Reconstruction of the Scalar-field Potential for the Cosmological Model with a Gauss-Bonnet term

Gansukh Tumurtushaa Sogang Univ.

collaboration with Prof. Bum-Hoon Lee and Prof. Seoktae Koh

Outline

- Review: Slow-roll inflation and/with Gauss-Bonnet term
- Reconstruction of the inflaton potential
- Feature of the reconstructed potential
- Summary and Discussion

Outline

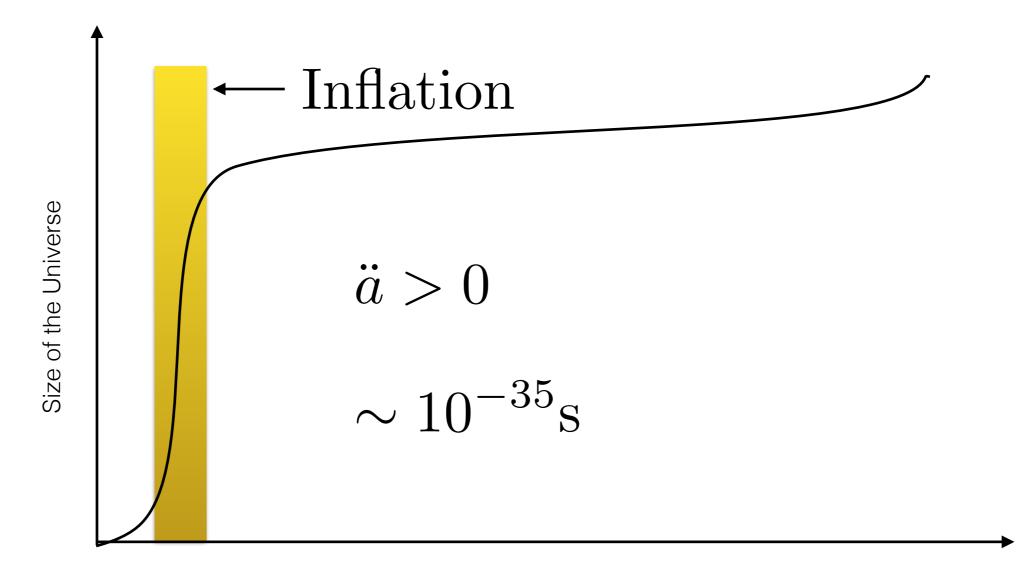
- Review: Slow-roll inflation and/with Gauss-Bonnet term
- Reconstruction of the inflaton potential

> Our main interest!!!

- Feature of the reconstructed potential
- Summary and Discussion

Review: What is inflation?

Inflation is the idea that the very early universe went through a period of accelerated exponential expansion during first fraction of seconds after the Big Bang.



Age of the Universe

Inflation provides solutions to the problems of the cosmology such as the horizon and flatness.

 $\frac{d}{dt}(aH)^{-1} < 0\,,$

- Shrinking comoving Hubble radius:
- Slowly varying Hubble parameter:
- Acceleration of scale factor:

$$0 > \frac{d}{dt}(aH)^{-1} = -\frac{\dot{a}H + a\dot{H}}{(aH)^2} = -\frac{1}{a}(1-\epsilon) \quad \Rightarrow \quad \epsilon \equiv -\frac{\dot{H}}{H^2} < 1 \,.$$

$$-\frac{\dot{H}}{H^2} < 1 \quad \Rightarrow \quad \ddot{a} > 0$$

$$\dot{H} + H^2 = -\frac{\kappa^2}{6} \left(\rho + 3p\right) \quad \Rightarrow \left(\rho + 3p\right) < 0 \quad \Leftrightarrow \quad \omega \equiv \frac{p}{\rho} < -\frac{1}{3}$$

• Negative pressure:

Inflation provides solutions to the problems of the cosmology such as the horizon and flatness.

 $\frac{d}{dt}(aH)^{-1} < 0\,,$

- Shrinking comoving Hubble radius:
- Slowly varying Hubble parameter:
- Acceleration of scale factor:

$$0>\frac{d}{dt}(aH)^{-1}=-\frac{\dot{a}H+a\dot{H}}{(aH)^2}=-\frac{1}{a}(1-\epsilon)\quad\Rightarrow\quad\epsilon\equiv-\frac{\dot{H}}{H^2}<1\,.$$

$$-\frac{\dot{H}}{H^2} < 1 \quad \Rightarrow \quad \ddot{a} > 0$$

• Negative pressure:

$$\dot{H} + H^2 = -\frac{\kappa^2}{6} \left(\rho + 3p\right) \quad \Rightarrow \left(\rho + 3p\right) < 0 \quad \Leftrightarrow \quad \omega \equiv \frac{p}{\rho} < -\frac{1}{3}$$

The simplest model of inflation is based upon a single scalar field, minimally coupled to a gravity, known as *inflaton* field.

- Action:
- The FRW universe:

$$\begin{split} S &= \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right] \,, \\ ds^2 &= -dt^2 + a^2 \left(\frac{dr^2}{1 - Kr^2} + r^2 d\Omega^2 \right), \end{split}$$

• Equations of motion with K=0:

$$H^{2} = \frac{\kappa^{2}}{3} \left[\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right] ,$$

$$\dot{H} = -\frac{\kappa^{2}}{2} \dot{\phi}^{2} .$$

$$\omega_{\phi} \equiv \frac{p_{\phi}}{\rho_{\phi}} = \frac{\frac{1}{2} \dot{\phi} + V(\phi)}{\frac{1}{2} \dot{\phi} - V(\phi)} .$$

 $\ddot{\phi} + 3H\dot{\phi} + V_{\phi} = 0\,,$

• Equations of state parameter:

Slow-roll Condition
er:
$$\epsilon \equiv -\frac{\dot{H}}{H^2} = \frac{\kappa^2}{2} \frac{\dot{\phi}^2}{H^2}, \quad \delta \equiv -\frac{\ddot{\phi}}{H\dot{\phi}}.$$

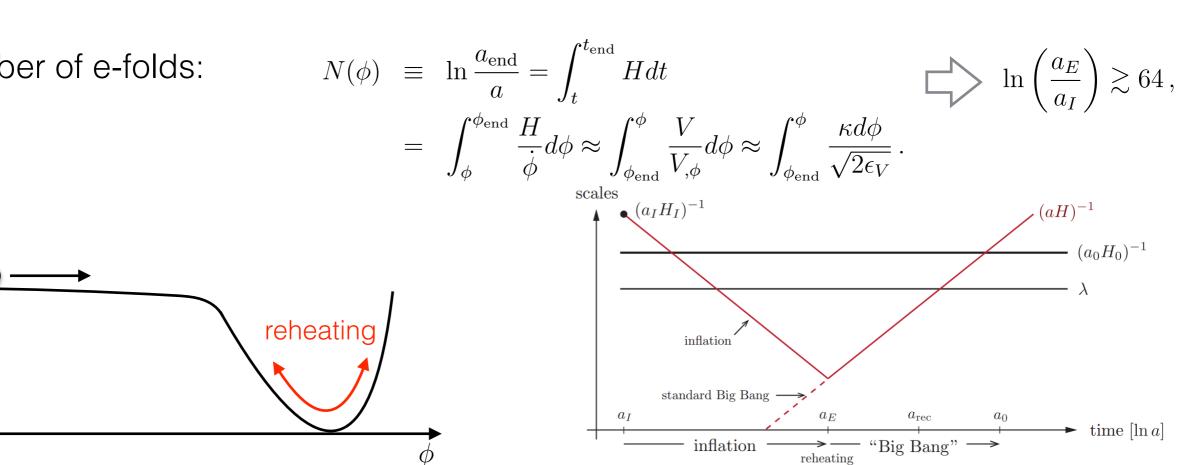
nation: $\dot{\phi}^2 \ll V, \quad |\ddot{\phi}| \ll |3H\dot{\phi}|, |V_{\phi}|.$
on: $3H\dot{\phi} \simeq -V_{,\phi}, \quad H^2 \simeq \frac{\kappa^2}{3}V(\phi).$

 $\epsilon_V \equiv \frac{1}{2\kappa^2} \left(\frac{V_{,\phi}}{V}\right)^2 \ll 1,$

 $\eta_V \equiv \frac{1}{\kappa^2} \frac{V_{,\phi\phi}}{V} \ll 1 \,,$

- Slow-roll parameter
- Slow-roll approxim
- Equations of motic ullet
- Number of e-folds: ullet

 $V(\phi)$



• Let us start with: $S = \int dx^4 \sqrt{-g} \left[\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right], \quad \delta \phi = 0, \quad g_{ij} = a^2 [(1+\mathcal{R})\delta_{ij} + h_{ij}], \quad \partial_i h_{ij} = h_i^i = 0.$

$$S^{(2)} = \frac{1}{2} \int d^4x a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - \frac{1}{a^2} (\partial_i \mathcal{R})^2 \right] .$$
$$v \equiv z\mathcal{R} \,, \quad z^2 \equiv a^2 \dot{\phi}^2 / H^2 = 2a^2 \epsilon,$$

$$\hat{v}_{\mathbf{k}} = v_{k}(\tau)\hat{a}_{\mathbf{k}}^{-} + v_{-k}^{*}(\tau)\hat{a}_{-\mathbf{k}}^{+},$$

$$[\hat{a}_{\mathbf{k}}^{-}, \hat{a}_{-\mathbf{k}'}^{+}] = (2\pi)^{3}\delta(\mathbf{k} + \mathbf{k}'),$$

$$\frac{i}{\hbar}(v_{k}^{*}v_{k}' - v_{k}^{*'}v_{k}) = 1.$$

$$v_{k} = \sqrt{\frac{\hbar}{2k^{3}}}\left(1 - \frac{i}{k\tau}\right)e^{-ik\tau}.$$

$$S^{(2)} = \frac{1}{8} \int d^4x a^3 \left[(\dot{h}_{ij})^2 - \frac{1}{a^2} (\partial_l h_{ij})^2 \right] \,.$$

 n_T

$$n_S - 1 \equiv \frac{d \ln \mathcal{P}_S}{d \ln k} = 2\eta_V - 6\epsilon_V|_{k=aH}$$

$$S^{(2)} = \frac{1}{2} \int d\tau d^3x \left[v'^2 + (\partial_i v)^2 + \frac{z''}{z} v^2 \right],$$
$$v(\tau, \mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} v_{\mathbf{k}}(\tau) e^{i\mathbf{k}\cdot\mathbf{x}},$$

$$\langle \hat{v}_{\mathbf{k}}(\tau) \, \hat{v}_{\mathbf{k}'}(\tau) \rangle = (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') |v_k(\tau)|^2$$
$$= (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') \frac{H^2}{2k^3} (1 + k^2 \tau^2)^2$$

