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Our main interest!!!



Review: What is inflation?



Inflation is the idea that the very early universe went through a period of accelerated 
exponential expansion during first fraction of seconds after the Big Bang.
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Inflation provides solutions to the problems of the cosmology  
such as the horizon and flatness. 

2.2.2 The Solutions to the Problems

In the previous section, we have introduced two the most popular problems of the

standard model of cosmology. In this section, therefore, we will show how infla-

tionary model of cosmology provides solutions to those problems. The problems

could not be solved because the comoving Hubble radius increases with time in

conventional Big Bang cosmology. However, the inflationary model of cosmology

uses the idea that the comoving Hubble radius could be decreasing in the early

evolution of the Universe. This is the fundamental definition of inflation and key

idea to solve the problems. The decreasing of the comoving Hubble radius,

d

dt
(aH)�1 < 0 , (2.43)

requires the following condition for inflation:

• Slowly-varying Hubble parameter is obtained as

0 >
d

dt
(aH)�1 = � ȧH + aḢ

(aH)2
= �1

a
(1� ✏) ) ✏ ⌘ � Ḣ

H2

< 1 . (2.44)

• Acceleration of a scale factor is, then, obtained form Eq. (2.44) as

� Ḣ

H2

< 1 ) ä < 0 . (2.45)
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• Slowly varying Hubble parameter:

• Shrinking comoving Hubble radius:
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H2
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H2
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• Negative pressure:

Thus, inflation is regarded as an accelerated expansion in the early Universe.

• Negative pressure is necessary for inflation and we can see this from Fried-

mann equation, Eq. (2.20), as

Ḣ +H2 = �2

6
(⇢+ 3p) ) (⇢+ 3p) < 0 , ! ⌘ p

⇢
< �1

3
. (2.46)

If the negative pressure is necessary for inflation to occur, then the strong

energy condition is violated for inflation.

A solution to the horizon problem: Let us recall Eq. (2.5) as

�
ph

= ⌧ � ⌧i ⌘
Z t

ti

dt

a(t)
=

Z a

ai

(aH)�1d ln a , (2.47)

where ai ⌘ 0 corresponds to the Big Bang singularity. For a decreasing Hubble

radius, the lower limit dominated in Eq. (2.47). By using Eq. (2.40), one can

obtain the Big Bang singularity at minus infinity from Eq. (2.47),

⌧i =
2H�1

0

1 + 3!
a

1

2

(1+3!)

i �! �1 , (2.48)

for ai ! 0 and ! < �1/3. This implies that there was a long enough conformal

time between the initial singularity and CMB decoupling than it is expected.
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(aH)2
= �1

a
(1� ✏) ) ✏ ⌘ � Ḣ
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• Equations of motion with K=0:

• Action:

The comoving Hubble radius increases with time during both matter- and radiation-

dominated eras, with ↵ = 2/3 and ↵ = 1/2 respectively.

However, what Guth realized was that scale factor with power-law form, a(t) ⇠

t↵ where t ! 1 but this time ↵ > 1, gives

(aH)�1 ⇠ t1�↵ ! 0 . (2.50)

Therefore, it is straightforward to see such scale factor describes accelerated ex-

pansion, that is,

ȧ

a
=

↵

t
> 0 ,

ä

a
=

↵(↵� 1)

t2
> 0 . (2.51)

Hence, this phase is called as inflation and solves the flatness problem.

2.2.3 The Slow-roll Inflation

The simplest model for inflation in four-dimension is expressed in terms of a single

scalar field, known as the inflaton field, �. The dynamics of a scalar field that

minimally coupled to gravity is described by the action

S =

Z
d4x

p
�g


1

22

R +
1

2
gµ⌫@µ�@⌫�� V (�)

�
, (2.52)

31

where V (�) is potential for a scalar field �. In general, a scalar field depends on

both time and space i.e. � = �(t,x). However, for the homogeneous and isotropic

Universe, the scalar field is often assumed to be time-dependent function only,

�(t). By varying the action with respect to the field, we find the background

equations of motion as

�S

��
=

1p�g
@µ(

p
�g@µ�) + V� , (2.53)

where V� = dV (�)/d� and this equation yields the Klein-Gordon equation,

�̈+ 3H�̇+ V� = 0 , (2.54)

where “over dot” denotes the derivative with respect to cosmic time t. The term

“3H�̇” is the friction to the expansion of the Universe while V,� acts like a force.

