - \hat{\mathcal{L}}_X) \Gamma_{CAB} \sim 2 \big[(\mathcal{P} + \bar{\mathcal{P}})_{CAB}{}^{FDE} - \delta_C^F \delta_A^D \delta_B^E \big] \partial_F \partial_{[D} X_{E]} \,, \\ &(\delta_X - \hat{\mathcal{L}}_X) \nabla_C T_{A_1 \cdots A_n} \sim \sum_{i=1}^n 2 (\mathcal{P} + \bar{\mathcal{P}})_{CA_i}{}^{BDEF} \partial_D \partial_E X_F \, T_{A_1 \cdots A_{i-1} B A_{i+1} \cdots A_n} \,. \end{split}$$

For the four-index curvatures,

$$\begin{split} (\delta_X - \hat{\mathcal{L}}_X) \mathcal{G}_{ABCD} & \sim (\delta_X - \hat{\mathcal{L}}_X) S_{ABCD} \\ & \sim 2 \nabla_{[A} \Big((\mathcal{P} + \bar{\mathcal{P}})_{B][CD]}{}^{EFG} \partial_E \partial_F X_G \Big) + \Big[(A, B) \leftrightarrow (C, D) \Big] \,. \end{split}$$

 \cdot Upon the section condition,

$$\begin{split} &(\delta_X - \hat{\mathcal{L}}_X) \Gamma_{CAB} \sim 2 \big[(\mathcal{P} + \bar{\mathcal{P}})_{CAB}{}^{FDE} - \delta_C^F \delta_A^D \delta_B^E \big] \partial_F \partial_{[D} X_{E]} ,\\ &(\delta_X - \hat{\mathcal{L}}_X) \nabla_C T_{A_1 \cdots A_n} \sim \sum_{i=1}^n 2 (\mathcal{P} + \bar{\mathcal{P}})_{CA_i}{}^{BDEF} \partial_D \partial_E X_F T_{A_1 \cdots A_{i-1} B A_{i+1} \cdots A_n} . \end{split}$$

 \cdot For the four-index curvatures,

$$\begin{aligned} (\delta_X - \hat{\mathcal{L}}_X) \mathcal{G}_{ABCD} & \sim (\delta_X - \hat{\mathcal{L}}_X) \mathsf{S}_{ABCD} \\ & \sim 2 \nabla_{[\mathsf{A}} \Big((\mathcal{P} + \bar{\mathcal{P}})_{B][CD]}{}^{EFG} \partial_E \partial_F X_G \Big) + \Big[(\mathsf{A}, \mathsf{B}) \leftrightarrow (\mathsf{C}, \mathsf{D}) \Big] \end{aligned}$$

- The anomalous terms can be easily projected out through appropriate contractions with the two-index projectors.
- This also explains or motivates the naming, 'semi-covariant': we say a tensor is semi-covariant if its diffeomorphic anomaly, if any, is governed by the six-index projectors.

- The anomalous terms can be easily projected out through appropriate contractions with the two-index projectors.
- This also explains or motivates the naming, 'semi-covariant': we say a tensor is semi-covariant if its diffeomorphic anomaly, if any, is governed by the six-index projectors.

- $\cdot\,$ Understanding the section condition in DFT is subtle and difficult.
- The section condition is sufficient but not the necessary condition for the algebra closure and action invariance.
- "Relaxing" the section condition to some extent has been understood. [Aldazabal.Baron.Nunez,Grana.Marqus,Geissbhler]
- The relaxation of the section condition is allowed when doing Sherk-Schwarz reduction in DFT and it gets gauged DFT.

- $\cdot\,$ Understanding the section condition in DFT is subtle and difficult.
- The section condition is sufficient but not the necessary condition for the algebra closure and action invariance.
- "Relaxing" the section condition to some extent has been understood. [Aldazabal, Baron, Nunez, Grana, Margus, Geissbhler]
- The relaxation of the section condition is allowed when doing Sherk-Schwarz reduction in DFT and it gets gauged DFT.

- $\cdot\,$ Understanding the section condition in DFT is subtle and difficult.
- The section condition is sufficient but not the necessary condition for the algebra closure and action invariance.
- "Relaxing" the section condition to some extent has been understood. [Aldazabal,Baron,Nunez,Grana,Marqus,Geissbhler]
- The relaxation of the section condition is allowed when doing Sherk-Schwarz reduction in DFT and it gets gauged DFT.

- $\cdot\,$ Understanding the section condition in DFT is subtle and difficult.
- The section condition is sufficient but not the necessary condition for the algebra closure and action invariance.
- "Relaxing" the section condition to some extent has been understood. [Aldazabal,Baron,Nunez,Grana,Marqus,Geissbhler]
- The relaxation of the section condition is allowed when doing Sherk-Schwarz reduction in DFT and it gets gauged DFT.

- To have systematic understanding the low dimensional gauged SDFT in the semi-covariant formulation
 - We twist the semi-covariant formulation of the ungaged SDFT without an ambiguity.
 - By the formulation, all the symmetries in DFT are fully covariant.
 - Torsionful deformation of the gauged DFT is derived from twisting.
- To realize the maximal as well as half maximal supersymmetric gauged DFT in full order of fermions.