On small scales,
$$k\tau \gg 1$$

 $\langle \hat{v}_{\mathbf{k}}(\tau) \, \hat{v}_{\mathbf{k}'}(\tau) \rangle = (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') \frac{H^2}{2k^3}.$

$$h_{ij} = \int \frac{d^3k}{(2\pi)^3} \sum_{s=+/\times} \epsilon^s_{ij}(k) h^s_{\mathbf{k}}(t) e^{i\mathbf{k}\cdot\mathbf{x}} ,$$

$$h^s_{\mathbf{k}} \equiv h^{+,\times}_{\mathbf{k}}, \ \epsilon_{ii} = 0 = k^i \epsilon_{ij} \text{ and } \epsilon^s_{ij}(k) \epsilon^{s'}_{ij}(k) = 2\delta_{ss'}.$$

 $r=-8n_T\,.$

$$v_k'' + \left(k^2 - \frac{z''}{z}\right)v_k = 0.$$

$$\begin{aligned} \langle \mathcal{R}_{\mathbf{k}}(t) \,\mathcal{R}_{\mathbf{k}'}(t) \rangle &= (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') P_S(k) \\ &= (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') \frac{H_*^2}{2k^3} \frac{H_*^2}{\dot{\phi}_*^2} \,. \\ \langle \mathcal{R}\mathcal{R} \rangle &= \int_0^\infty \mathcal{P}_S(k) d\ln k, \\ \mathcal{T}_{\mathbf{k}}(k) &= -\frac{k^2}{2k} P_S(k) d\ln k, \end{aligned}$$

$$\mathcal{P}_{S}(k) \equiv \frac{k^{-}}{2\pi^{2}} P_{S}(k) = \frac{H_{*}}{(2\pi)^{2} \dot{\phi}_{*}^{2}}$$

$$\langle h_{\mathbf{k}} h_{\mathbf{k}'} \rangle = (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') \frac{1}{2k^3} \frac{H_*^2}{M_p^2} \,.$$

 $\mathcal{P}_T(k) = \frac{2}{\pi^2} \frac{H_*^2}{M_p^2} \,.$

$$\alpha_T \equiv \left. \frac{dn_T}{d\ln k} \right|_{k=aH} \cdot \left. \left. \alpha_S \equiv \left. \frac{dn_s}{d\ln k} \right|_{k=aH} \right. \right.$$

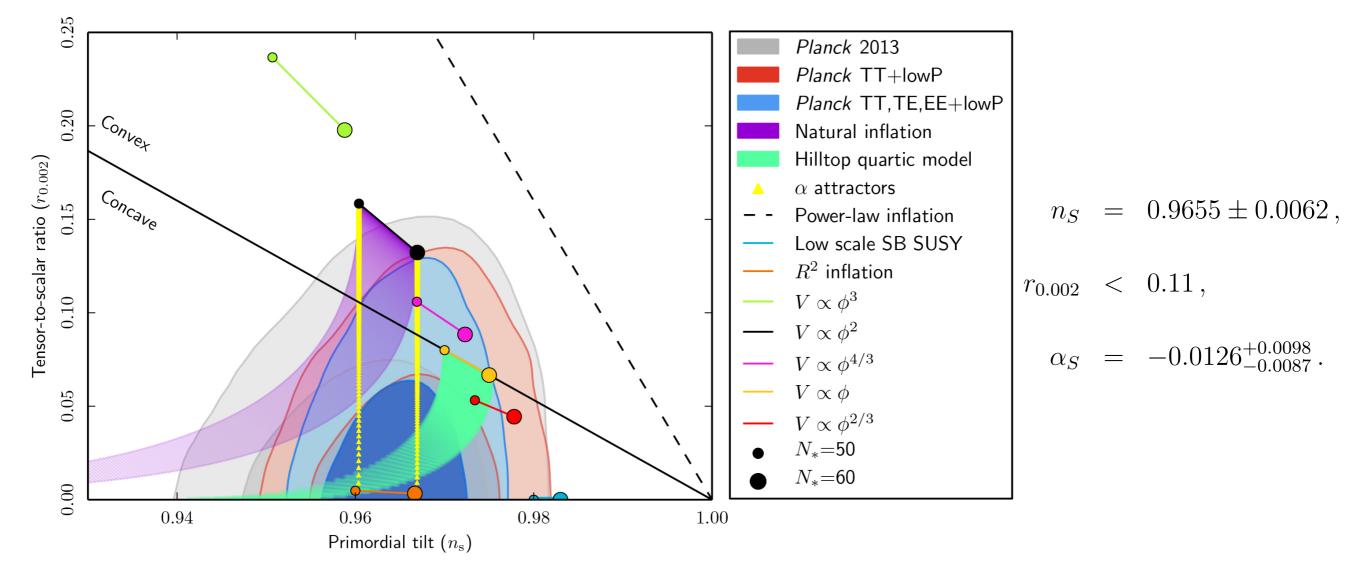
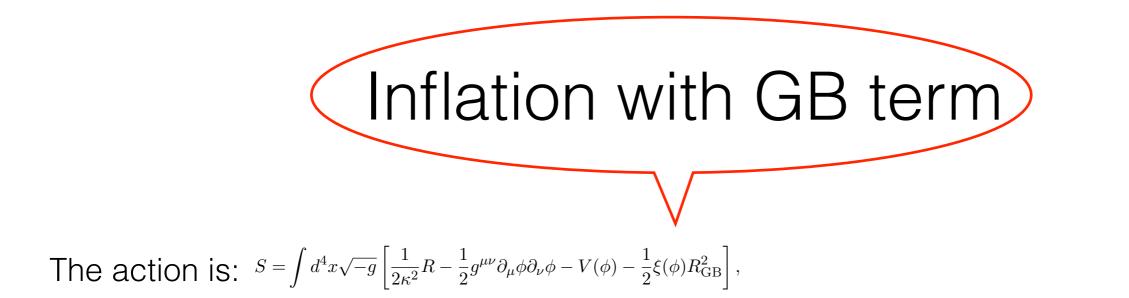


Fig. 12. Marginalized joint 68 % and 95 % CL regions for n_s and $r_{0.002}$ from *Planck* in combination with other data sets, compared to the theoretical predictions of selected inflationary models.

Review: What is inflation with Gauss-Bonnet term?



 $\hbar = c = 8\pi G = 1$

$$\begin{array}{l} \text{Inflation with GB term} \\ \text{The action is: } S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \left[-\frac{1}{2} \xi(\phi) R_{\text{GB}}^2 \right], \quad R_{\text{GB}}^2 = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2 \right] \qquad h = c = 8\pi G = 1 \end{array}$$

$$Inflation with GB term$$
The action is: $S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \left(-\frac{1}{2} \xi(\phi) R_{GB}^2 \right) \right], \quad R_{GB}^2 = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2 \qquad \hbar = c = 8\pi G = 1$

$$\begin{split} H^2 &= \frac{\kappa^2}{3} \left[\frac{1}{2} \dot{\phi}^2 + V - \frac{3K}{\kappa^2 a^2} + 12 \dot{\xi} H \left(H^2 + \frac{K}{a^2} \right) \right], \\ \dot{H} &= -\frac{\kappa^2}{2} \left[\dot{\phi}^2 - \frac{2K}{\kappa^2 a^2} - 4 \ddot{\xi} \left(H^2 + \frac{K}{a^2} \right) - 4 \dot{\xi} H \left(2\dot{H} - H^2 - \frac{3K}{a^2} \right) \right], \\ \ddot{\phi} &+ 3H \dot{\phi} + V_{\phi} + 12 \xi_{\phi} \left(H^2 + \frac{K}{a^2} \right) \left(\dot{H} + H^2 \right) = 0, \end{split}$$

$$Inflation with GB term$$
The action is: $S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \left[-\frac{1}{2} \xi(\phi) R_{GB}^2 \right], \quad R_{GB}^2 = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2 \right] \qquad \hbar = c = 8\pi G = 1$

$$\begin{split} H^2 &= \frac{\kappa^2}{3} \left[\frac{1}{2} \dot{\phi}^2 + V - \frac{3K}{\kappa^2 a^2} + 12 \dot{\xi} H \left(H^2 + \frac{K}{a^2} \right) \right], \\ \dot{H} &= -\frac{\kappa^2}{2} \left[\dot{\phi}^2 - \frac{2K}{\kappa^2 a^2} - 4 \ddot{\xi} \left(H^2 + \frac{K}{a^2} \right) - 4 \dot{\xi} H \left(2\dot{H} - H^2 - \frac{3K}{a^2} \right) \right], \quad \dot{\phi}^2 / 2 \ll V, \quad \ddot{\phi} \ll 3H \dot{\phi}, \quad 4 \dot{\xi} H \ll 1, \quad \text{and} \quad \ddot{\xi} \ll \dot{\xi} H. \end{split} \\ \dot{H} &\simeq -\frac{\kappa^2}{2} (\dot{\phi}^2 + 4 \dot{\xi} H^3), \\ \dot{H} \dot{\phi} + V_{\phi} + 12 \xi_{\phi} \left(H^2 + \frac{K}{a^2} \right) \left(\dot{H} + H^2 \right) = 0, \end{split}$$

