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In this talk

= | emphasize that noncommutative (NC) spacetime necessarily
Implies emergent spacetime if spacetime at microscopic scales
should be viewed as NC.

= The emergent gravity from NC U(1) gauge theory is the large N
duality and the emergent spacetime picture admits a background-
Independent formulation of quantum gravity.

== In order to understand NC spacetime correctly, we need to
deactivate the thought patterns that we have installed in our brains
and taken for granted for so many years.

= Emergent gravity predicts the existence of the dark composition
of our Universe.




NC spacetime introduces the gauge-gravity duality

1. Recall that guantum mechanics is mechanics on NC phase space whose
coordinate generators satisfy the commutation relation

[xi,pj] = ithi

2. The mathematical structure of NC spacetime is essentially the same as the NC
phase space in guantum mechanics:

y#, ¥l =6,
where p, = By, y¥ and B, = (67 1) ..
3. Everything on NC spacetime bears some analogy with quantum mechanics:
NC phase space = Wave-particle duality
=

NC spacetime Gauge-gravity duality




NC spacetime necessarily implies emergent spacetime

.Recall that f (x + a) = U(a)Tf(x)U(a) where U(a) = e~ P @/
and so every point on NC space is unitarily equivalent.
There is no space but an algebra A4 only. Thus the NC space is a misnomer.

. NC space introduces a separable Hilbert space H and so H has a countable basis.
Dynamical variables become operators acting on the Hilbert space.

. NC spacetime implies a paradigm shift: Geometry — Algebra
Hilbert space H': dynamical variables — N X N matrices
where N = dim(H) — oo.

. Large N duality or gauge/gravity duality such as the AdS/CFT correspondence
IS an inevitable consequence of the NC spacetime.

. NC spacetime admits a (dynamical) diffeomorphism symmetry which precisely
acts as the novel form of the equivalence principle for electromagnetic force.




NC Fields As Large N Matrices

Consider a two-dimensional NC space
. +1 _ Xty
[x,yl=i0 < [aa'|=1wherea="7=
Since’ H ={|n); n=0,1,--,00}and Y7o [nXn| =14, for ¢, ¢, € Ay,

DY) = ) )l () m)iml = My n)iml,

nm=0
b2(6,3) = ) )l (e ) ImNml = Ny [n)(oml,
‘n,m=0
(P1*P)(x,y) = z [n)(n| gy O, YD @2 (x, y) Im)m| = My Nip [nXm,
n,l,m=0

NC fields ¢, (x, y) in Ag= adjoint operators acting on a separable
Hilbert space H = N X N matrices in End(H) = Ay with N = dim(H) — oo.

dxdy
21O

Ordering in A= ordering in Ay and Try = Tryy = [




Large N gauge theory from NC U(1) gauge theory

Consider a (d+2n)-dimensional NC U (1) gauge theory on R% x RZ% whose coordinates are
XM= (x*y%, M=01,,D—-1, u=01,---,d—1, a=1,--,2n where
[ye, y°1 = 9%,
The D=(d+2n)-dimensional U (1) connections are split as
Dy (X) = 9y — iAy(x,¥) = (D, Da) (x, )
where 9, = ad,, = —i[p.,-] With p, = B,,y" and
Do (x,¥) = —i(pa + Aa(x,y)) = —iga(x, y).

Using the matrix representation Ay — Ay by

E(x,y) » E(x) € Ay,
the D-dimensional NC U (1) gauge theory is exactly mapped to the d-dimenisonal U(N)
Yang-Muills theory

X Tr( ﬂVFﬂv + 5 Du¢aD $a — [¢a: ¢b]2)

where Byy = (8 BO )
ab

d=0: IKKT, d=1: BFSS, d=2:DVYV, -, d=4: AdS/CFT, ---



NC U(1) gauge theory on RI—11 x R2"

Maltrix representation

U(N — o0) Yang-Mills theory on Rd-1.1

Inner derivation

Quantized frame bundle

Large N duality

Classical limit

D = d + 2n-dimensional Einstein gravity

Figure 1: Flowchart for emergent gravity




NC spacetime as NC Coulomb branch

| will make an important observation that NC spacetime arises as a vacuum solution in
the Coulomb branch of a large N gauge theory to demonstrate the large N duality.