- To have systematic understanding the low dimensional gauged SDFT in the semi-covariant formulation
 - We twist the semi-covariant formulation of the ungaged SDFT without an ambiguity.
 - By the formulation, all the symmetries in DFT are fully covariant.
 - Torsionful deformation of the gauged DFT is derived from twisting.
- To realize the maximal as well as half maximal supersymmetric gauged DFT in full order of fermions.

- To have systematic understanding the low dimensional gauged SDFT in the semi-covariant formulation
 - We twist the semi-covariant formulation of the ungaged SDFT without an ambiguity.
 - By the formulation, all the symmetries in DFT are fully covariant.
 - Torsionful deformation of the gauged DFT is derived from twisting.
- To realize the maximal as well as half maximal supersymmetric gauged DFT in full order of fermions.

The fundamental fields of D = 10 Maximal SDFT are precisely,

$$\mathsf{d}\,,\quad \mathsf{V}_{\mathsf{A}\mathsf{p}}\,,\quad \bar{\mathsf{V}}_{\mathsf{A}\bar{\mathsf{p}}}\,,\quad \mathcal{C}^{\alpha}{}_{\bar{\alpha}}\,,\quad \rho^{\alpha}\,,\quad \rho'^{\bar{\alpha}}\,,\quad \psi^{\alpha}_{\bar{\mathsf{p}}}\,,\quad \psi'^{\bar{\alpha}}_{p}\,,$$

$$d\,,\qquad V_{\mathsf{A}\mathsf{p}}\,,\qquad \bar{V}_{\mathsf{A}\bar{\mathsf{p}}}\,,\qquad \mathcal{C}^{\alpha}{}_{\bar{\alpha}}\,,\qquad \rho^{\alpha}\,,\quad \rho'^{\bar{\alpha}}\,,\qquad \psi^{\alpha}_{\bar{\mathsf{p}}}\,,\qquad \psi'^{\bar{\alpha}}_{p}\,$$

 \cdot The DFT-dilaton is a scalar,

 \cdot The vielbeins satisfy the following four defining properties :

$$V_{Ap}V^{A}{}_{q} = \eta_{pq} \,, \quad \bar{V}_{A\bar{p}}\bar{V}^{A}{}_{\bar{q}} = \bar{\eta}_{\bar{p}\bar{q}} \,, \quad V_{Ap}\bar{V}^{A}{}_{\bar{q}} = 0 \,, \quad V_{Ap}V_{B}{}^{p} + \bar{V}_{A\bar{p}}\bar{V}_{B}{}^{\bar{p}} = \mathcal{J}_{AB}$$

- $\boldsymbol{d}\,,\quad \boldsymbol{V}_{\!\boldsymbol{A}\!\boldsymbol{p}}\,,\quad \bar{\boldsymbol{V}}_{\!\boldsymbol{A}\!\bar{\boldsymbol{p}}}\,,\quad \mathcal{C}^{\alpha}{}_{\bar{\alpha}}\,,\quad \rho^{\alpha}\,,\quad \rho'^{\bar{\alpha}}\,,\quad \psi^{\alpha}_{\bar{\boldsymbol{p}}}\,,\quad \psi'^{\bar{\alpha}}_{\boldsymbol{p}}\,.$
- The vielbeins generate a pair of symmetric, orthogonal and complete two-index projectors ,

$$P_{AB} = P_{BA} = V_A{}^p V_{Bp} , \quad \bar{P}_{AB} = \bar{P}_{BA} = \bar{V}_A{}^p \bar{V}_{Bp} ,$$

satisfying

$$\begin{split} P_A{}^B P_B{}^C &= P_A{}^C \,, \quad \bar{P}_A{}^B \bar{P}_B{}^C = \bar{P}_A{}^C \,, \quad P_A{}^B \bar{P}_B{}^C = 0 \,, \\ \mathrm{tr}(P) &= P_A{}^A = D , \quad \mathrm{tr}(\bar{P}) = \bar{P}_A{}^A = \bar{D} , \end{split}$$

- $\boldsymbol{d}\,,\quad \boldsymbol{V}_{\!\boldsymbol{A}\!\boldsymbol{p}}\,,\quad \bar{\boldsymbol{V}}_{\!\boldsymbol{A}\!\bar{\boldsymbol{p}}}\,,\quad \mathcal{C}^{\alpha}{}_{\bar{\alpha}}\,,\quad \rho^{\alpha}\,,\quad \rho'^{\bar{\alpha}}\,,\quad \psi^{\alpha}_{\bar{\boldsymbol{p}}}\,,\quad \psi'^{\bar{\alpha}}_{\boldsymbol{p}}\,.$
- The vielbeins generate a pair of symmetric, orthogonal and complete two-index projectors ,

$$P_{AB} = P_{BA} = V_A{}^p V_{Bp} , \quad \bar{P}_{AB} = \bar{P}_{BA} = \bar{V}_A{}^p \bar{V}_{Bp} ,$$

and related to \mathcal{H} and \mathcal{J} ,

$$P_{AB} - \bar{P}_{AB} = \mathcal{H}_{AB} \,, \qquad P_{AB} + \bar{P}_{AB} = \mathcal{J}_{AB} \,.$$