$$Inflation with GB term$$
The action is: $S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \left(-\frac{1}{2} \xi(\phi) R_{GB}^2 \right) \right], \quad R_{GB}^2 = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2 \qquad h = c = 8\pi G = 1$

$$H^{2} = \frac{\kappa^{2}}{3} \left[\frac{1}{2} \dot{\phi}^{2} + V - \frac{3K}{\kappa^{2}a^{2}} + 12\dot{\xi}H\left(H^{2} + \frac{K}{a^{2}}\right) \right],$$

$$\dot{H} = -\frac{\kappa^{2}}{2} \left[\dot{\phi}^{2} - \frac{2K}{\kappa^{2}a^{2}} - 4\ddot{\xi}\left(H^{2} + \frac{K}{a^{2}}\right) - 4\dot{\xi}H\left(2\dot{H} - H^{2} - \frac{3K}{a^{2}}\right) \right],$$

$$\dot{\phi}^{2}/2 \ll V, \quad \ddot{\phi} \ll 3H\dot{\phi}, \quad 4\dot{\xi}H \ll 1, \quad \text{and} \quad \ddot{\xi} \ll \dot{\xi}H.$$

$$H^{2} \simeq \frac{\kappa^{2}}{3}V,$$

$$\dot{H} \simeq -\frac{\kappa^{2}}{2}(\dot{\phi}^{2} + 4\dot{\xi}H^{3}),$$

$$3H\dot{\phi} + V_{\phi} + 12\xi_{\phi}\left(H^{2} + \frac{K}{a^{2}}\right)\left(\dot{H} + H^{2}\right) = 0,$$

$$\dot{\phi} = 3H\dot{\phi}, \quad 4\dot{\xi}H \ll 1, \quad \text{and} \quad \ddot{\xi} \ll \dot{\xi}H.$$

$$\dot{\phi} = 3H\dot{\phi}, \quad 4\dot{\xi}H \ll 1, \quad \text{and} \quad \ddot{\xi} \ll \dot{\xi}H.$$

$$\epsilon \equiv -\frac{\dot{H}}{H^2}, \ \eta \equiv \frac{\ddot{H}}{H\dot{H}}, \ \delta_1 \equiv 4\kappa^2 \dot{\xi} H, \ \delta_2 \equiv \frac{\ddot{\xi}}{\dot{\xi} H}. \qquad \qquad N = \int_t^{t_e} H dt \simeq \int_{\phi_e}^{\phi} \frac{\kappa^2}{Q} d\phi,$$
$$Q \equiv \frac{V_{\phi}}{V} + \frac{4}{3}\kappa^4 \xi_{\phi} V.$$

$$Inflation with GB term$$
The action is: $S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \left(-\frac{1}{2} \xi(\phi) R_{GB}^2 \right) \right], \quad R_{GB}^2 = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2 \qquad h = c = 8\pi G = 1$

What did previous works find?

PHYSICAL REVIEW D **81,** 123520 (2010) ZONG-KUAN GUO AND DOMINIK J. SCHWARZ

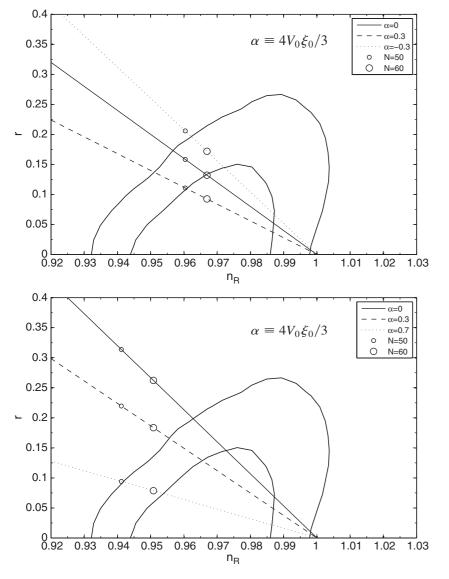


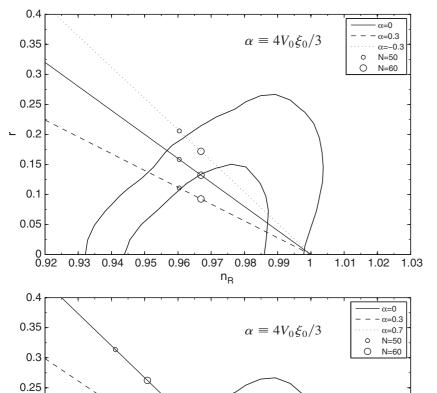
FIG. 2. Tensor-to-scalar ratio r versus the spectral index $n_{\mathcal{R}}$ for the inflation model (49) with n = 2 (top panel) and n = 4 (bottom panel). The contours show the 68% and 95% confidence level derived from WMAP7 + BAO + H_0 without the consistency relation.

$$V(\phi) = V_0 \phi^n, \qquad \xi(\phi) = \xi_0 \phi^{-n}.$$

$$n_{\mathcal{R}} - 1 = -\frac{2(n+2)}{4N+n},$$

$$r = \frac{16n(1-\alpha)}{4N+n}.$$

PHYSICAL REVIEW D **81,** 123520 (2010) ZONG-KUAN GUO AND DOMINIK J. SCHWARZ



PHYSICAL REVIEW D **88,** 123508 (2013) PENG-XU JIANG, JIAN-WEI HU, AND ZONG-KUAN GUO

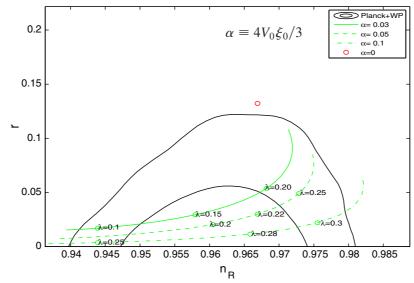


FIG. 2 (color online). Predicted $n_{\mathcal{R}}$ versus *r* in the model (25) with n = 2 for different values of λ and α . Here we choose N = 60. The contours show the 68% and 95% CL from the Planck + WP data.

$$\left(V(\phi)=V_0\phi^n,\qquad \xi(\phi)=\xi_0e^{-\lambda\phi}.
ight)$$

$$n_{\mathcal{R}} - 1 = \frac{-n(n+2) + \alpha \lambda e^{-\lambda \phi} \phi^{n+1}(2\lambda \phi - n)}{\phi^2},$$
$$r = \frac{8(n - \alpha \lambda e^{-\lambda \phi} \phi^{n+1})^2}{\phi^2},$$

FIG. 2. Tensor-to-scalar ratio r versus the spectral index n_R for the inflation model (49) with n = 2 (top panel) and n = 4 (bottom panel). The contours show the 68% and 95% confidence level derived from WMAP7 + BAO + H_0 without the consistency relation.

 n_{R}

1.01 1.02 1.03

1

· ().

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

└ 0.2

0.15

0.1

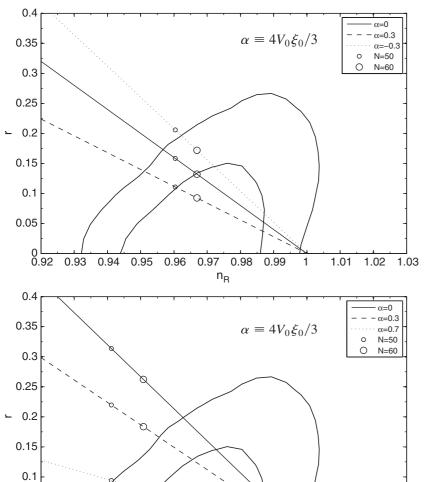
0.05

$$V(\phi) = V_0 \phi^n, \qquad \xi(\phi) = \xi_0 \phi^{-n}.$$

$$n_{\mathcal{R}} - 1 = -\frac{2(n+2)}{4N+n},$$

$$r = \frac{16n(1-\alpha)}{4N+n}.$$

PHYSICAL REVIEW D **81,** 123520 (2010) ZONG-KUAN GUO AND DOMINIK J. SCHWARZ



PHYSICAL REVIEW D **88,** 123508 (2013) PENG-XU JIANG, JIAN-WEI HU, AND ZONG-KUAN GUO

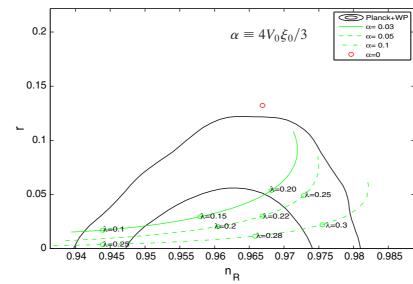


FIG. 2 (color online). Predicted $n_{\mathcal{R}}$ versus *r* in the model (25) with n = 2 for different values of λ and α . Here we choose N = 60. The contours show the 68% and 95% CL from the Planck + WP data.

$$\left(V(\phi) = V_0 \phi^n, \qquad \xi(\phi) = \xi_0 e^{-\lambda \phi}.\right)$$

$$n_{\mathcal{R}} - 1 = \frac{-n(n+2) + \alpha \lambda e^{-\lambda \phi} \phi^{n+1}(2\lambda \phi - n)}{\phi^2},$$
$$r = \frac{8(n - \alpha \lambda e^{-\lambda \phi} \phi^{n+1})^2}{\phi^2},$$

PHYSICAL REVIEW D **90**, 063527 (2014) KOH *et al*.