The variation of the action with respect to metric gµ⌫ provides the energy-

momentum tensor of the scalar field as

Tµ⌫ = @µ�@⌫�� gµ⌫


1

2
g↵�@↵�@��+ V (�)

�
. (2.55)
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The energy density and pressure for � are obtained by using T µ
⌫ = gµ↵T↵⌫ as

⇢� =
1

2
�̇2 + V (�) , (2.56)

p� =
1

2
�̇2 � V (�) , (2.57)

where T 0

0

= ⇢� and T i
j = �p��ij. Hence the equation of state parameter is

!� ⌘ p�
⇢�

=
1

2

�̇+ V (�)
1

2

�̇� V (�)
. (2.58)

If the potential energy dominates over the kinetic energy, V � �̇2, from Eq. (2.57),

the negative pressure is realized. Two examples of the scalar field potential, V (�),

are shown in Fig. 4. Using Eq. (2.19), we write the Friedman equation for scalar

field as

H2 =
2

3


1

2
�̇2 + V (�)

�
, (2.59)

Ḣ = �2

2
�̇2 . (2.60)

Substituting Eq. (2.60) into Eqs. (2.44), we find

✏ ⌘ � Ḣ

H2

=
2

2

�̇2

H2

, (2.61)
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• Equations of state parameter:

inflationary scenarios in the market at present [12], remains successful to explain current ob-
servations. However, due to the energy scale of inflation which is considered to be very high
compared to current experimental scale, future observations might detect signals of non-standard
inflationary theory. Especially, if we think over the very early Universe approaching the Planck
scale, such new inflationary theory might contain information of high energy physics. We have
considered the Gauss-Bonnet term to study the importance of theories beyond standard single
field slow-roll inflation models in our previous paper [9]. If particular form of potential is given,
in general, one computes the observable quantities. As a result of the work we computed observ-
able quantities for specific choice of potential and coupling functions and provided constraint on
those quantities in light of observational data [2].

If a particular set of observations of some accuracy is given, one can attempt the task
to reconstruct the inflaton potential from observable quantities [6][7]. Therefore, in our current
work, we are interested in inverse problem of reconstructing inflaton potential and Gauss-Bonnet
coupling functions from observable quantities. Following the approach used in Ref. [7], we extend
the study to the cosmological models with Gauss-Bonnet term that non-minimally coupled to a
dynamical scalar field.

One interesting feature in inflation model with the Gauss-Bonnet term is that the consistency
relation r = �8nt of conventional inflation model is violated. In a conventional inflation model
with minimally coupled to gravity, the Hubble rate monotonically decreases (Ḣ < 0), such that
✏ > 0. Hence, one can conclude that the spectral index of the primordial tensor fluctuation is
always negative, nt = �2✏. Therefore, spectrum of tensor modes is red-tilted. Although the
present observations cannot determine the tilt of tensor spectral index, from the perspective of
theoretical interpretations, it is interesting to investigate the blue spectrum of tensor modes in
the framework of inflationary cosmology.

The paper is organized as follows. In Section 2, we briefly review main findings of our
previous work and describe the procedure for constructing inflaton potential. We consider
example models in Section 3 to reconstruct the inflaton potential as well as the Gauss-Bonnet
coupling function. Section 4 illustrates what can be learned for the reconstructed potential from
observable quantities. In our model, the blue spectrum for tensor spectral index is obtained and
that we will discuss details in the section. We conclude with a discussion in Section 5. The units
of 2 = 8⇡G is used throughout this paper.

