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∙ In Riemannian geometry, the fundamental object is the metric,
gµν .
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∙ ∇λgµν = 0, Γλ
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µν = 1
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λρ(∂µgνρ + ∂νgµρ − ∂ρgµν)

∙ Curvature: [∇µ,∇ν ] −→ Rκλµν −→ R
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∙ In general relativity, the metric is the only geometric object . All
other fields are viewed as matter or radiation.

∙ On the other hand, string theory puts gµν ,Bµν and ϕ on an equal
footing, as they, the massless NS-NS sector form a multiplet of
T-duality.
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Double Field Theory

∙ A “generalized metric” and a redefined dilaton,

HAB =

(
g−1 −g−1B
Bg−1 g− Bg−1B

)
, e−2d =

√
−ge−2ϕ

∙ O(D,D) metric,

JAB =

 0 1
1 0

 ,

freely raises or lowers the (D+ D)-dimensional vector indices, A,
B.
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∙ DFT action for NS-NS sector is ,

SDFT =

∫
dy2De−2dLDFT (H,d)

where

LDFT = HAB (4∂A∂Bd− 4∂Ad∂Bd+ 1
8∂AH

CD∂BHCD − 1
2∂AH

CD∂CHBD
)

+4∂AHAB∂Bd− ∂A∂BHAB

Hull & Zwiebach later with Hohm

∙ O(D,D) structure is manifest and background independent.

∙ All spacetime dimension is ‘formally doubled’, yA = (x̃µ, xν),
A = 1, 2, · · · ,D+ D.
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x

x˜

Figure: We choose x-coordinate with ∂
∂x̃µ ∼ 0.

∙ The section condition ensures that DFT lives not on the doubled
(D+ D)-dimensional space but on a D-dimensional null
hyperspace, i.e. section.
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Figure: Other section.

∙ There is isometry, we can choose any section.



Double Field Theory

∙ DFT action is (locally) equivalent to the effective action:

SDFT ⇒ Seff =
∫
dxD

√
−ge−2ϕ

(
Rg + 4 (∂ϕ)2 − 1

12H
2
)
.



Double Field Theory

Dilaton and a pair of two-index projectors.

∙ The geometric objects in DFT consist of a dilaton, d, and a pair
of symmetric projection operators,

PAB = PBA , P̄AB = P̄BA , PABPBC = P C
A , P̄ABP̄BC = P̄ C

A .

∙ Further, the projectors are orthogonal and complementary,

PABP̄BC = 0 , PAB + P̄AB = JAB .
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∙ In supersymmetric double field theories, it appears that the projec-
tors are more fundamental than the “generalized metric”.



Double Field Theory

Dilaton and a pair of two-index projectors.

∙ The six-index projection operators are

PCABDEF := PCDP[A[EPB]F] + 2
D−1PC[APB][EPF]D , PABCDEFPDEFGHI = PABCGHI ,

P̄CABDEF := P̄CDP̄[A[EP̄B]F] + 2
D−1 P̄C[AP̄B][EP̄F]D , P̄ABCDEFP̄DEFGHI = P̄ABCGHI .

They are symmetric and traceless,

PABCDEF = PDEFABC , PABCDEF = PA[BC]D[EF] , PABPABCDEF = 0 ,
P̄ABCDEF = P̄DEFABC , P̄ABCDEF = P̄A[BC]D[EF] , P̄ABP̄ABCDEF = 0 .



Double Field Theory

Integral measure.

∙ While the projectors are weightless, the dilaton gives rise to the
O(D,D) invariant integral measure with weight one, after
exponentiation,

e−2d .

∙ Naturally the cosmological constant term in DFT is given by

e−2dΛDFT

which deviates from the conventional one in Riemannian GR, and
hence reformulates the cosmological constant problem in a
novel manner.

Jeon-Lee-JHP 2011
c.f. Meissner-Veneziano 1991



Double Field Theory

Integral measure.

∙ Naturally the cosmological constant term in DFT is given by

e−2dΛDFT .

∙ Scherk-Schwarz-type dimensional reductions from D = 10
half-maximal SDFT can produce ΛDFT > 0 (as well as ΛDFT < 0),

Cho-Fernández-Melgarejo-Jeon-Park 2015
once the section condition is ‘relaxed’ for the twisting ansatz.

Geissbuhler, Grana-Marques, Berman-Lee



Double Field Theory

Diffeomorphism.