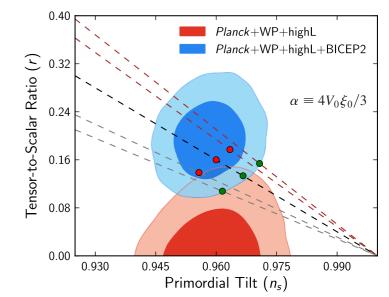


FIG. 5 (color online). Marginalized joint 68% and 95% CL regions for (n_s, r) , using observational data sets with and without a running spectral index, compared to the theoretical prediction of the model (73) with n = 2. The black dashed line is for the case where model parameter $\alpha = 0$ while gray and brown are for the case where $\alpha = -2 \times 10^{-6}$ and $\alpha = 1.5 \times 10^{-6}$, respectively. The pairs of red and green dots represent the number of *e*-folds, N = 50 and N = 60, respectively.

$$V(\phi) = V_0 \phi^n, \quad \xi(\phi) = \xi_0 \phi^n.$$

$$n_s - 1 \simeq -\frac{n+2}{2N} + \frac{n(3n+2)(2nN)^n \alpha}{2(1+n)N\kappa^{2n}},$$

$$r \simeq \frac{4n}{N} + \frac{4n(2n+1)(2nN)^n \alpha}{(1+n)N\kappa^{2n}},$$

FIG. 2. Tensor-to-scalar ratio r versus the spectral index $n_{\mathcal{R}}$ for the inflation model (49) with n = 2 (top panel) and n = 4 (bottom panel). The contours show the 68% and 95% confidence level derived from WMAP7 + BAO + H_0 without the consistency relation.

n_R

1.01 1.02 1.03

1

0

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

0.05

$$V(\phi) = V_0 \phi^n, \qquad \xi(\phi) = \xi_0 \phi^{-n}.$$
$$n_{\mathcal{R}} - 1 = -\frac{2(n+2)}{4N+n},$$
$$r = \frac{16n(1-\alpha)}{4N+n}.$$

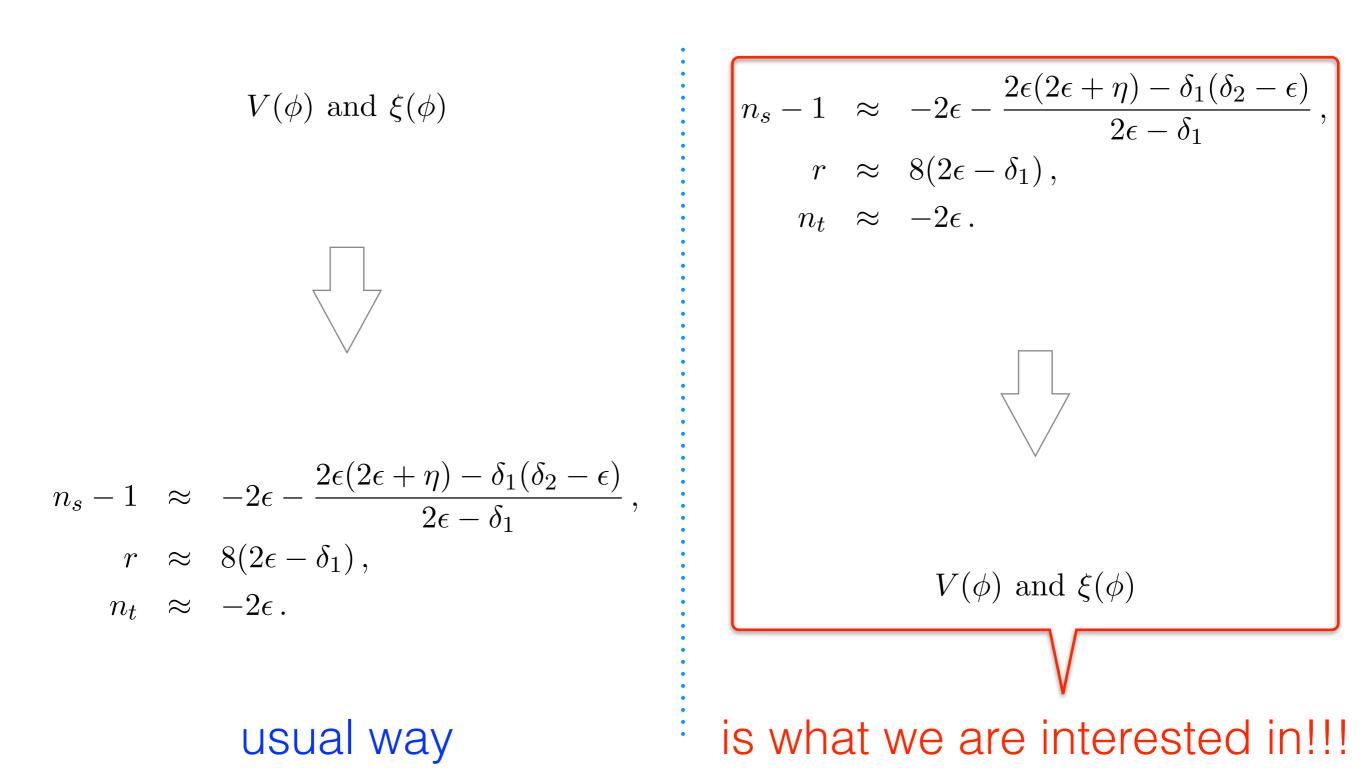
The Problem

 $V(\phi)$ and $\xi(\phi)$

$$\begin{split} & & & \\ & & \\ n_s - 1 \ \approx \ -2\epsilon - \frac{2\epsilon(2\epsilon + \eta) - \delta_1(\delta_2 - \epsilon)}{2\epsilon - \delta_1} \,, \\ & & r \ \approx \ 8(2\epsilon - \delta_1) \,, \\ & & n_t \ \approx \ -2\epsilon \,. \end{split}$$

usual way

The Problem in Reverse



$$\begin{array}{rcl} n_s - 1 &\approx& -2\epsilon - \frac{2\epsilon(2\epsilon + \eta) - \delta_1(\delta_2 - \epsilon)}{2\epsilon - \delta_1} \,, \\ r &\approx& 8(2\epsilon - \delta_1) \,, \\ n_t &\approx& -2\epsilon \,. \end{array}$$

$$\epsilon \equiv -\frac{\dot{H}}{H^2}, \ \eta \equiv \frac{\ddot{H}}{H\dot{H}}, \ \delta_1 \equiv 4\kappa^2 \dot{\xi} H, \ \delta_2 \equiv \frac{\ddot{\xi}}{\dot{\xi} H}.$$

$$\begin{aligned} \kappa_s - 1 &\approx -2\epsilon - \frac{2\epsilon(2\epsilon + \eta) - \delta_1(\delta_2 - \epsilon)}{2\epsilon - \delta_1}, \\ r &\approx 8(2\epsilon - \delta_1), \\ n_t &\approx -2\epsilon. \end{aligned} \\ \epsilon &= -\frac{\dot{H}}{H^2}, \ \eta \equiv \frac{\ddot{H}}{H\dot{H}}, \ \delta_1 \equiv 4\kappa^2 \dot{\xi} H, \ \delta_2 \equiv \frac{\ddot{\xi}}{\dot{\xi} H}. \end{aligned} \\ \epsilon &= -\frac{1}{\kappa^2} \left(\frac{V_{\phi\phi}}{V_{\phi}} Q + Q_{\phi} \right), \\ \delta_1 &= -\frac{4\kappa^2}{3} \xi_{\phi} V Q, \\ \delta_2 &= -\frac{1}{\kappa^2} \left(\frac{\xi_{\phi\phi}}{\xi_{\phi}} Q + \frac{1}{2} \frac{V_{\phi}}{V} Q + Q_{\phi} \right), \\ \dot{H} \simeq -\frac{\kappa^2}{2} (\dot{\phi}^2 + 4\dot{\xi} H^3), \end{aligned} \\ e^{-\frac{\kappa^2}{2}} (\dot{\phi}^2 + 4\dot{\xi} H^3), \end{aligned}$$

 $3H\dot{\phi} + V_{\phi} + 12\xi_{\phi}H^4 \simeq 0.$

$$\left(\begin{array}{c} n_{s}-1 \approx -2\epsilon - \frac{2\epsilon(2\epsilon+\eta) - \delta_{1}(\delta_{2}-\epsilon)}{2\epsilon - \delta_{1}}, \\ r \approx 8(2\epsilon - \delta_{1}), \\ n_{t} \approx -2\epsilon. \end{array}\right), \\ \epsilon \equiv -\frac{\dot{H}}{H^{2}}, \ \eta \equiv \frac{\ddot{H}}{H\dot{H}}, \ \delta_{1} \equiv 4\kappa^{2}\dot{\xi}H, \ \delta_{2} \equiv \frac{\ddot{\xi}}{\dot{\xi}H}.$$

$$\left(\begin{array}{c} \epsilon = \frac{1}{2\kappa^{2}}\frac{V_{\phi}}{V}Q, \\ \eta = -\frac{1}{\kappa^{2}}\left(\frac{V_{\phi\phi}}{V_{\phi}}Q + Q_{\phi}\right), \\ \delta_{1} = -\frac{4\kappa^{2}}{3}\xi_{\phi}VQ, \\ \delta_{2} = -\frac{1}{\kappa^{2}}\left(\frac{\xi_{\phi\phi}}{\xi_{\phi}}Q + \frac{1}{2}\frac{V_{\phi}}{V}Q + Q_{\phi}\right), \end{array}\right)$$

$$Q \equiv \frac{V_{\phi}}{V} + \frac{4}{3}\kappa^4 \xi_{\phi} V \,.$$

$$N = \int_{t}^{t_{e}} H dt \simeq \int_{\phi_{e}}^{\phi} \frac{\kappa^{2}}{Q} d\phi, \qquad \clubsuit \qquad \checkmark$$