- $\boldsymbol{d}\,,\quad \boldsymbol{V}_{\!\boldsymbol{A}\!\boldsymbol{p}}\,,\quad \bar{\boldsymbol{V}}_{\!\boldsymbol{A}\!\bar{\boldsymbol{p}}}\,,\quad \mathcal{C}^{\alpha}{}_{\bar{\alpha}}\,,\quad \rho^{\alpha}\,,\quad \rho'^{\bar{\alpha}}\,,\quad \psi^{\alpha}_{\bar{\boldsymbol{p}}}\,,\quad \psi'^{\bar{\alpha}}_{\boldsymbol{p}}\,.$
- $\cdot\,$ We further define a pair of six-index projection,

$$\begin{aligned} \mathcal{P}_{ABC}{}^{DEF} &= P_A{}^D P_{[B}{}^{[E} P_{C]}{}^{F]} + \frac{2}{D-1} P_{A[B} P_{C]}{}^{[E} P^{F]D}, \quad \mathcal{P}_{ABC}{}^{DEF} \mathcal{P}_{DEF}{}^{GHI} = \mathcal{P}_{ABC}{}^{GHI}, \\ \bar{\mathcal{P}}_{ABC}{}^{DEF} &= \bar{P}_A{}^D \bar{P}_{[B}{}^{[E} \bar{P}_{C]}{}^{F]} + \frac{2}{D-1} \bar{P}_{A[B} \bar{P}_{C]}{}^{[E} \bar{P}^{F]D}, \quad \bar{\mathcal{P}}_{ABC}{}^{DEF} \bar{\mathcal{P}}_{DEF}{}^{GHI} = \bar{\mathcal{P}}_{ABC}{}^{GHI}, \end{aligned}$$

which are symmetric and traceless,

$$\begin{split} \mathcal{P}_{ABCDEF} &= \mathcal{P}_{DEFABC} = \mathcal{P}_{A[BC]D[EF]}, \quad P^{AB}\mathcal{P}_{ABCDEF} = \mathbf{0}, \\ \bar{\mathcal{P}}_{ABCDEF} &= \bar{\mathcal{P}}_{DEFABC} = \bar{\mathcal{P}}_{A[BC]D[EF]}, \quad \bar{P}^{AB}\bar{\mathcal{P}}_{ABCDEF} = \mathbf{0}. \end{split}$$

- $\label{eq:def-d} \boldsymbol{d}\,, \qquad \boldsymbol{V}_{\!\boldsymbol{A}\boldsymbol{p}}\,, \qquad \boldsymbol{\bar{V}}_{\!\boldsymbol{A}\boldsymbol{\bar{p}}}\,, \qquad \boldsymbol{\mathcal{C}}^{\alpha}{}_{\!\!\bar{\alpha}}\,, \qquad \boldsymbol{\rho}^{\alpha}\,, \qquad \boldsymbol{\rho}'^{\bar{\alpha}}\,, \qquad \psi^{\prime}_{\!\!\boldsymbol{p}}{}^{\bar{\alpha}}\,, \qquad \psi^{\prime}_{\!\!\boldsymbol{p}}{}^{\bar{\alpha}}\,.$
- $\cdot\,$ R-R potential is bi-fundamental spinor representation of Spin(1, 9) $\times\,$ Spin(9, 1).
- Especially for the torsionless case, the corresponding operators are nilpotent up to the section condition

 $(\mathcal{D}_{\pm})^2 \mathcal{C} \sim 0$.

The fundamental fields of D = 10 Maximal SDFT are precisely,

$$d\,, \qquad V_{Ap}\,, \qquad ar{V}_{Aar{p}}\,, \qquad \mathcal{C}^{lpha}{}_{ar{lpha}}\,, \qquad
ho^{lpha}\,, \qquad
ho^{\prime\,ar{lpha}}\,, \qquad \psi^{\prime\,ar{lpha}}_{ar{p}}\,, \qquad \psi^{\prime\,ar{lpha}}_{p}\,, \qquad \psi^{\prime\,ar{lpha}}_{p}\,,$$

• Dilatinos and Gravitinos.

The fundamental fields of D = 10 Maximal SDFT are precisely,

$$d\,, \qquad V_{Ap}\,, \qquad ar{V}_{Aar{p}}\,, \qquad \mathcal{C}^{lpha}{}_{ar{lpha}}\,, \qquad
ho^{lpha}\,, \qquad
ho^{\prime\,ar{lpha}}\,, \qquad \psi^{\prime\,ar{lpha}}_{ar{p}}\,, \qquad \psi^{\prime\,ar{lpha}}_{ar{p}}\,, \qquad \psi^{\prime\,ar{lpha}}_{ar{p}}\,,$$

• Dilatinos and Gravitinos.