1. The conventional choice of vacuum in the Coulomb branch of U(N) Yang-Mills theory
IS given by

[‘i’a; @b“vac =0 = {‘i’a}vac = diﬂg((ﬂ'ﬂ)l; (ﬂ'a);?-_u T {&'Q)N)

In this case the U(N) gauge symmetry is broken to U(1)".

2. If we consider the N — oo limit, the large N limit opens a new phase of the Coulomb
branch given by

[{-ﬁ'a-. @b] |x-"ac — _iBab == {Oﬂ>‘ndf = Pa = Babyb

where the vacuum moduli y* € R4% satisfy the Moyal-Heisenberg algebra.

3. Suppose that fluctuations around the NC vacuum take the form

D,u — a,u — i;i,u{xv y): {-ja = Pa T+ ;iﬂlf_'.l’f._. y)
The adjoint scalar fields now obey the deformed algebra given by

-

[Ga; &) = —i(Bap — Fap)



Large N duality from NC spacetime

Plugging the fluctuations into the d-dimensional U(N — ) Yang-Mills theory, we get
the D = (d + 2n)-dimensional NC U(1) gauge theory and thus arrive at the reversed
version of the equivalence

1 1 1 1
S = _EI dx Tr(ZFMvFLW + EDugbaDﬂ(pa - Z[(pa» ¢b]2)

~ 2
= _4G]$Mf dDX(FMN - BMN)

where X = (x*,y%) are D-dimensional coordinates and D-dimensional connections
are defined by

Dy (X) = 0y — iAy (x,y) = (D, Do) (x, )
whose field strength is given by

FMN(X) — aMAN - aNAM - i[AM;AN]*-




U(N — oo) Yang-Mills theory on R4—1:!

NC Coulomb branch

NC U(1) gauge theory on R9—1:1 x R2n

Large N duality

D = d + 2n-dimensional Einstein gravity

Inner derivation

Classical lmit

Differential operators as quantized frame bundle

Figure 2: Flowchart for large N duality




Inner/Outer automorphism

Therefore there should be some way to map the NC U(1) gauge theory to the Einstein

gravity according to the (conjectural) large N duality. To be more specific, consider the
inverse metric in Einstein gravity given by

d 2 MN v - ,

(52) = Ba® Ea = gV (X)ou Oy

ds

where /4 = Ef{_X}@_.-L.f are orthonormal frames on the tangent bundle 7'M of a D-dimensional
spacetime manifold M. In order to complete the gauge-gravity duality in Figs. 1 and 2, it is thus

necessary to realize the vector fields £, = EY(X)9,; € T'(T M) in terms of NC U(1) gauge fields.
ry A A M . 1) &4Us

A decisive clue is coming from the fact that the NC #-algebra A4 generated by the
Moyal-Heisenberg algebra always admits a nontrivial inner automorphism .

The infinitesimal generators of 3 form an inner derivation defined by the adjoint
operation

Af = D% f s ady = —i[f, |
forany f € Af = Ay(C(RI11)) = 4y x C(RI1)

Definitely the derivation % is a Lie algebra homomorphism, i.e.,

adjyg) = ilady, ad]



Vielbeins from inner derivation

Consider the derivation algebra generated by the dynamical variables defined by
1?4 - {?adD*l — [D.il: ' “‘DA(I:y) - (D,LHDEL)(I'- y)} S z}d

where Dy(x,y) = —i¢4(z,y). In a large-distance limit, i.e. |§] — 0, one can expand the
NC vector fields using the explicit form of the Moyal *product. The result takes the
form

=S vMog d AAreedp 7. e d
Vy=Vy (.i.y]W+ZLA P{'l‘y]{‘-}ym . =)

- e
p=:

where Vi’ = &%. Thus the Taylor expansion of NC vector fields generates an infinite
tower of the so-called polyvector fields. Note that the leading term gives rise to the
ordinary vector fields that will be identified with a frame basis associated with the
tangent bundle 7 A4 of an emergent spacetime manifold A1

Let us truncate the above polyvector fields to ordinary vector fields given by

d
axXM

(M) = {1{.l = Vil(z, )= A M =0,1,--- D1}

where XM = (z# y?) are local coordinates on a D-dimensional emergent Lorentzian manifold M.