∙ Diffeomorphism symmetry in O(D,D) DFT is generated by a
generalized Lie derivative Siegel, Courant, Grana

L̂XTA1···An := XB∂BTA1···An + ωT ∂BXBTA1···An
+

∑n
i=1(∂AiXB − ∂BXAi)TA1···Ai−1

B
Ai+1···An ,

where ωT denotes the weight.



Double Field Theory

Diffeomorphism.

∙ In particular, the generalized Lie derivative of the O(D,D)
invariant metric is trivial,

L̂XJAB = 0 .

∙ The commutator is closed by C-bracket Hull-Zwiebach[
L̂X, L̂Y

]
= L̂[X,Y]C , [X, Y]AC = XB∂BYA − YB∂BXA + 1

2YB∂AXB −
1
2XB∂AYB .



Double Field Theory

Semi-covariant derivative.

∙ We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An −ωT Γ
B
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An .

∙ It is compatible with the O(D,D) quatities,

∇Cd = 0, ∇CPAB = 0, ∇CP̄AB = 0,
∇CJAB = 0 (⇔ ΓABC + ΓACB = 0),



Double Field Theory

∙ With the torsionless condition,

Γ[ABC] = 0 (⇔ L̂X(∂) = L̂X(∇)),

we may uniquely determine the (torsionelss) connection,

ΓCAB = 2
(
P∂CPP̄

)
[AB] + 2

(
P̄[ADP̄B]E − P[ADPB]E

)
∂DPEC

− 4
D−1

(
P̄C[AP̄B]D + PC[APB]D

)(
∂Dd+ (P∂EPP̄)[ED]

)
,

satisfying

PABCDEFΓDEF = 0 , P̄ABCDEFΓDEF = 0 .

Jeon-Lee-Park 2011

∙ It is the DFT generalization of the Christoffel connection.
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Double Field Theory

Master semi-covariant derivative.

∙ We generalize the semi-covariant with the spin connections, ΦA

and Φ̄A, for the two local Lorentz groups, Spin(1,D− 1)L and
Spin(1,D− 1)R, called a master ‘semi-covariant’ derivative,

DA = ∇A +ΦA + Φ̄A = ∂A + ΓA +ΦA + Φ̄A .

∙ It is also compatible with these quantities,

DAVBp = ∂AVBp + ΓAB
CVCp +ΦAp

qVBq = 0,
DAV̄Bp = ∂AV̄Bp + ΓAB

CV̄Cp + Φ̄Ap
qV̄Bq = 0,

DAd = 0, DAJBC = 0, DAηpq = 0, DAη̄p̄q̄ = 0,
DA(γ

p)αβ = 0, DA(γ̄
p̄)ᾱβ̄ = 0.
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Double Field Theory

Semi-covariant curvature.

∙ A semi-covariant Riemann curvature is defined by,

SABCD := 1
2
(
RABCD + RCDAB − ΓEABΓECD

)
.

∙ Here RABCD denotes the ordinary “field strength” of a connection,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED .
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SA[BCD] = 0 : Bianchi identity.
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∙ These are Not covariant tensors, but contracting with projection op-
erators, we can obtain covariant quatities.
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∙ The ordinary derivative of a covariant tensor is no longer covariant
under diffeomorphisms.



Double Field Theory

Semi-covariant curvature.

∙ A semi-covariant Riemann curvature is defined by,

SABCD := 1
2
(
RABCD + RCDAB − ΓEABΓECD

)
.

∙ With projectors,

(
PABPCD + P̄ABP̄CD

)
SACBD ∼ 0 ,

PIAPJBP̄KCP̄LDSABCD ∼ 0 ,

PIAP̄JBPKCP̄LDSABCD ∼ 0 , etc



Double Field Theory

Semi-covariant curvature.

∙ A semi-covariant Riemann curvature is defined by,

SABCD := 1
2
(
RABCD + RCDAB − ΓEABΓECD

)
.

∙ Rank two-tensor:

PIAP̄JBSAB , where SAB := SCACB ,

∙ Scalar curvature: (
PABPCD − P̄ABP̄CD

)
SACBD .



Double Field Theory

∙ Upon the section condition,

(δX−L̂X)ΓCAB ∼ 2
[
(P + P̄)CAB

FDE − δ F
C δ

D
A δ

E
B
]
∂F∂[DXE] ,

(δX−L̂X)∇CTA1···An ∼
n∑
i=1

2(P+P̄)CAi
BDEF∂D∂EXF TA1···Ai−1BAi+1···An .