• To relax the section condition, we twist the original theory. Namely, Sherk-Schwarz reduction. • For the twisting, we use the two twisting datas: a scalar $\lambda(x)$ and $U_A{}^{\dot{A}} \in O(D, D)$,

$$U\dot{\mathcal{J}}U^t=\mathcal{J},\qquad \dot{\mathcal{J}}_{\dot{A}\dot{B}}=\left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right),$$

using which we set the ansatz for U-twist,

$$T_{A_1\cdots A_n} = e^{-2\omega\lambda} U_{A_1}{}^{\dot{A}_1} \cdots U_{A_n}{}^{\dot{A}_n} \dot{T}_{\dot{A}_1\cdots \dot{A}_n}$$

• The derivatives of the untwisted fields then assume a generic form,

$$\partial_{\mathsf{C}} \mathsf{T}_{\mathsf{A}_{1}\cdots\mathsf{A}_{n}} = e^{-2\omega\lambda} \mathsf{U}_{\mathsf{C}}{}^{\dot{\mathsf{C}}} \mathsf{U}_{\mathsf{A}_{1}}{}^{\dot{\mathsf{A}}_{1}}\cdots \mathsf{U}_{\mathsf{A}_{n}}{}^{\dot{\mathsf{A}}_{n}} \dot{\mathsf{D}}_{\dot{\mathsf{C}}}{}^{\dot{\mathsf{T}}}_{\dot{\mathsf{A}}_{1}\cdots\dot{\mathsf{A}}_{n}}$$

• The U-derivative , \dot{D}_{c} , is defined to act on a twisted field by

$$\dot{D}_{\dot{c}}\dot{T}_{\dot{A}_{1}\cdots\dot{A}_{n}}:=\dot{\partial}_{\dot{c}}\dot{T}_{\dot{A}_{1}\cdots\dot{A}_{n}}-2\omega\dot{\partial}_{\dot{c}}\lambda\,\dot{T}_{\dot{A}_{1}\cdots\dot{A}_{n}}+\sum_{i=1}^{n}\Omega_{\dot{c}\dot{A}_{i}}{}^{\dot{B}}\dot{T}_{\dot{A}_{1}\cdots\dot{B}\cdots\dot{A}_{n}}$$

 \cdot Those replacement leads to twisted SDFT Lagrangian,

$$\begin{split} \mathcal{L}_{D=10}^{\mathcal{N}=1}(\mathcal{J}_{AB},\partial_{A},d,\mathsf{V}_{Ap},\bar{\mathsf{V}}_{A\bar{p}},\rho,\psi_{\bar{p}}) \\ &= e^{-2\lambda} \dot{\mathcal{L}}_{\mathrm{Twisted SDFT}}^{\mathrm{Half}-\mathrm{maximal}}(\dot{\mathcal{J}}_{\dot{A}\dot{B}},\dot{D}_{\dot{A}},\dot{d},\dot{\mathsf{V}}_{\dot{A}p},\dot{\bar{\mathsf{V}}}_{\dot{A}\bar{p}},\rho,\psi_{\bar{p}}) \,, \\ \mathcal{L}_{D=10}^{\mathcal{N}=2}(\mathcal{J}_{AB},\partial_{A},d,\mathsf{V}_{Ap},\bar{\mathsf{V}}_{A\bar{p}},\mathcal{C},\rho,\psi_{\bar{p}},\rho',\psi'_{p}) \\ &= e^{-2\lambda} \dot{\mathcal{L}}_{\mathrm{Twisted SDFT}}^{\mathrm{Maximal}}(\dot{\mathcal{J}}_{\dot{A}\dot{B}},\dot{\bar{D}}_{\dot{A}},\dot{d},\dot{\mathsf{V}}_{\dot{A}p},\dot{\bar{\mathsf{V}}}_{\dot{A}\bar{p}},\mathcal{C},\rho,\psi_{\bar{p}},\rho',\psi'_{p}) \,. \end{split}$$

· The twist translates the original section condition as

$$\dot{D}_{\dot{A}}\dot{D}^{\dot{A}}\sim 0$$
 .

 If we impose this, it is nothing but the field redefinition of the untwisted SDFT. We shall look for alternative inequivalent conditions, or the twistability conditions.

 \cdot Those replacement leads to twisted SDFT Lagrangian,

$$\begin{split} \mathcal{L}_{D=10}^{\mathcal{N}=1}(\mathcal{J}_{AB},\partial_{A},d,\mathsf{V}_{Ap},\bar{\mathsf{V}}_{A\bar{p}},\rho,\psi_{\bar{p}}) \\ &= e^{-2\lambda} \dot{\mathcal{L}}_{\mathrm{Twisted SDFT}}^{\mathrm{Half}-\mathrm{maximal}}(\dot{\mathcal{J}}_{\dot{A}\dot{B}},\dot{D}_{\dot{A}},\dot{d},\dot{\mathsf{V}}_{\dot{A}p},\dot{\bar{\mathsf{V}}}_{\dot{A}\bar{p}},\rho,\psi_{\bar{p}}), \\ \mathcal{L}_{D=10}^{\mathcal{N}=2}(\mathcal{J}_{AB},\partial_{A},d,\mathsf{V}_{Ap},\bar{\mathsf{V}}_{A\bar{p}},\mathcal{C},\rho,\psi_{\bar{p}},\rho',\psi'_{p}) \\ &= e^{-2\lambda} \dot{\mathcal{L}}_{\mathrm{Twisted SDFT}}^{\mathrm{Maximal}}(\dot{\mathcal{J}}_{\dot{A}\dot{B}},\dot{D}_{\dot{A}},\dot{d},\dot{\mathsf{V}}_{\dot{A}p},\dot{\bar{\mathsf{V}}}_{\dot{A}\bar{p}},\mathcal{C},\rho,\psi_{\bar{p}},\rho',\psi'_{p}). \end{split}$$

 $\cdot\,$ The twist translates the original section condition as

$$\dot{D}_{\dot{A}}\dot{D}^{\dot{A}}\sim 0$$

 If we impose this, it is nothing but the field redefinition of the untwisted SDFT. We shall look for alternative inequivalent conditions, or the twistability conditions.