Emergent gravity from NC spacetime

The orthonormal vielbeins on 7'M are then defined by the relation
Va=AE4 e T(TM)
oron T*M
vt = Xlet € T(T*M).

The conformal factor A € C"*°(M) is determined by the volume preserving condition
Ly, v = (\7 Vai+(d—2n)V, ln)x)vt =0, VA=0,1,---,D—1,

where

vi=dz Av=XNd%Z AP A AT

is a D-dimensional volume form on M.

In the end, the Lorentzian metric on a D-dimensional spacetime manifold is given by
ds’ = Gun(X)dXM @dX" =t @ et

= Nv' @v? = N (n,detda” + vl (dy’ — A")(dy* — A°))
where A? := A’ (z, y)dz#. Therefore the NC field theory representation of the d-

dimensional large N gauge theory in the NC Coulomb branch provides a powerful
aslinery to identify gravitational variables dual to large N matrices.



NC Electromagnetism from Matrix Model

Let us start with a zero-dimensional matrix model with a bunch of
N X N Hermitian matrices, {¢, € Ayla = 1, -+, 2n}, whose action
IS given by

2n
S = —% Z Tr [q’;a. rjjb]-‘z.

a,b=1

We require that the matrix algebra A Is associative, which leads to
the Jacobi identity

[ﬁ:'l?u- [f;’b- Uf] - [f;’b [Uf ﬁf’a:: + [Uf [Q’Ja. Ub] = 0.

We also assume the action principle, from which we yield the equation of motion

In

> [, [ba; 5] = 0.
b=1




First suppose that the vacuum configuration of Ay 1s given by

(a)vac = Pa € AN.

An obvious solution in the limit N — oo is given by the Moyal-Heisenberg
algebra

[pﬂ*. Pb] — _'EjBabg

where (B.,) = —L,(1, ®ic?) IS @ 2n X 2n constant symplectic matrix.
A general solution is generated by considering all possible deformations of
the Moyal-Heisenberg algebra. They take the form

U{l = Pa T *4(1 S Aﬁff

obeying the deformed algebra

-

[(.r"{;'a: Ub] — _?F'(Bab - Fa ):

where Fp = 0,A, — 9,A, —i[A,, A € Ay with the definition d, = ad,, = —i[pa,-].




For the general matrix ¢, € Ay to be a solution

the set of matrices F,;, € Ay, must obey the following equations

where ~ o~ ~ PN

Let us apply the Lie algebra homomorphism to yield
XD ,Fre = Va, VB, Vel e (T M)

It is then straightforward to get the following correspondence

D®Fap =0 & VE, V4, Ve] =0,
D4Fge + cyclic =0 & Va, [V, Vel] + eyclic = 0.




Note that the torsion T and curvature R are multi-linear differential operators

T(X.Y) = VxV —VyX —[X,Y]
RX,Y)Z = [Vx,Vy]Z—-VixyZ,

¥

where X, Y and Z are vector fieldson M. |t |s easy to derive the relation

T(Va, V) = XNT(Ea Ep),
R(Va.Ve)Ve = MNR(Ea, Eg)Ec.

After imposing the torsion free condition 7' (E 4, Ep) = 0,
It IS easy to derive the identity below

R(Ea.Ep)Ec + cyclic = X7 ([Va, [Vi. Vo] + cyelic).

Therefore we see that the Bianchi identity for NC U (1) gauge fields is equivalent
to the first Bianchi identity for the Riemann curvature tensors, i.e.,

DaFpc + cyclic =0 & R(Ea, EB)Ec + cyclic = 0.