∙ For the four-index curvatures,

(δX − L̂X)GABCD ∼ (δX − L̂X)SABCD
∼ 2∇[A

(
(P+P̄)B][CD]

EFG∂E∂FXG
)
+
[
(A,B) ↔ (C,D)

]
.
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Double Field Theory

∙ The anomalous terms can be easily projected out through
appropriate contractions with the two-index projectors.

∙ This also explains or motivates the naming, ‘semi-covariant’: we
say a tensor is semi-covariant if its diffeomorphic anomaly, if any,
is governed by the six-index projectors.



Double Field Theory

∙ The anomalous terms can be easily projected out through
appropriate contractions with the two-index projectors.

∙ This also explains or motivates the naming, ‘semi-covariant’: we
say a tensor is semi-covariant if its diffeomorphic anomaly, if any,
is governed by the six-index projectors.



Check point

∙ Understanding the section condition in DFT is subtle and difficult.

∙ The section condition is sufficient but not the necessary
condition for the algebra closure and action invariance.

∙ “Relaxing” the section condition to some extent has been
understood. [Aldazabal,Baron,Nunez,Grana,Marqus,Geissbhler]

∙ The relaxation of the section condition is allowed when doing
Sherk-Schwarz reduction in DFT and it gets gauged DFT.
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Purpose

∙ To have systematic understanding the low dimensional gauged
SDFT in the semi-covariant formulation

∙ We twist the semi-covariant formulation of the ungaged SDFT without

an ambiguity.

- By the formulation, all the symmetries in DFT are fully covariant.

- Torsionful deformation of the gauged DFT is derived from twisting.

∙ To realize the maximal as well as half maximal supersymmetric
gauged DFT in full order of fermions.
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Double Field Theory

The fundamental fields of D = 10 Maximal SDFT are precisely,

d , VAp , V̄Ap̄ , Cα
ᾱ , ρα , ρ′ᾱ , ψα

p̄ , ψ′
p
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∙ The vielbeins generate a pair of symmetric, orthogonal and complete
two-index projectors ,

PAB = PBA = VApVBp , P̄AB = P̄BA = V̄ApV̄Bp ,

satisfying

PABPBC = PAC , P̄ABP̄BC = P̄AC , PABP̄BC = 0 ,
tr(P) = PAA = D, tr(P̄) = P̄AA = D̄,
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ᾱ .

∙ The vielbeins generate a pair of symmetric, orthogonal and complete
two-index projectors ,

PAB = PBA = VApVBp , P̄AB = P̄BA = V̄ApV̄Bp ,

and related to H and J ,

PAB − P̄AB = HAB , PAB + P̄AB = JAB .



Double Field Theory

The fundamental fields of D = 10 Maximal SDFT are precisely,
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ᾱ .

∙ We further define a pair of six-index projection,

PABCDEF = PADP[B[EPC]F] + 2
D−1PA[BPC][EPF]D, PABCDEFPDEFGHI = PABCGHI,
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The fundamental fields of D = 10 Maximal SDFT are precisely,

d , VAp , V̄Ap̄ , Cα
ᾱ , ρα , ρ′ᾱ , ψα

p̄ , ψ′
p
ᾱ .

∙ R-R potential is bi-fundamental spinor representation of Spin(1, 9)×
Spin(9, 1).

∙ Especially for the torsionless case, the corresponding operators are
nilpotent up to the section condition

(D±)
2C ∼ 0 .
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∙ Dilatinos and Gravitinos.
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Twisted Double Field Theory

∙ To relax the section condition, we twist the original theory.
Namely, Sherk-Schwarz reduction.



Twisted Double Field Theory

∙ For the twisting, we use the two twisting datas:
a scalar λ(x) and UAȦ ∈ O(D,D),

UJ̇Ut = J , J̇ȦḂ =

 0 1
1 0

 ,

using which we set the ansatz for U-twist,

TA1···An = e−2ωλUA1 Ȧ1 · · ·UAn Ȧn ṪȦ1···Ȧn .



Twisted Double Field Theory

∙ The derivatives of the untwisted fields then assume a generic
form,

∂CTA1···An = e−2ωλUCĊUA1 Ȧ1 · · ·UAn Ȧn ḊĊṪȦ1···Ȧn .

∙ The U-derivative , ḊĊ, is defined to act on a twisted field by

ḊĊṪȦ1···Ȧn := ∂̇ĊṪȦ1···Ȧn − 2ω∂̇Ċλ ṪȦ1···Ȧn +
n∑
i=1

ΩĊȦi
ḂṪȦ1···Ḃ···Ȧn .