 \cdot Those replacement leads to twisted SDFT Lagrangian,

$$\begin{split} \mathcal{L}_{D=10}^{\mathcal{N}=1}(\mathcal{J}_{AB},\partial_{A},d,\mathsf{V}_{Ap},\bar{\mathsf{V}}_{A\bar{p}},\rho,\psi_{\bar{p}}) \\ &= e^{-2\lambda} \dot{\mathcal{L}}_{\mathrm{Twisted SDFT}}^{\mathrm{Half}-\mathrm{maximal}}(\dot{\mathcal{J}}_{\dot{A}\dot{B}},\dot{D}_{\dot{A}},\dot{d},\dot{\mathsf{V}}_{\dot{A}p},\dot{\bar{\mathsf{V}}}_{\dot{A}\bar{p}},\rho,\psi_{\bar{p}}), \\ \mathcal{L}_{D=10}^{\mathcal{N}=2}(\mathcal{J}_{AB},\partial_{A},d,\mathsf{V}_{Ap},\bar{\mathsf{V}}_{A\bar{p}},\mathcal{C},\rho,\psi_{\bar{p}},\rho',\psi'_{p}) \\ &= e^{-2\lambda} \dot{\mathcal{L}}_{\mathrm{Twisted SDFT}}^{\mathrm{Maximal}}(\dot{\mathcal{J}}_{\dot{A}\dot{B}},\dot{D}_{\dot{A}},\dot{d},\dot{\mathsf{V}}_{\dot{A}p},\dot{\bar{\mathsf{V}}}_{\dot{A}\bar{p}},\mathcal{C},\rho,\psi_{\bar{p}},\rho',\psi'_{p}). \end{split}$$

 \cdot The twist translates the original section condition as

$$\dot{D}_{\dot{A}}\dot{D}^{\dot{A}}\sim 0$$
 .

• If we impose this, it is nothing but the field redefinition of the untwisted SDFT. We shall look for alternative inequivalent conditions, or the *twistability conditions*.

· From the closure of the U-twisted generalized Lie derivative,

$$[\dot{\mathcal{L}}_{\dot{X}},\dot{\mathcal{L}}_{\dot{Y}}]\equiv\dot{\mathcal{L}}_{[\dot{X},\dot{Y}]_{\mathrm{C}}},$$

we found the twistability conditions.

1. The section condition for all the dotted twisted fields,

$$\dot{\partial}_{\dot{M}}\dot{\partial}^{\dot{M}}\equiv 0$$
 .

2. The orthogonality between the connection and the derivatives,

$$\Omega^{\dot{M}}{}_{\dot{F}\dot{G}}\dot{\partial}_{\dot{M}}\equiv 0$$
 .

3. The Jacobi identity for $f_{\dot{A}\dot{B}\dot{C}}=f_{[\dot{A}\dot{B}\dot{C}]}$,

$$f_{[\dot{A}\dot{B}}{}^{\dot{E}}f_{\dot{C}]\dot{D}\dot{E}}\equiv 0$$
 .

4. The constancy of the structure constant, $f_{\dot{A}\dot{B}\dot{C}}$,

$$\partial_{\dot{e}} f_{\dot{A}\dot{B}\dot{C}} \equiv 0$$

5. The triviality of $f_{\dot{A}}$,

$$f_{\dot{A}} = \Omega^{\dot{C}}_{\dot{C}\dot{A}} - 2\dot{\partial}_{\dot{A}}\lambda = \partial_{C}U^{C}_{\dot{A}} - 2\dot{\partial}_{\dot{A}}\lambda \equiv 0.$$

Twisted semi-covariant formalism.

 \cdot The U-twisted master semi-covariant derivative is

$$\dot{\mathcal{D}}_{\dot{A}} = \dot{\nabla}_{\dot{A}} + \dot{\Phi}_{\dot{A}} + \dot{\bar{\Phi}}_{\dot{A}} = \dot{\underline{D}}_{\dot{A}} + \Gamma_{\dot{A}} + \dot{\Phi}_{\dot{A}} + \dot{\bar{\Phi}}_{\dot{A}} \,,$$