The mission for the equations of motion is more involved.
So let us focus on four dimensions, i.e., n = 2.
Basically we are expecting the Einstein equations

1
DBE g =0 & Raip = Swa(ag _ §@ABT),

After a straightforward but tedious calculation we get a remarkably
simple but cryptic result

1 [ (+)a_(—)b (+)a ()b

_h b —bh —bh
Ragp = —z |90 9D (ﬂfwﬂﬂc + TEEC'??AC) —9¢ " 9p (qu:fﬁﬂﬂ + '??GBCT?AD)]-

To get the above result. we have introduced the structure equation of
vector fields V4 € I'(T'M)

Va, V] = —gaB“Ve
and the canonical decomposition

+la g —)a_g
JABC = 95; ) MaB T gé ) NAB-




First it is convenient to decompose the energy-momentum tensor into two parts

(M 1 L
SWGT;(QB) = —p(QACDQBCD - 1@43909EQCDE)~
Y L 1 1 \ ‘
SWCTT;&B) = 52 (ﬂAﬁB —Wp¥p — 50‘43(05 - ‘I%))~
where pg = gpap and Yy = —%5‘430’9 JBCD-

A close inspection reveals that the first one is the Maxwell energy-momentum
tensor given by

hlc? 1
ngem] = Fachc — _éﬂbFﬂdFﬂd :
’ Gy m ( 4 )

but the second one seems to be very mysterious.

In order to descry closer aspects of the second energy-momentum tensor,
let us consider the following decomposition

1., 1,
PafPb = 45.145,0,3 + (ﬁ'aﬂb 40..15,0@).-.

_ 1 2 1 2
o Ty = 7607 + (xpamb 45abwc).




In a long wavelength limit, the quadruple modes can be ignored and then it behaves like

a cosmological constant
. 1R
':xL,:' _ i .
Loy = 357G 0

where R = 2—;2 (papp + ¥, ,¥,)6%. So it may be related to dark energy/dark matter.

In order to get a corresponding result in (3+1)-dim4eniso_nal Lorentzian spacetime,
let us take the analytic continuation defined by =~ = i
Under this Wick rotation,

0AB — NAB- Uy — Wy

the so-called Poisson-Liouville energy-momentum (PLEM) tensor is given by

1
T(L) —
e 167G 4 N2

Note that p,, and ¥, are four vectors and random fluctuations in nature.
So they are classified into two classes:

1 |
(ﬂmﬂy 0 Ty — 5 o (p3+U3 }) *

(pu, P,): spacelike vectors, i.e., p,p, g*¥ > 0, etc.
(pu, P,): timelike vectors, i.e., p,p, g*¥ <0, etc.



Given a timelike unit vector field w*, i.e., ufu, = —1,
the Raychaudhuri equation in four dimensions is given
by

O — ik, 4 X, TH — 0, O + 562 = — R utu”
where Ryttt — Lo RV,
— [, utu = 522 e (,Op,py + W, v)

Suppose that all the terms except the expansion evolution, ©,
in the Raychaudhuri equation vanish or become negligible.
In this case the Raychaudhuri equation reduces to

. 1 uo v

O = —2)‘2-1'_1,. u(pupy + W, 0,).

Note that ® =~ gand R < 0 when p, and ¥, are timelike while R > 0
when p, and ¥, are spacelike.

) g < 0 for timelike fluctuations

Q

g > 0 for spacelike fluctuations



By a simple dimensional argument, it is natural to assess that E ~ f;
Then the PLEM tensor is given by

wTRn,

If we identify Ly with the size of cosmic horizon of our observable universe,

~ (107 3el)*

Ly ~ 1.3 x 10%° m.

This extended (nonlocal) energy is in good agreement with the observed value of
current dark energy.

| quote the footnote in one of my papers.

" In the Lorentzian signature, the sign of the Ricei scalar R depends on whether fuctuations are spacelike (R=10)

or timelike (R < 0] [12, 5. In consequence the spacelike perturbations act as & repulsive force whereas the timelike
ones act as an attractive force. When considering the fact that the Auctuations in (79) are random in nature and
we are living in (34+1) (macroscopic) dimensions, the ratio of the repulsive and attractive components will end in
% : % = 75 : 25, Is 1t outrageous to concerve that this ratio curiously coincides with the dark composition of our
universe