$$\begin{aligned} \epsilon &= \frac{1}{2} \frac{V_N}{V}, \\ \eta &= -\frac{V_{NN}}{V_N} = -2\epsilon - \frac{d\ln\epsilon}{dN}, \\ \delta_1 &= -\frac{4}{3} \kappa^4 \xi_N V, \\ \delta_2 &= -\frac{\xi_{NN}}{\xi_N} - \frac{1}{2} \frac{V_N}{V} = \epsilon - \frac{d\ln\delta_1}{dN} \end{aligned}$$

$$Q \equiv \frac{V_{\phi}}{V} + \frac{4}{3}\kappa^4 \xi_{\phi} V \,.$$

$$n_{s}(N) - 1 = \left[\ln \left(\frac{V_{N}}{V^{2}} + \frac{4}{3} \kappa^{4} \xi_{N} \right) \right]_{,N}, \qquad \epsilon = \frac{1}{2} \frac{V_{N}}{V}, \qquad \eta = -\frac{V_{NN}}{V_{N}} = -2\epsilon - \frac{d \ln \epsilon}{dN}, \qquad \eta = -\frac{V_{NN}}{V_{N}} = -2\epsilon - \frac{d \ln \epsilon}{dN}, \qquad \eta = -\frac{4}{3} \kappa^{4} \xi_{N} V, \qquad \delta_{1} = -\frac{4}{3} \kappa^{4} \xi_{N} V, \qquad \delta_{2} = -\frac{\xi_{NN}}{\xi_{N}} - \frac{1}{2} \frac{V_{N}}{V} = \epsilon - \frac{d \ln \delta_{1}}{dN}$$

$$\begin{aligned} \kappa_s - 1 &\approx -2\epsilon - \frac{2\epsilon(2\epsilon + \eta) - \delta_1(\delta_2 - \epsilon)}{2\epsilon - \delta_1}, \\ r &\approx 8(2\epsilon - \delta_1), \\ n_t &\approx -2\epsilon. \end{aligned} \\ \epsilon &= -\frac{\dot{H}}{H^2}, \ \eta \equiv \frac{\ddot{H}}{H\dot{H}}, \ \delta_1 \equiv 4\kappa^2 \dot{\xi} H, \ \delta_2 \equiv \frac{\ddot{\xi}}{\dot{\xi} H}. \end{aligned} \\ \epsilon &= -\frac{1}{\kappa^2} \left(\frac{V_{\phi\phi}}{V_{\phi}} Q + Q_{\phi} \right), \\ \delta_1 &= -\frac{4\kappa^2}{3} \xi_{\phi} V Q, \\ \delta_2 &= -\frac{1}{\kappa^2} \left(\frac{\xi_{\phi\phi}}{\xi_{\phi}} Q + \frac{1}{2} \frac{V_{\phi}}{V} Q + Q_{\phi} \right), \\ Q &= \frac{V_{\phi}}{V} + \frac{4}{3} \kappa^4 \xi_{\phi} V. \end{aligned}$$

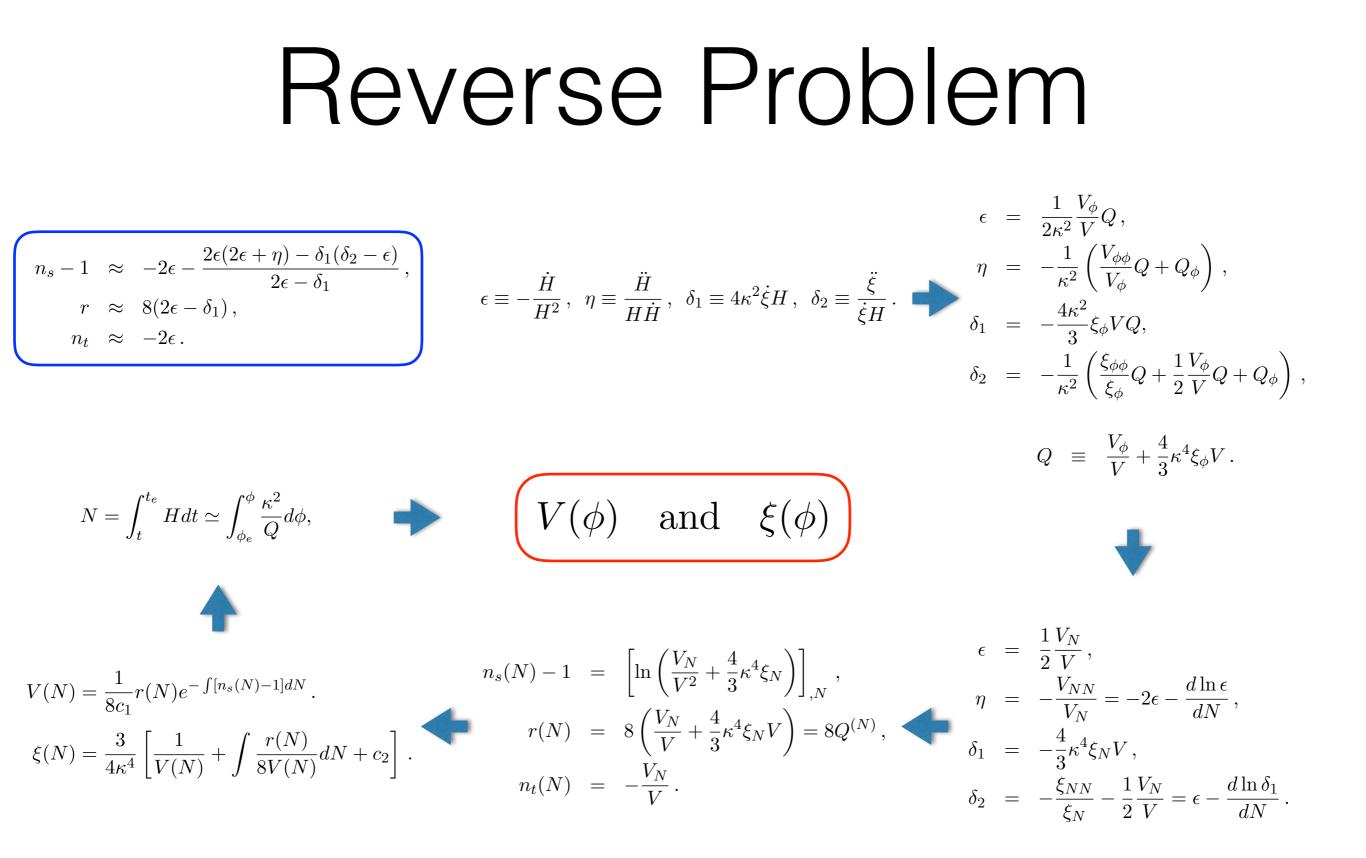
If these are known!!!

$$V(N) = \frac{1}{8c_1}r(N)e^{-\int [n_s(N)-1]dN}.$$

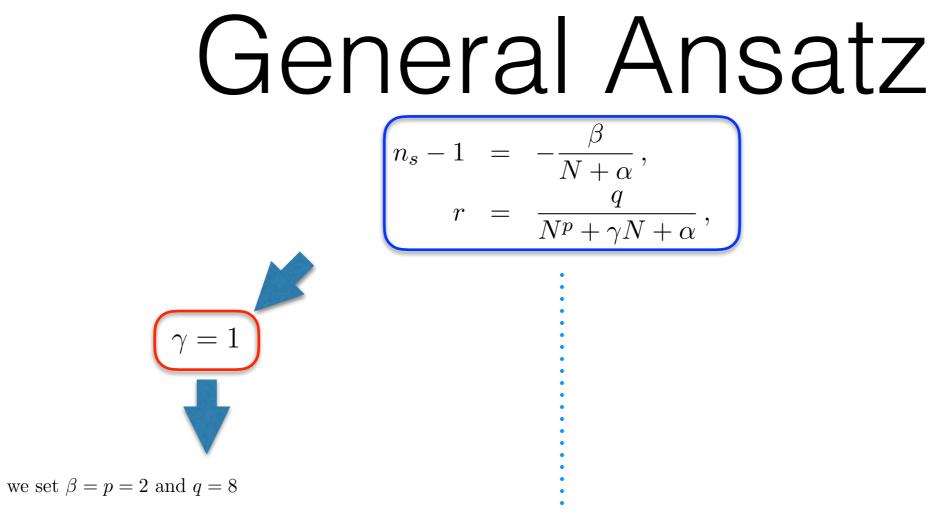
$$\xi(N) = \frac{3}{4\kappa^4} \left[\frac{1}{V(N)} + \int \frac{r(N)}{8V(N)}dN + c_2\right].$$

$$(= \frac{1}{2}\frac{V_N}{V},$$

$$f(N) = \frac{1}{2}\frac{V_N}{V},$$



Let's check with some examples...