 $\cdot\,$ The twisted torsionless connection reads

$$\begin{split} \dot{\Gamma}_{\dot{C}\dot{A}\dot{B}} &= 2(\dot{P}\dot{D}_{\dot{C}}\dot{P}\dot{\bar{P}})_{[\dot{A}\dot{B}]} + 2(\dot{\bar{P}}_{[\dot{A}}{}^{\dot{D}}\dot{\bar{P}}_{\dot{B}]}{}^{\dot{E}} - \dot{\bar{P}}_{[\dot{A}}{}^{\dot{D}}\dot{\bar{P}}_{\dot{B}]}{}^{\dot{E}})\dot{D}_{\dot{D}}\dot{\bar{P}}_{\dot{E}\dot{C}} \\ &- \frac{4}{D-1}(\dot{\bar{P}}_{\dot{C}[\dot{A}}\dot{\bar{P}}_{\dot{B}]}{}^{\dot{D}} + \dot{\bar{P}}_{\dot{C}[\dot{A}}\dot{\bar{P}}_{\dot{B}]}{}^{\dot{D}})\left(\dot{D}_{\dot{D}}\dot{d} + (\dot{P}\dot{D}^{\dot{E}}\dot{P}\dot{\bar{P}})_{[\dot{E}\dot{D}]}\right) \,. \end{split}$$

 $\cdot\,$ These are in a completely parallel manner to the untwisted cases.

 \cdot Upon all the twistability conditions, we obtain

$$(\delta_{\dot{X}}-\hat{\mathcal{L}}_{\dot{X}})(\dot{\nabla}_{\dot{C}}\dot{T}_{\dot{A}_{1}\cdots\dot{A}_{n}})\equiv\sum_{i=1}^{n}(\mathcal{P}+\bar{\mathcal{P}})_{\dot{C}\dot{A}_{i}}{}^{\dot{B}}\dot{T}_{\dot{A}_{1}\cdots\dot{A}_{i-1}\dot{B}\dot{A}_{i+1}\cdots\dot{A}_{n}}.$$

• Once again the anomalies are all controlled by the index-six projection operators. Namely, *they are still semi-covariant*.

 \cdot Upon all the twistability conditions, we obtain

$$(\delta_{\dot{X}}-\hat{\mathcal{L}}_{\dot{X}})(\dot{\nabla}_{\dot{C}}\dot{\mathcal{T}}_{\dot{A}_{1}\cdots\dot{A}_{n}})\equiv\sum_{i=1}^{n}(\mathcal{P}+\bar{\mathcal{P}})_{\dot{C}\dot{A}_{i}}{}^{\dot{B}}\dot{\mathcal{T}}_{\dot{A}_{1}\cdots\dot{A}_{i-1}\dot{B}\dot{A}_{i+1}\cdots\dot{A}_{n}}.$$

• Once again the anomalies are all controlled by the index-six projection operators. Namely, *they are still semi-covariant*.

 $\cdot\,$ But, in contrast to the nilpotency of the untwisted differential operators, we get after the twist,

$$(\dot{\mathcal{D}}_{\pm})^2 \mathcal{C} \equiv - rac{1}{24} f_{\dot{A}\dot{B}\dot{C}} f^{\dot{A}\dot{B}\dot{C}} \mathcal{C} \,.$$

· For the consistency , we should impose

$$f_{\dot{A}\dot{B}\dot{C}}f^{\dot{A}\dot{B}\dot{C}}\equiv 0$$
 .

• But, in contrast to the nilpotency of the untwisted differential operators, we get after the twist,

$$(\dot{\mathcal{D}}_{\pm})^2 \mathcal{C} \equiv - rac{1}{24} f_{\dot{A}\dot{B}\dot{C}} f^{\dot{A}\dot{B}\dot{C}} \mathcal{C}$$
 .

 $\cdot\,$ For the consistency , we should impose

$$f_{\dot{A}\dot{B}\dot{C}}f^{\dot{A}\dot{B}\dot{C}}\equiv 0$$
 .

TWISTED SUPERSYMMETRIC DOUBLE FIELD THEORY

• Half-maximal supersymmetric gauged double field theory Lagrangian,

$$\dot{\mathcal{L}}_{\text{Twisted SDFT}}^{\text{Half}-\text{maximal}} = e^{-2\dot{d}} \left[\frac{1}{4} \dot{\mathcal{G}}_{pq}{}^{pq} + \dot{I}_{2}^{1} \bar{\rho} \gamma^{p} \dot{\mathcal{D}}_{p} \rho - i \bar{\psi}^{\bar{p}} \dot{\mathcal{D}}_{\bar{p}} \rho - \dot{I}_{2}^{1} \bar{\psi}^{\bar{p}} \gamma^{q} \dot{\mathcal{D}}_{q} \psi_{\bar{p}} \right].$$

 The supersymmetry works, as the induced leading order variation of the Lagrangian vanishes, up to total derivatives and the twistability conditions,

$$\begin{split} \delta_{\varepsilon} \dot{\mathcal{L}}_{\text{Twisted SDFT}}^{\text{Half-maximal}} &\equiv -ie^{-2\dot{d}} \bar{\rho} \left[(\gamma^{p} \dot{\mathcal{D}}_{p})^{2} + \dot{\mathcal{D}}_{\bar{p}} \dot{\mathcal{D}}^{\bar{p}} + \frac{1}{4} \dot{\mathcal{G}}_{pq}^{pq} \right] \varepsilon \\ &+ ie^{-2\dot{d}} \bar{\psi}^{\bar{p}} \left[\dot{\mathcal{G}}_{\bar{p}rq}^{r} \gamma^{q} + [\dot{\mathcal{D}}_{\bar{p}}, \gamma^{q} \dot{\mathcal{D}}_{q}] \right] \varepsilon \\ &\equiv 0 \,. \end{split}$$