2 Setup

The action that we consider is composed of the Einstein-Hilbert term and the canonical
scalar field which couples non-minimally to the Gauss-Bonnet term through coupling function
⇠(�),

S =

Z
d4x

p
�g


1

22
R� 1

2
gµ⌫@µ�@⌫�� V (�)� 1

2
⇠(�)R2

GB

�
, (1)

where R2
GB = Rµ⌫⇢�R

µ⌫⇢� � 4Rµ⌫R
µ⌫ + R2 is the Gauss-Bonnet term and 2 = 8⇡G = M�2

pl is
the reduced Planck mass [9]. The Gauss-Bonnet coupling ⇠(�) is required to be a function of
a scalar field in order to give nontrivial e↵ects on the background dynamics. In a Friedmann-
Robertson-Walker(FRW) universe with a scale factor a and with an arbitrary constant curvature
K,

ds2 = �dt2 + a2
✓

dr2

1�Kr2
+ r2d⌦2

◆
, (2)

2

• The FRW universe:

The simplest model of inflation is based upon a single scalar field, minimally coupled to a 
gravity, known as inflaton field.



reheating

V (�)

�

• Equations of motion:

• Number of e-folds:

• Slow-roll approximation:

celerated expansion if the potential energy of scalar field dominates, and this

accelerated expansion can be sustained for a su�ciently long period of time if

the second order time derivatives of � is small enough. Thus we write slow-roll

approximation as,

�̇2 ⌧ V , |�̈| ⌧ |3H�̇|, |V�|. (4.75)

The scalar-field potential that we consider, for simplicity, is

V (�) = �M2

p�
2, (4.76)

where � is an arbitrary dimensionless parameter. 13 Using the Eqs. (4.70) and

(4.72), together with Eqs. (4.75)–(4.76), the background equations of motion

becomes

H2 '2

3

✓
�M2

p�
2 +

3⇠2

2a2

◆
, (4.77)

3H�̇+2�M2

p� ' 0. (4.78)

The slow-roll parameters defined in Eq. (2.64)–(2.65) to reflect the slow-roll con-

13see Ref. [25] for general V ⇠ �n potential.
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where ✏ < 1 is necessary for inflation to occur. This situation is called slow-roll

inflation. In order for this condition persist, the acceleration of scalar field has to

small as well. Therefore we define new parameter

⌘ ⌘ � �̈

H�̇
. (2.62)

For inflation to sustain for a su�ciently long period of time, ⌘ < 1 is necessary.

In the regime in which ✏, |⌘| ⌧ 1, inflation occurs and persists. This is known

Figure 4: A typical small-field (large-field) potential in the left(right). Inflation
end at �

end

when ✏ ⇠ 1.

as the slow-roll approximations. These conditions simplify both Eq. (2.54) and

(2.59) as

3H�̇ ' �V,� , H2 ' 2

3
V (�) . (2.63)

34

Using Eqs. (2.61)–(2.63), we find potential based slow-roll parameters

✏V ⌘ 1

22

✓
V,�

V

◆
2

⌧ 1 , (2.64)

⌘V ⌘ 1

2

V,��

V
⌧ 1 , (2.65)

where ⌘V = ⌘ + ✏. Inflation ends when the condition, ✏ < 1, is violated such that

✏V (�end

) ' 1. The amount of inflation is quantified by the number of e-folds

N(�) ⌘ ln
a
end

a
=

Z t
end

t

Hdt

=

Z �
end

�

H

�̇
d� ⇡

Z �

�
end

V

V,�

d� ⇡
Z �

�
end

d�p
2✏V

. (2.66)

At very early times, before inflation took place, we qualitatively consider all

scales of interest were smaller than the Hubble radius (see Fig. 5). Therefore, the

Figure 5: Inflationary solution to the horizon and flatness problems.
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following is true for the comoving Hubble radius,

(a
0

H
0

)�1 < (aIHI)
�1 . (2.67)

At the end of inflation, therefore, we can write,

a
0

H
0

aEHE

⇠ a
0

aE

✓
aE
a
0

◆
2

=
aE
a
0

⇠ T
0

TE

⇠ 10�27 , (2.68)

where 8 H ⇠ a�2 is assumed during radiation domination and the numerical

values are TE ⇠ 1015 GeV and T
0

= 10�3 eV (⇠ 2.7 K). From the last equation

we can conclude that for inflation to solve the horizon problem, (aH)�1 should

decrease by a factor of 1027. In such case H is required to be approximately

constant during inflation (HI ⇡ HE), and required number of e-folds is therefore

ln

✓
aE
aI

◆
& 64 , (2.69)

for inflation to solve the horizon problem.