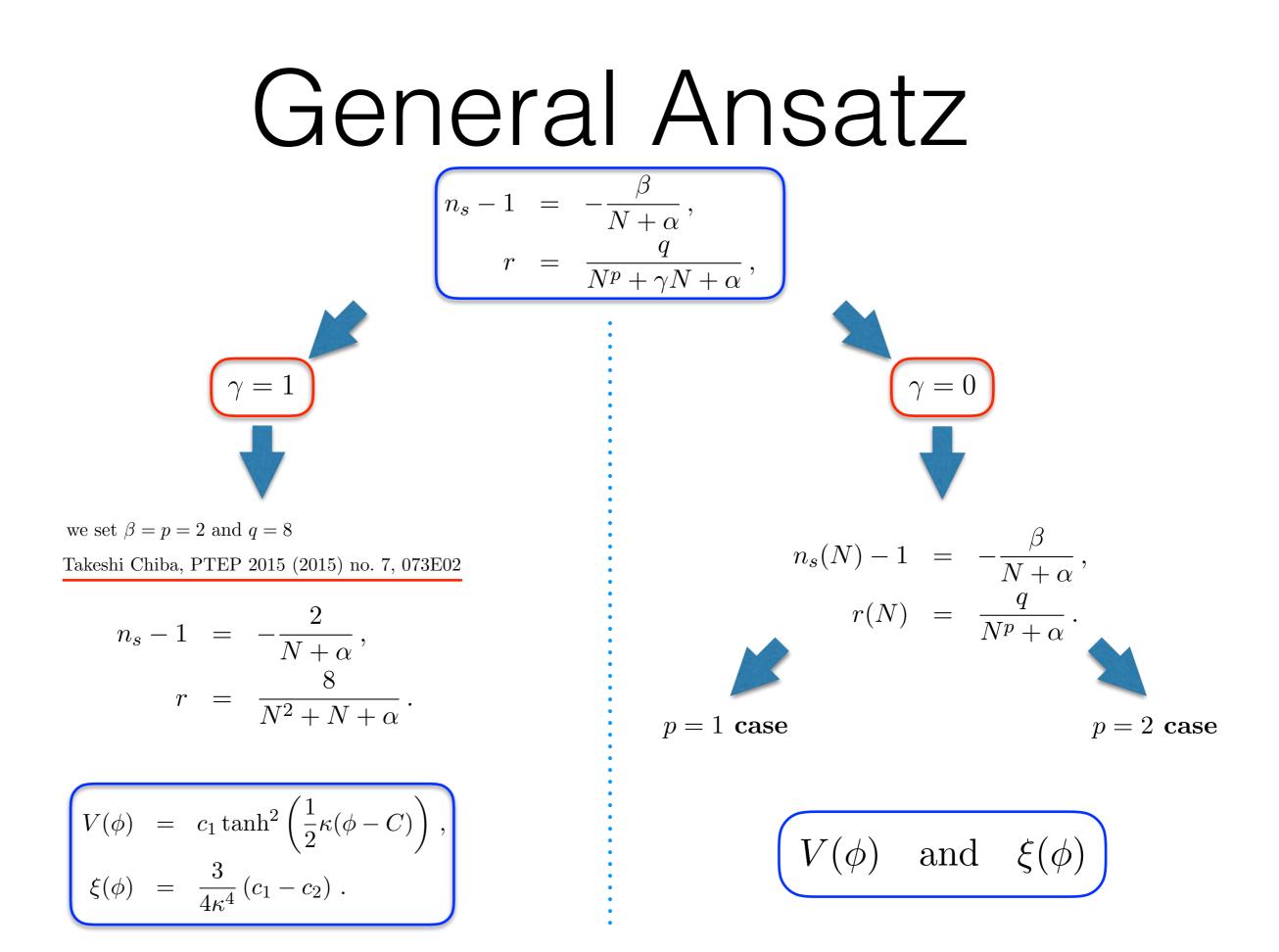
Takeshi Chiba, PTEP 2015 (2015) no. 7, 073E02

$$n_s - 1 = -\frac{2}{N+\alpha},$$

$$r = \frac{8}{N^2 + N + \alpha}.$$

$$V(\phi) = c_1 \tanh^2 \left(\frac{1}{2}\kappa(\phi - C)\right),$$

$$\xi(\phi) = \frac{3}{4\kappa^4} (c_1 - c_2).$$



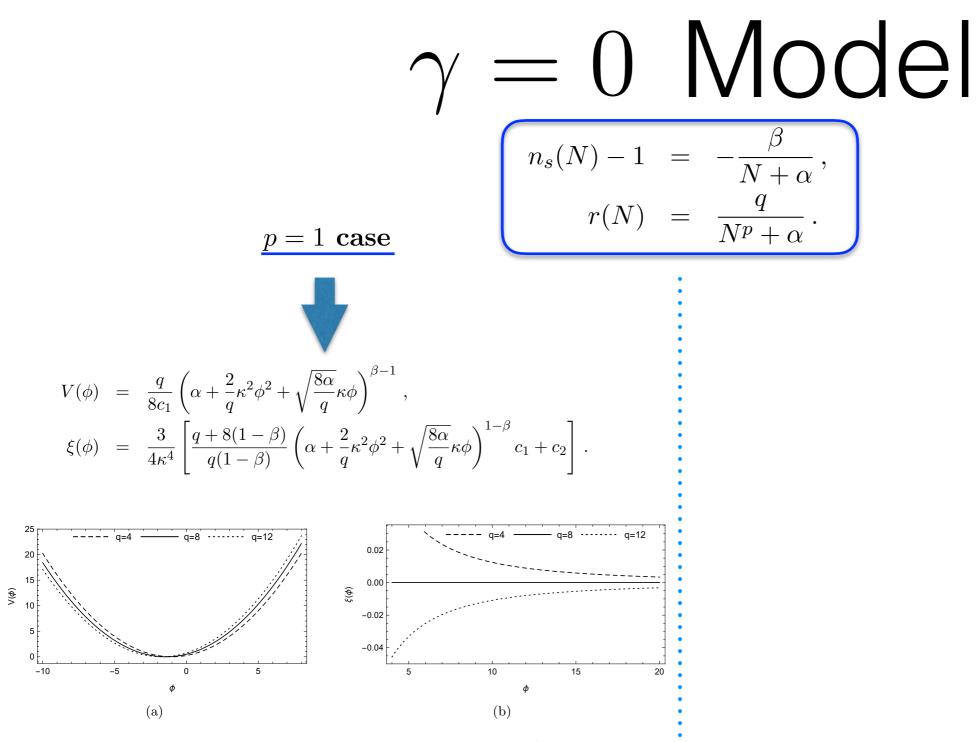


Figure 1: Numerical plot of Eq. (50) and Eq. (51) with $c_1 = 1$, $c_2 = 0$, $\kappa^2 = 1$ and n = 2.

For $\alpha \to 0$ limit

$$V(\phi) = \frac{q}{8c_1} \left(\frac{2}{q}\kappa^2\phi^2\right)^{\beta-1},$$

$$\xi(\phi) = \frac{3}{4\kappa^4} \left[\frac{q+8(1-\beta)}{q(1-\beta)} \left(\frac{2}{q}\kappa^2\phi^2\right)^{1-\beta}c_1 + c_2\right],$$

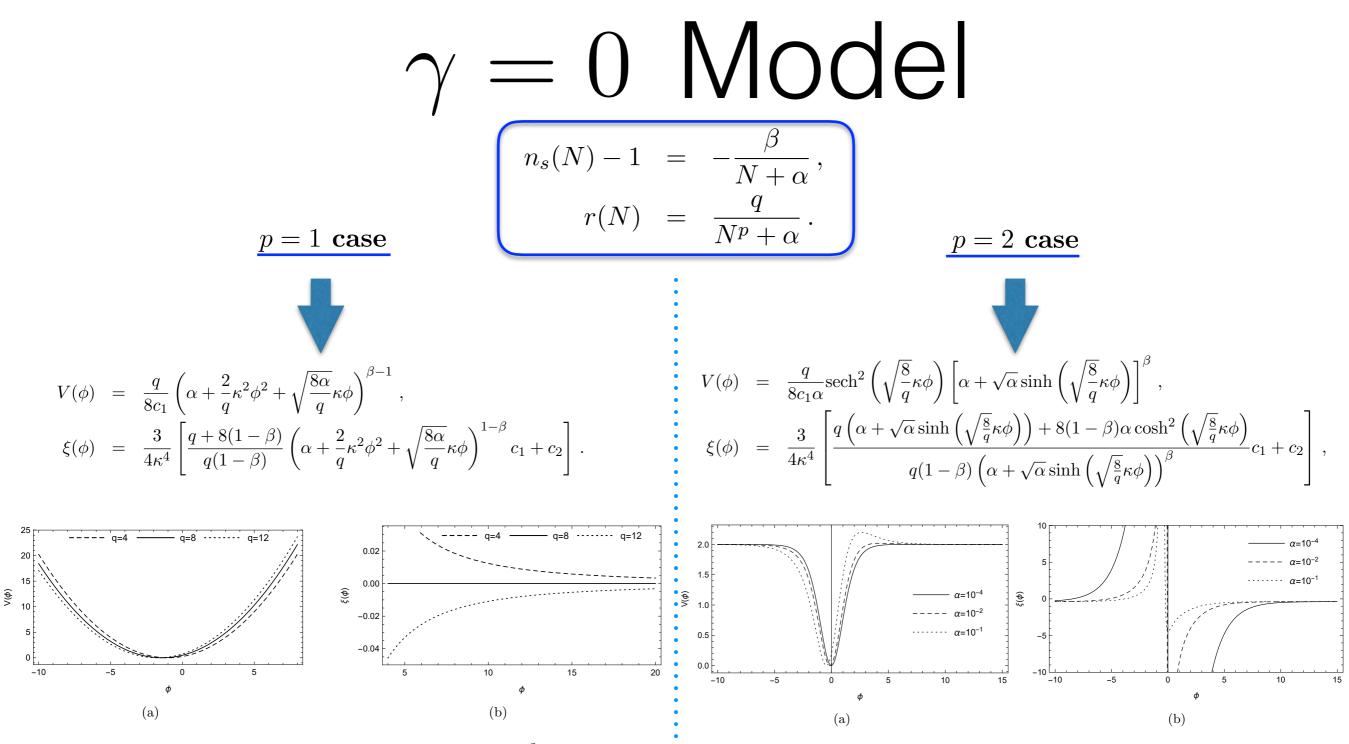


Figure 1: Numerical plot of Eq. (50) and Eq. (51) with $c_1 = 1$, $c_2 = 0$, $\kappa^2 = 1$ and n = 2.