 \cdot Maximal supersymmetric gauged double field theory Lagrangian,

$$\begin{split} \dot{\mathcal{L}}_{\mathrm{Twisted \; SDFT}}^{\mathrm{Maximal}} &= e^{-2\dot{d}} \Big[\frac{1}{8} (\dot{\mathcal{G}}_{pq}{}^{pq} - \dot{\mathcal{G}}_{\bar{p}\bar{q}}{}^{\bar{p}\bar{q}}) + \frac{1}{2} \mathrm{Tr}(\dot{\mathcal{F}}\ddot{\mathcal{F}}) - i\bar{\rho}\dot{\mathcal{F}}\rho' \\ &+ i\bar{\psi}_{\bar{p}}\gamma_q \dot{\mathcal{F}}\bar{\gamma}^{\bar{p}}\psi'^q + i\frac{1}{2}\bar{\rho}\gamma^p \dot{\mathcal{D}}_p\rho - i\bar{\psi}^{\bar{p}}\dot{\mathcal{D}}_{\bar{p}}\rho - i\frac{1}{2}\bar{\psi}^{\bar{p}}\gamma^q \dot{\mathcal{D}}_q\psi_{\bar{p}} \\ &- i\frac{1}{2}\bar{\rho}'\bar{\gamma}^{\bar{p}}\dot{\mathcal{D}}_{\bar{p}}\rho' + i\bar{\psi}'^p \dot{\mathcal{D}}_p\rho' + i\frac{1}{2}\bar{\psi}'^p \bar{\gamma}^{\bar{q}}\dot{\mathcal{D}}_{\bar{q}}\psi'_p \Big] \,. \end{split}$$

TWISTED SUPERSYMMETRIC DOUBLE FIELD THEORY

• Ignoring total derivatives and up to the twistability conditions, the supersymmetric infinitesimal variation of the Lagrangian is

$$\begin{split} &\delta_{\varepsilon}\dot{\mathcal{L}}_{\mathrm{Twisted SDFT}}^{\mathrm{Maximal}} \\ &\equiv \quad i\frac{1}{48}e^{-2\dot{d}}\left(\bar{\rho}\varepsilon-\bar{\rho}'\varepsilon'+\bar{\varepsilon}\mathcal{C}\rho'+\bar{\varepsilon}\gamma^{p}\mathcal{C}\psi_{p}'+\bar{\rho}\mathcal{C}\varepsilon'+\bar{\psi}_{\bar{p}}\mathcal{C}\bar{\gamma}^{\bar{p}}\varepsilon'\right)\times f_{\dot{A}\dot{B}\dot{C}}f^{\dot{A}\dot{B}\dot{C}} \\ &+i\frac{1}{8}e^{-2d}(\bar{\varepsilon}\gamma_{p}\psi_{\bar{q}}-\bar{\varepsilon}'\bar{\gamma}_{\bar{q}}\psi_{p}')\mathrm{Tr}\left(\gamma^{p}\dot{\mathcal{F}}_{-}\bar{\gamma}^{\bar{q}}\dot{\mathcal{F}}_{-}\right)\,. \end{split}$$

· Requiring the extra condition which we recall here,

$$f_{\dot{A}\dot{B}\dot{C}}f^{\dot{A}\dot{B}\dot{C}}\equiv 0\,,$$

the action is supersymmetric invariant modulo the self-duality, up to surface integrals.

TWISTED SUPERSYMMETRIC DOUBLE FIELD THEORY

• To compare with the untwisted DFT and to identify the newly added terms after the U-twist up to the twistability conditions,