Twisted Double Field Theory

∙ Those replacement leads to twisted SDFT Lagrangian,

LN=1
D=10(JAB, ∂A,d, VAp, V̄Ap̄, ρ, ψp̄)

= e−2λL̇Half−maximal
Twisted SDFT(J̇ȦḂ, ḊȦ, ḋ, V̇Ȧp, ˙̄VȦp̄, ρ, ψp̄) ,

LN=2
D=10 (JAB, ∂A,d, VAp, V̄Ap̄, C, ρ, ψp̄, ρ′, ψ′

p)

= e−2λL̇Maximal
Twisted SDFT(J̇ȦḂ, ḊȦ, ḋ, V̇Ȧp, ˙̄VȦp̄, C, ρ, ψp̄, ρ′, ψ′

p) .

∙ The twist translates the original section condition as

ḊȦḊȦ ∼ 0 .

∙ If we impose this, it is nothing but the field redefinition of the
untwisted SDFT. We shall look for alternative inequivalent
conditions, or the twistability conditions.
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ḊȦḊȦ ∼ 0 .

∙ If we impose this, it is nothing but the field redefinition of the
untwisted SDFT. We shall look for alternative inequivalent
conditions, or the twistability conditions.



Twisted Double Field Theory

∙ Those replacement leads to twisted SDFT Lagrangian,

LN=1
D=10(JAB, ∂A,d, VAp, V̄Ap̄, ρ, ψp̄)

= e−2λL̇Half−maximal
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Twisted Double Field Theory

∙ From the closure of the U-twisted generalized Lie derivative,

[L̇Ẋ, L̇Ẏ] ≡ L̇[Ẋ,Ẏ]C ,

we found the twistability conditions.



Twisted Double Field Theory

1. The section condition for all the dotted twisted fields,

∂̇Ṁ∂̇
Ṁ ≡ 0 .

2. The orthogonality between the connection and the derivatives,

ΩṀ
ḞĠ∂̇Ṁ ≡ 0 .

3. The Jacobi identity for fȦḂĊ = f[ȦḂĊ],

f[ȦḂĖfĊ]ḊĖ ≡ 0 .

4. The constancy of the structure constant, fȦḂĊ ,

∂̇ĖfȦḂĊ ≡ 0 .

5. The triviality of fȦ ,

fȦ = ΩĊ
ĊȦ − 2∂̇Ȧλ = ∂CUCȦ − 2∂̇Ȧλ ≡ 0 .



Twisted Double Field Theory

Twisted semi-covariant formalism.

∙ The U-twisted master semi-covariant derivative is

ḊȦ = ∇̇Ȧ + Φ̇Ȧ +
˙̄ΦȦ = ḊȦ + ΓȦ + Φ̇Ȧ +

˙̄ΦȦ ,

∙ The twisted torsionless connection reads

Γ̇ĊȦḂ = 2(ṖḊĊṖ ˙̄P)[ȦḂ] + 2( ˙̄P[ȦḊ ˙̄PḂ]Ė − Ṗ[ȦḊṖḂ]Ė)ḊḊṖĖĊ
− 4
D−1 (

˙̄PĊ[Ȧ ˙̄PḂ]Ḋ + ṖĊ[ȦṖḂ]Ḋ)
(
ḊḊḋ+ (ṖḊĖṖ ˙̄P)[ĖḊ]

)
.

∙ These are in a completely parallel manner to the untwisted cases.



Twisted Double Field Theory

∙ Upon all the twistability conditions, we obtain

(δẊ − L̂Ẋ)(∇̇ĊṪȦ1···Ȧn) ≡
n∑
i=1

(P+P̄)ĊȦi
ḂṪȦ1···Ȧi−1ḂȦi+1···Ȧn .

∙ Once again the anomalies are all controlled by the index-six
projection operators. Namely, they are still semi-covariant.
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U-twisted Double Field Theory

∙ But, in contrast to the nilpotency of the untwisted differential
operators, we get after the twist,

(Ḋ±)
2C ≡ − 1

24 fȦḂĊf ȦḂĊC .

∙ For the consistency , we should impose

fȦḂĊf
ȦḂĊ ≡ 0 .
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Twisted Supersymmetric Double Field Theory

∙ Half-maximal supersymmetric gauged double field theory
Lagrangian,

L̇Half−maximal
Twisted SDFT = e−2ḋ

[
1
4 Ġpq

pq + i 12 ρ̄γpḊpρ− iψ̄p̄Ḋp̄ρ− i 12 ψ̄p̄γqḊqψp̄
]
.