For $\alpha \to 0$ limit

$$V(\phi) = \frac{q}{8c_1} \left(\frac{2}{q}\kappa^2 \phi^2\right)^{\beta-1},$$

$$\xi(\phi) = \frac{3}{4\kappa^4} \left[\frac{q+8(1-\beta)}{q(1-\beta)} \left(\frac{2}{q}\kappa^2 \phi^2\right)^{1-\beta} c_1 + c_2\right],$$

Figure 2: Numerical plots of Eqs. (56)–(57) with $c_1 = 1$, $c_2 = 0$, $\kappa^2 = 1$, $\beta = 2$ and q=16. The bump shown in Fig. 2(a) increases as α increases and vice versa.

For $\alpha \to 0$ limit

$$V(\phi) \sim \tanh^2 \left(\sqrt{\frac{8}{q}} \kappa \phi \right) ,$$

$$\xi(\phi) \sim -\frac{3c_1}{4\sqrt{\alpha}\kappa^4} \operatorname{csch} \left(\sqrt{\frac{8\kappa^2}{q}} \phi \right) .$$

Potential & Coupling Function

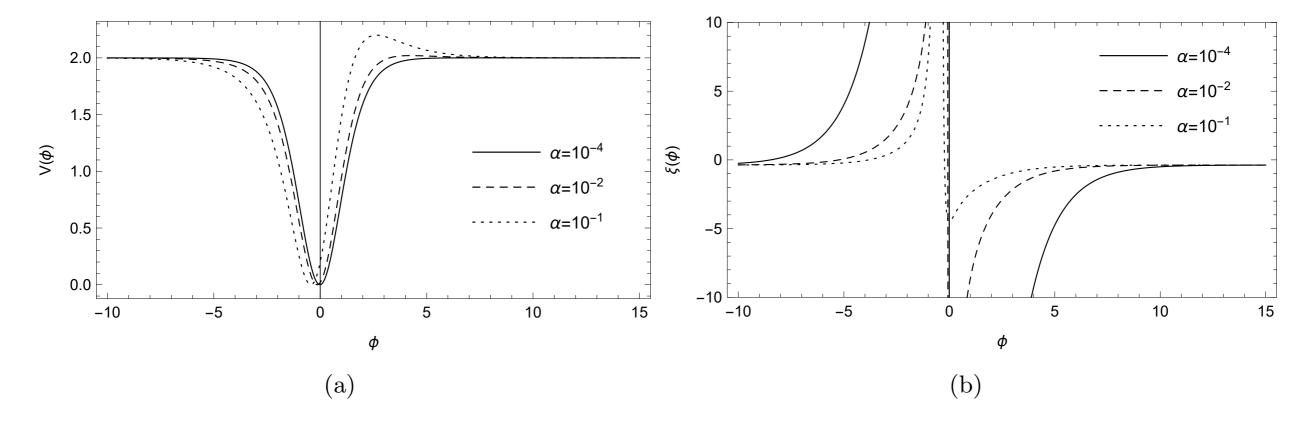


Figure 2: Numerical plots of Eqs. (56)–(57) with $c_1 = 1$, $c_2 = 0$, $\kappa^2 = 1$, $\beta = 2$ and q=16. The bump shown in Fig. 2(a) increases as α increases and vice versa.

What is interesting?

For the conventional models of inflation, $(\dot{H} < 0)$, and it is implied that $\epsilon > 0$. Hence $n_t < 0$,

For the conventional models of inflation, $(\dot{H} < 0)$, and it is implied that $\epsilon > 0$. Hence $n_t < 0$,

But such case is violated in our model:

For the conventional models of inflation, $(\dot{H} < 0)$, and it is implied that $\epsilon > 0$. Hence $n_t < 0$. But such case is violated in our model:

The spectrum of the tensor mode can be blue-tilted $n_t > 0$, if: <u>JCAP11 (2010) 024</u>

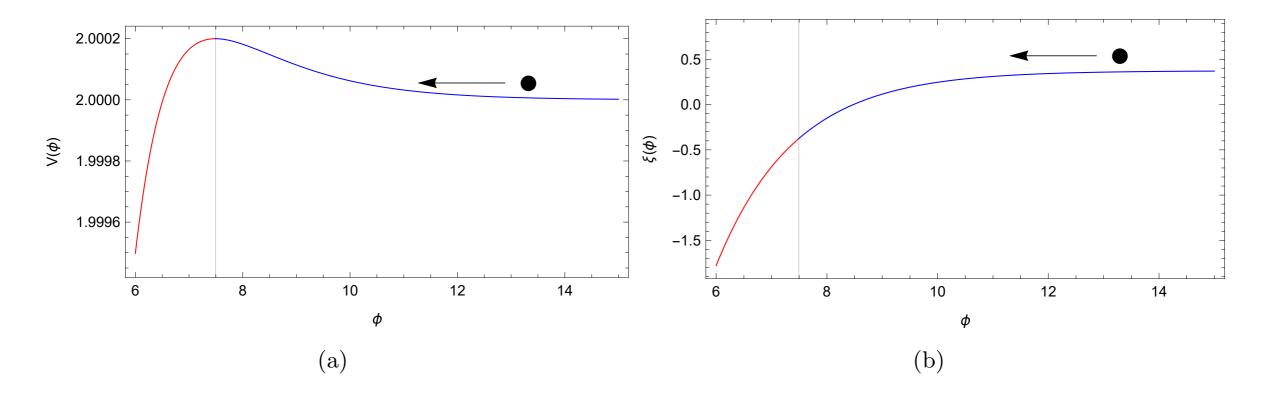


Figure 4: Marginalized part of the potential (left) and the Gauss-Bonnet coupling (right) shown in Figs. 2(a) and 2(b) where we set $\alpha = 10^{-4}$. Vertical line corresponds to the field value, ϕ_* , at which the potential takes its maximum value. At early stage, the effective potential ξ makes ϕ climb up the potential slope. At late stage, ϕ rolls down as usual.

On the other hand, to achieve the blue-tilted spectrum for the tensor fluctuations, $n_t > 0$, in our model, $\epsilon < 0$ must be satisfied from $n_t \approx -2\epsilon$ such that $\dot{H} > 0$ is necessary from $\epsilon \equiv -\dot{H}/H^2$

Condition for the coupling function:
$$\xi_{,\phi} > -\frac{3}{4\kappa^4} \frac{V_{,\phi}}{V^2}$$
, $\cosh\left(\sqrt{\frac{8\kappa^2}{q}}\phi\right) \left(\sqrt{\alpha} + \sinh\left(\sqrt{\frac{8\kappa^2}{q}}\phi\right)\right)^2 > 0$,

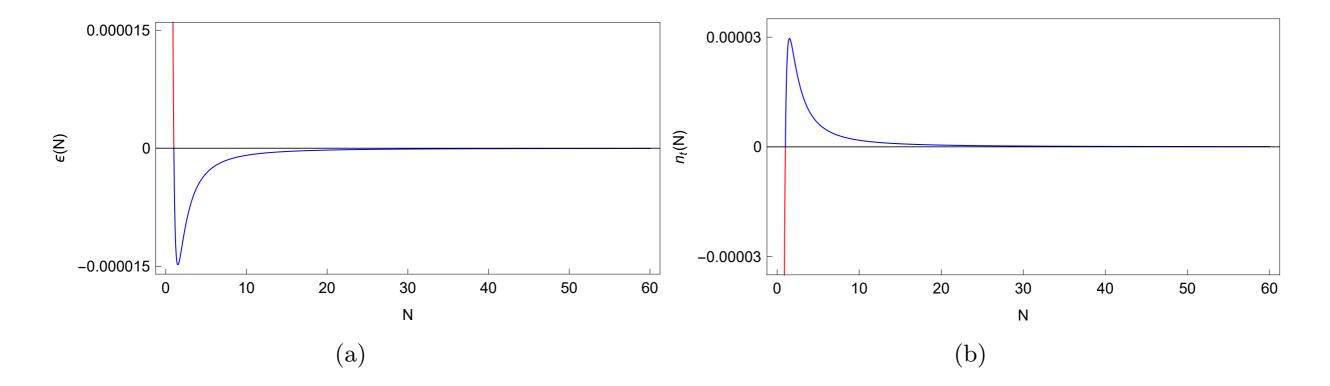


Figure 5: $\epsilon(N)$ and $n_t(N)$ plot where we use Eqs. (56)–(57) with $\kappa^2 = 1$, $c_1 = 1$, $c_2 = 0$, $\alpha = 10^{-4}$, $\beta = 2$ and q = 16. At N = 1, both ϵ and n_t is zero, $\epsilon = 0 = n_t$.

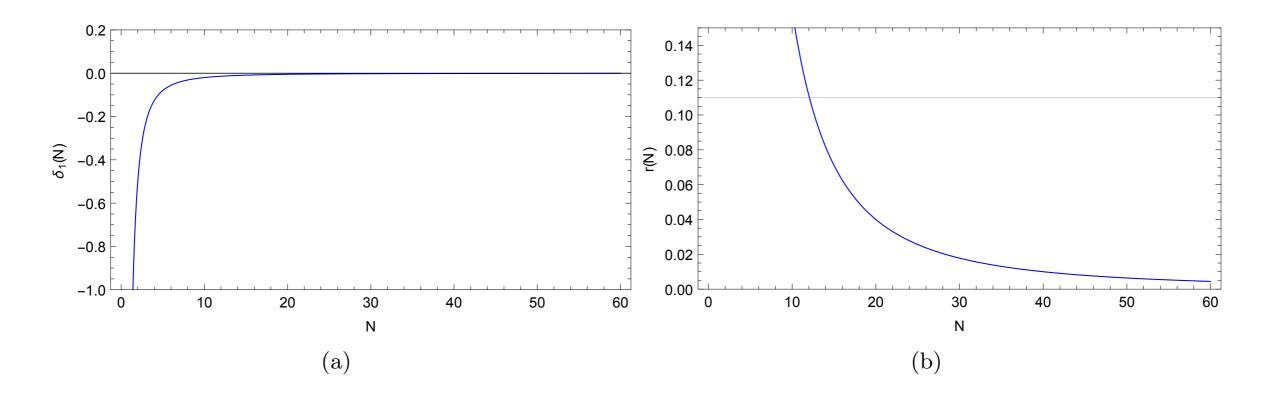


Figure 6: $\delta_1(N)$ and r(N) plot where we use Eq. (56) and Eq. (57) with $c_1 = 1$, $c_2 = 0$, $\kappa^2 = 1$, $\alpha = 10^{-4}$, $\beta = 2$ and q = 16. Horizontal line in Fig. 6(b) represents the current upper limit of the tensor-to-scalar ratio.