$$\begin{split} +\dot{\mathcal{G}}_{pq}{}^{pq} &\equiv \frac{1}{16}\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}_{\dot{A}}\dot{\mathcal{H}}_{\dot{C}\dot{D}}\dot{\partial}_{\dot{B}}\dot{\mathcal{H}}^{\dot{C}\dot{D}} + \frac{1}{4}\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}^{\dot{C}}\dot{\mathcal{H}}_{\dot{A}\dot{D}}\dot{\partial}^{\dot{D}}\dot{\mathcal{H}}_{\dot{B}\dot{C}} - \frac{1}{2}\dot{\partial}_{\dot{A}}\dot{\partial}_{\dot{B}}\dot{\mathcal{H}}^{\dot{A}\dot{B}} \\ &-2\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}_{\dot{A}}\dot{d}\dot{\partial}_{\dot{B}}\dot{d} + 2\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}_{\dot{A}}\dot{\partial}_{\dot{B}}\dot{d} + 2\dot{\partial}_{\dot{A}}\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}_{\dot{B}}\dot{d} \\ &+ \frac{1}{8}f_{\dot{A}\dot{B}\dot{C}}f^{\dot{A}\dot{B}}_{\dot{D}}\dot{\mathcal{H}}^{\dot{C}\dot{D}} - \frac{1}{24}f_{\dot{A}\dot{B}\dot{C}}f_{\dot{D}\dot{E}\dot{F}}\dot{\mathcal{H}}^{\dot{A}\dot{D}}\dot{\mathcal{H}}^{\dot{B}\dot{E}}\dot{\mathcal{H}}^{\dot{C}\dot{F}} - \frac{1}{4}f_{\dot{A}\dot{B}\dot{C}}\dot{\mathcal{H}}^{\dot{B}\dot{D}}\dot{\mathcal{H}}^{\dot{C}\dot{E}}\dot{\partial}_{\dot{D}}\dot{\mathcal{H}}_{\dot{E}}^{\dot{A}} \\ &+ \frac{1}{12}f_{\dot{A}\dot{B}\dot{C}}f^{\dot{A}\dot{B}\dot{C}}, \\ -\dot{\mathcal{G}}_{\bar{p}\bar{q}}\bar{p}\bar{q}^{\bar{p}\bar{q}} \equiv \frac{1}{16}\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}_{\dot{A}}\dot{\mathcal{H}}_{\dot{C}\dot{D}}\dot{\partial}_{\dot{B}}\dot{\mathcal{H}}^{\dot{C}\dot{D}} + \frac{1}{4}\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}^{\dot{C}}\dot{\mathcal{H}}_{\dot{A}\dot{D}}\dot{\partial}^{\dot{D}}\dot{\mathcal{H}}_{\dot{B}\dot{C}} - \frac{1}{2}\dot{\partial}_{\dot{A}}\dot{\partial}_{\dot{B}}\dot{\mathcal{H}}^{\dot{A}\dot{B}} \\ &-2\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}_{\dot{A}}\dot{\dot{H}}^{\dot{C}\dot{D}}\dot{\partial}_{\dot{B}}\dot{\mathcal{H}}^{\dot{C}\dot{D}} + \frac{1}{4}\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}^{\dot{C}}\dot{\mathcal{H}}_{\dot{A}\dot{D}}\dot{\partial}^{\dot{D}}\dot{\mathcal{H}}_{\dot{B}\dot{C}} - \frac{1}{2}\dot{\partial}_{\dot{A}}\dot{\partial}_{\dot{B}}\dot{\mathcal{H}}^{\dot{A}\dot{B}} \\ &-2\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}_{\dot{A}}\dot{\dot{A}}\dot{H}^{\dot{C}\dot{D}}\dot{\partial}_{\dot{B}}\dot{\mathcal{H}}^{\dot{C}\dot{D}} + \frac{1}{4}\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}_{\dot{B}}\dot{\dot{d}} + 2\dot{\partial}_{\dot{A}}\dot{\mathcal{H}}^{\dot{A}\dot{B}}\dot{\partial}_{\dot{B}}\dot{d} \\ &+ \frac{1}{8}f_{\dot{A}\dot{B}\dot{C}}\dot{f}^{\dot{A}\dot{B}}\dot{\dot{D}}\dot{\dot{H}}^{\dot{C}\dot{D}} - \frac{1}{24}f_{\dot{A}\dot{B}\dot{C}}\dot{f}_{\dot{D}\dot{E}\dot{F}}\dot{\mathcal{H}}^{\dot{A}\dot{D}}\dot{\mathcal{H}}^{\dot{E}\dot{F}} - \frac{1}{4}f_{\dot{A}\dot{B}\dot{C}}\dot{\dot{H}}^{\dot{B}\dot{D}}\dot{\mathcal{H}}^{\dot{C}\dot{C}}\dot{\partial}_{\dot{D}}\dot{H}_{\dot{E}}^{\dot{A}} \\ &- \frac{1}{12}f_{\dot{A}\dot{B}\dot{C}}\dot{f}^{\dot{A}\dot{B}\dot{C}} . \end{split}$$

SUMMARY

- The semi-covariant formulation also works for the twisted semi-covariant derivative.
- · We successfully twisted the semi-covariant formulations of the $\mathcal{N}=2$ and the $\mathcal{N}=1$, D=10 SDFT.
- Imposing the twistablility conditions, it systematically derives the gauged maximal and half-maximal supersymmetric double field theories.
- In half-maximal SDFT, we freely have positive or negative cosmological constant term.

- The semi-covariant formulation also works for the twisted semi-covariant derivative.
- · We successfully twisted the semi-covariant formulations of the $\mathcal{N}=2$ and the $\mathcal{N}=1$, D=10 SDFT.
- Imposing the twistablility conditions, it systematically derives the gauged maximal and half-maximal supersymmetric double field theories.
- In half-maximal SDFT, we freely have positive or negative cosmological constant term.

- The semi-covariant formulation also works for the twisted semi-covariant derivative.
- · We successfully twisted the semi-covariant formulations of the $\mathcal{N}=2$ and the $\mathcal{N}=1$, D=10 SDFT.
- Imposing the twistablility conditions, it systematically derives the gauged maximal and half-maximal supersymmetric double field theories.
- In half-maximal SDFT, we freely have positive or negative cosmological constant term.

- The semi-covariant formulation also works for the twisted semi-covariant derivative.
- · We successfully twisted the semi-covariant formulations of the $\mathcal{N}=2$ and the $\mathcal{N}=1$, D=10 SDFT.
- Imposing the twistablility conditions, it systematically derives the gauged maximal and half-maximal supersymmetric double field theories.
- In half-maximal SDFT, we freely have positive or negative cosmological constant term.

THANK YOU!