8we ignored eras including the matter and the dark-energy dominated eras after the radiation
domination.
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• Slow-roll parameter:

The energy density and pressure for � are obtained by using T µ
⌫ = gµ↵T↵⌫ as

⇢� =
1

2
�̇2 + V (�) , (2.56)

p� =
1

2
�̇2 � V (�) , (2.57)

where T 0

0

= ⇢� and T i
j = �p��ij. Hence the equation of state parameter is

!� ⌘ p�
⇢�

=
1

2

�̇+ V (�)
1

2

�̇� V (�)
. (2.58)

If the potential energy dominates over the kinetic energy, V � �̇2, from Eq. (2.57),

the negative pressure is realized. Two examples of the scalar field potential, V (�),

are shown in Fig. 4. Using Eq. (2.19), we write the Friedman equation for scalar

field as
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3


1

2
�̇2 + V (�)

�
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Slow-roll ConditionUsing Eqs. (2.61)–(2.63), we find potential based slow-roll parameters
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• Let us start with:

for single-field slow-roll model

S =

Z
dx4

p
�g


1

22

R +
1

2
@µ�@

µ�� V (�)

�
, (3.69)

and we choose the comoving gauge in which,

�� = 0 , gij = a2[(1 +R)�ij + hij] , @ihij = hi
i = 0 . (3.70)

Scalar pertubation: In comoving gauge, all scalar degrees of freedom are parame-

terized by R(t,x). We showed in previous section that R does not evolve outside

the horizon. Therefore, we restrict our computation to the correlation functions

at horizon crossing.

After substituting Eq. (3.70) into Eq. (3.69) and taking integration by parts

and using the background equations of motion, 11 one can write the action that

is second order in perturbation parameter R

S(2) =
1

2

Z
d4xa3

�̇2

H2


Ṙ2 � 1

a2
(@iR)2

�
. (3.71)

11Detail calculation can be found in Refs. [36, 37]
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By defining, so-called, the Mukhanov variable

v ⌘ zR , (3.72)

where z2 ⌘ a2�̇2/H2 = 2a2✏, it allows us to rewrite Eq. (3.71) as

S(2) =
1

2

Z
d⌧d3x


v02 + (@iv)

2 +
z00

z
v2
�
, (3.73)

where we switch to the conformal time ⌧ . We define the following Fourier expan-

sion of the field v

v(⌧,x) =

Z
d3k

(2⇡)3
v
k

(⌧)eik·x , (3.74)

where

v00
k +

✓
k2 � z00

z

◆
vk = 0 . (3.75)

The last equation is hard to solve in general due to a fact that the function z

depends on the background dynamics.

Quantization: The Fourier components v
k

can be promoted to operators and
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the horizon crossing determines the spectrum of a fluctuation mode when it re-

enters the horizon. The scale dependence of the spectrum for scalar fluctuations

is quantified by the spectral index

nS � 1 ⌘ d lnPS

d ln k
= 2⌘V � 6✏V |k=aH (3.86)

In addition, we can also define the running of the spectral index as,

↵S ⌘ dns

d ln k

����
k=aH

. (3.87)

Tensor perurbation: The action, Eq. (3.69) in comoving gauge, for tensor pertur-

bation in second order is

S(2) =
1

8

Z
d4xa3


(ḣij)

2 � 1

a2
(@lhij)

2

�
. (3.88)