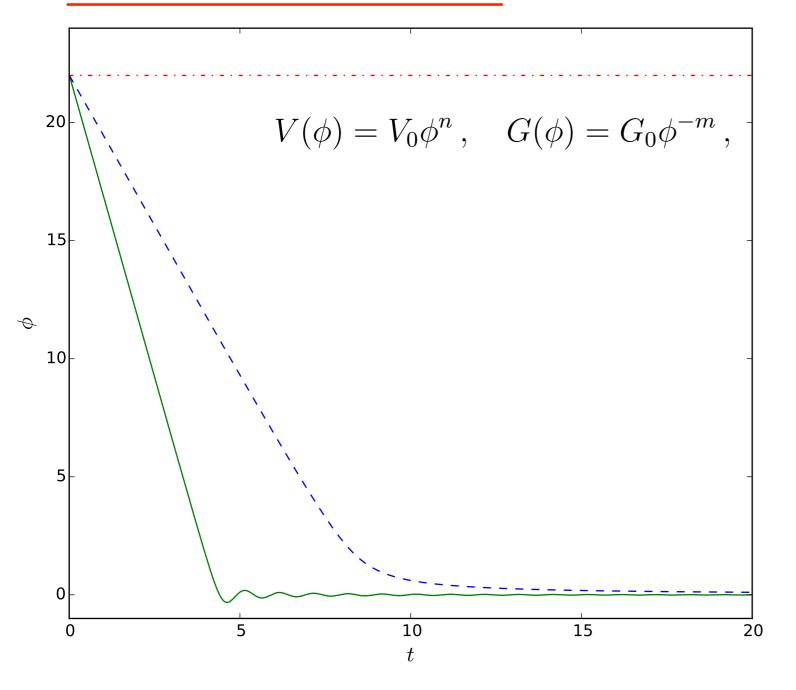
Findings!!!

- Potential is reconstructed: $n_S(N)$, r(N).
- The spectrum of the tensor mode can be blue-tilted

What could be possible extension?

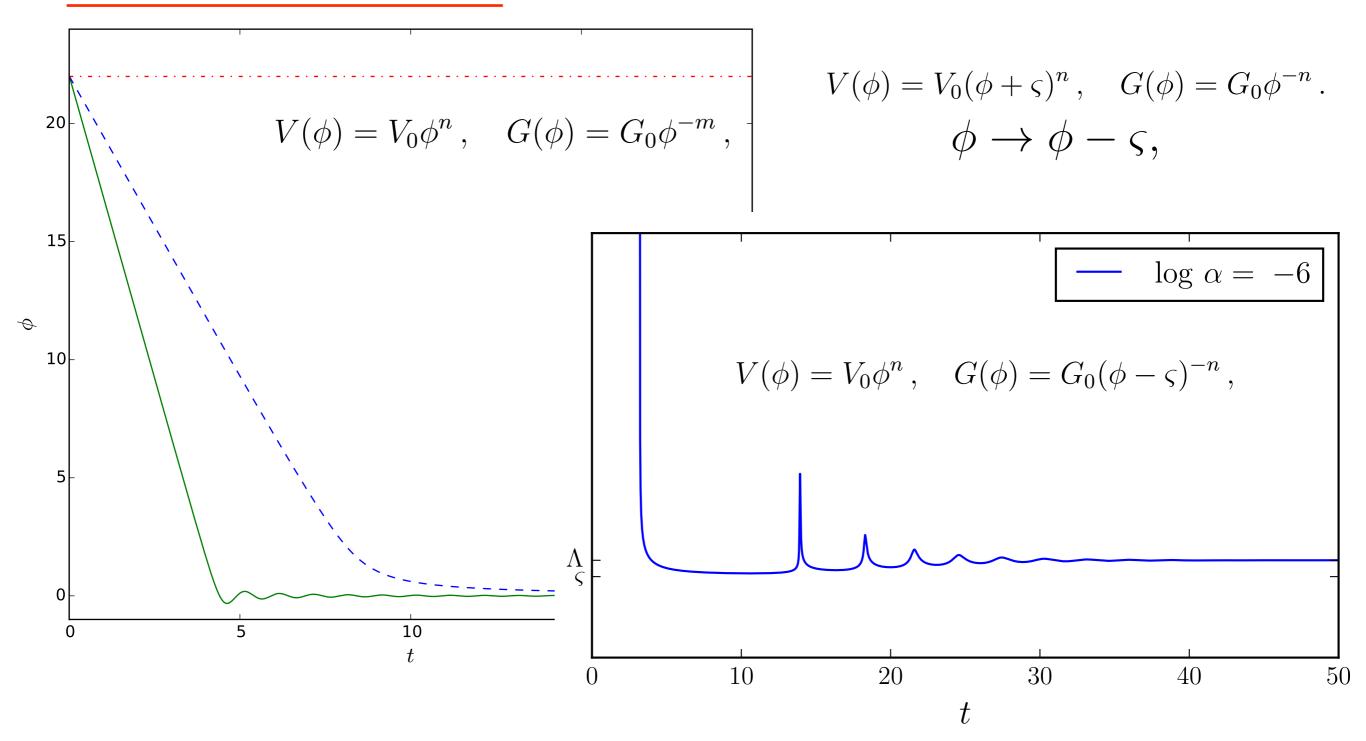
Reheating?!

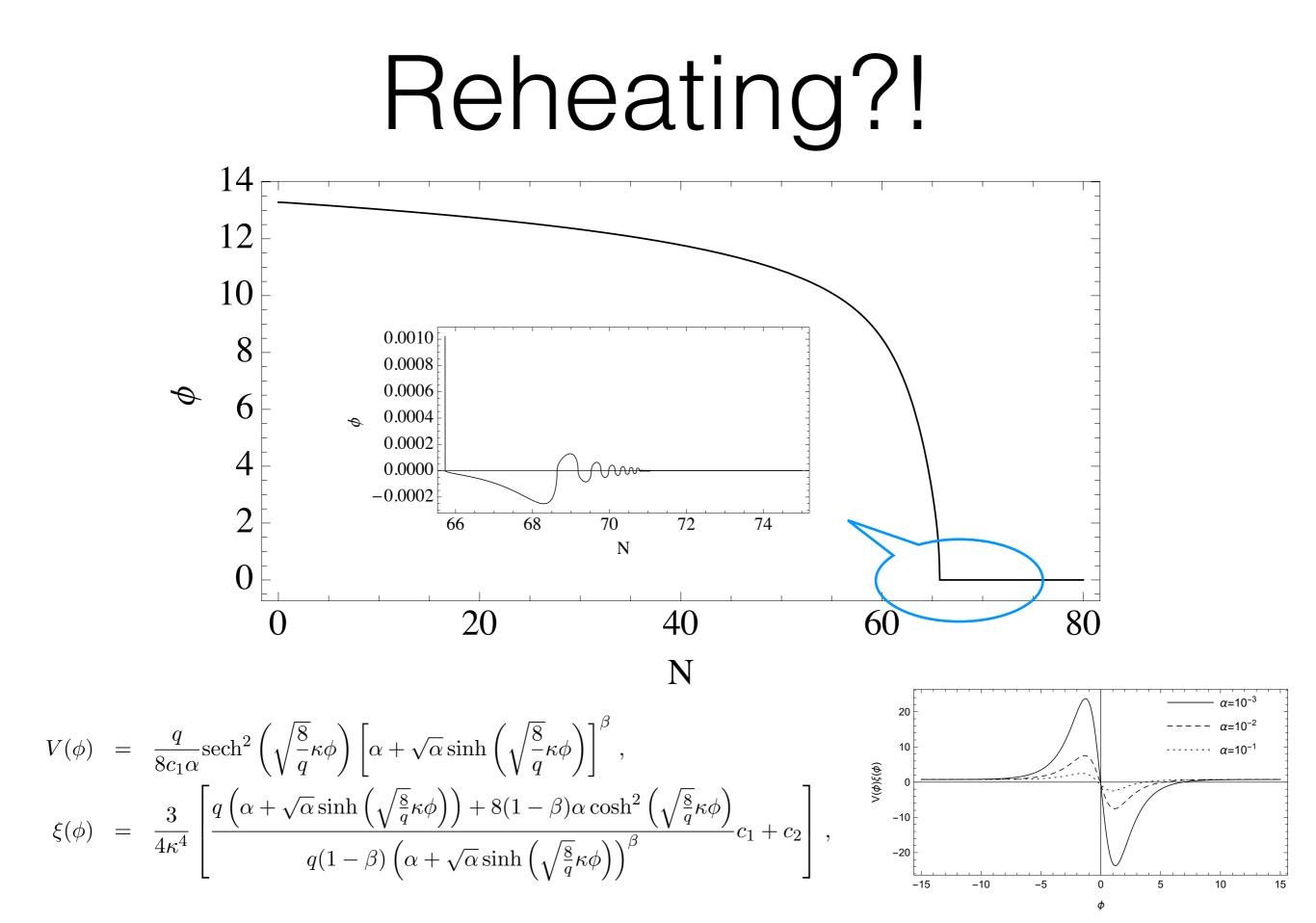
Carsten, et al PRD 94, 023506 (2016)



Reheating?!

Carsten, et al PRD 94, 023506 (2016)





Thank you for your attentions!!!