∙ The supersymmetry works, as the induced leading order variation
of the Lagrangian vanishes , up to total derivatives and the
twistability conditions,

δεL̇Half−maximal
Twisted SDFT ≡ −ie−2ḋρ̄

[
(γpḊp)

2 + Ḋp̄Ḋp̄ + 1
4 Ġpq

pq
]
ε

+ie−2ḋψ̄p̄
[
Ġp̄rqrγq + [Ḋp̄, γ

qḊq]
]
ε

≡ 0 .



Twisted Supersymmetric Double Field Theory

∙ Maximal supersymmetric gauged double field theory Lagrangian,

L̇Maximal
Twisted SDFT = e−2ḋ

[
1
8 (Ġpq

pq − Ġp̄q̄p̄q̄) + 1
2Tr(Ḟ ¯̇F)− iρ̄Ḟρ′

+iψ̄p̄γqḞ γ̄p̄ψ′q + i 12 ρ̄γpḊpρ− iψ̄p̄Ḋp̄ρ− i 12 ψ̄p̄γqḊqψp̄

−i 12 ρ̄′γ̄p̄Ḋp̄ρ
′ + iψ̄′pḊpρ

′ + i 12 ψ̄′pγ̄q̄Ḋq̄ψ
′
p

]
.



Twisted Supersymmetric Double Field Theory

∙ Ignoring total derivatives and up to the twistability conditions,
the supersymmetric infinitesimal variation of the Lagrangian is

δεL̇Maximal
Twisted SDFT

≡ i 148e−2ḋ
(
ρ̄ε− ρ̄′ε′ + ε̄Cρ′ + ε̄γpCψ′

p + ρ̄Cε′ + ψ̄p̄Cγ̄p̄ε′
)
× fȦḂĊf ȦḂĊ

+i 18e−2d(ε̄γpψq̄ − ε̄′γ̄q̄ψ
′
p)Tr

(
γpḞ−γ̄

q̄Ḟ−

)
.

∙ Requiring the extra condition which we recall here,

fȦḂĊf
ȦḂĊ ≡ 0 ,

the action is supersymmetric invariant modulo the self-duality,
up to surface integrals.



Twisted Supersymmetric Double Field Theory

∙ To compare with the untwisted DFT and to identify the newly
added terms after the U-twist up to the twistability conditions,

+Ġpqpq ≡ 1
16Ḣ

ȦḂ∂̇ȦḢĊḊ∂̇ḂḢĊḊ + 1
4Ḣ

ȦḂ∂̇ĊḢȦḊ∂̇
ḊḢḂĊ −

1
2 ∂̇Ȧ∂̇ḂḢ

ȦḂ

−2ḢȦḂ∂̇Ȧḋ∂̇Ḃḋ+ 2ḢȦḂ∂̇Ȧ∂̇Ḃḋ+ 2∂̇ȦḢȦḂ∂̇Ḃḋ
+ 1
8 fȦḂĊfȦḂḊḢĊḊ − 1

24 fȦḂĊfḊĖḞḢȦḊḢḂĖḢĊḞ − 1
4 fȦḂĊḢḂḊḢĊĖ∂̇ḊḢĖ

Ȧ

+ 1
12 fȦḂĊfȦḂĊ ,

−Ġp̄q̄p̄q̄ ≡ 1
16Ḣ

ȦḂ∂̇ȦḢĊḊ∂̇ḂḢĊḊ + 1
4Ḣ

ȦḂ∂̇ĊḢȦḊ∂̇
ḊḢḂĊ −

1
2 ∂̇Ȧ∂̇ḂḢ

ȦḂ

−2ḢȦḂ∂̇Ȧḋ∂̇Ḃḋ+ 2ḢȦḂ∂̇Ȧ∂̇Ḃḋ+ 2∂̇ȦḢȦḂ∂̇Ḃḋ
+ 1
8 fȦḂĊfȦḂḊḢĊḊ − 1

24 fȦḂĊfḊĖḞḢȦḊḢḂĖḢĊḞ − 1
4 fȦḂĊḢḂḊḢĊĖ∂̇ḊḢĖ

Ȧ

− 1
12 fȦḂĊfȦḂĊ .
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Summary

∙ The semi-covariant formulation also works for the twisted
semi-covariant derivative.

∙ We successfully twisted the semi-covariant formulations of the
N = 2 and the N = 1, D = 10 SDFT.

∙ Imposing the twistablility conditions, it systematically derives the
gauged maximal and half-maximal supersymmetric double field
theories.

∙ In half-maximal SDFT, we freely have positive or negative
cosmological constant term.
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Thank you!
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