Fourier expansion is, therefore,

hij =

Z
d3k

(2⇡)3

X

s=+/⇥

✏sij(k)h
s
k

(t)eik·x , (3.89)

where s indicates the two polarization modes of gravitational waves, hs
k

⌘ h+,⇥
k

,

✏ii = 0 = ki✏ij and ✏sij(k)✏
s0
ij(k) = 2�ss0 . The quantization of scalar perturbations
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(ḣij)

2 � 1

a2
(@lhij)

2

�
. (3.88)

Fourier expansion is, therefore,

hij =

Z
d3k

(2⇡)3

X

s=+/⇥

✏sij(k)h
s
k

(t)eik·x , (3.89)

where s indicates the two polarization modes of gravitational waves, hs
k

⌘ h+,⇥
k

,

✏ii = 0 = ki✏ij and ✏sij(k)✏
s0
ij(k) = 2�ss0 . The quantization of scalar perturbations

61

the horizon crossing determines the spectrum of a fluctuation mode when it re-

enters the horizon. The scale dependence of the spectrum for scalar fluctuations

is quantified by the spectral index

nS � 1 ⌘ d lnPS

d ln k
= 2⌘V � 6✏V |k=aH (3.86)

In addition, we can also define the running of the spectral index as,

↵S ⌘ dns

d ln k

����
k=aH

. (3.87)

Tensor perurbation: The action, Eq. (3.69) in comoving gauge, for tensor pertur-

bation in second order is

S(2) =
1

8

Z
d4xa3


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that we discussed earlier helps the corresponding calculation for tensor perturba-

tions. Therefore, the tensor power spectrum at horizon crossing, k = a⇤H⇤,

hh
k

h
k

0i = (2⇡)3�(k+ k0)
1

2k3

H2

⇤
M2

p

. (3.90)

The dimensionless power spectrum of tensor perturbations can be obtained as

PT (k) =
2

⇡2

H2

⇤
M2

p

. (3.91)

Scale dependence of the spectrum for tensor perturbations is therefore defined as

nT ⌘ d lnPT

d ln k
= �2✏V |k=aH . (3.92)

The running of the tensor spectral index is

↵T ⌘ dnT

d ln k

����
k=aH

. (3.93)

From Eqs. (3.85) and (3.91), we get the tensor-to-scalar ration as

r ⌘ PT

PS

= 16✏V , (3.94)

62

that we discussed earlier helps the corresponding calculation for tensor perturba-

tions. Therefore, the tensor power spectrum at horizon crossing, k = a⇤H⇤,

hh
k

h
k

0i = (2⇡)3�(k+ k0)
1

2k3

H2

⇤
M2

p

. (3.90)

The dimensionless power spectrum of tensor perturbations can be obtained as

PT (k) =
2

⇡2

H2

⇤
M2

p

. (3.91)

Scale dependence of the spectrum for tensor perturbations is therefore defined as

nT ⌘ d lnPT

d ln k
= �2✏V |k=aH . (3.92)

The running of the tensor spectral index is

↵T ⌘ dnT

d ln k

����
k=aH

. (3.93)

From Eqs. (3.85) and (3.91), we get the tensor-to-scalar ration as

r ⌘ PT

PS

= 16✏V , (3.94)

62

expressed via the following decomposition

v̂
k

= vk(⌧)â
�
k

+ v⇤
�k(⌧)â

+

-k

, (3.76)

where the annihilation and creation operators, â�
k

and â+�k

respectively, satisfy

the canonical commutation relation

[â�
k

, â+
-k

0 ] = (2⇡)3�(k+ k0) , (3.77)

if and only if the mode functions are normalized as

i

~(v
⇤
kv

0
k � v⇤

k
0vk) = 1 . (3.78)

The vacuum state, the Bunch-Davies, â�
k

|0i corresponds to

vk =
Hp
2k3

(1� ik⌧)eik⌧ . (3.79)

On small scales, k⌧ � 1 or k � aH, the vacuum reduces to the Minkowski
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vacuum. We then compute the

hv̂
k

(⌧) v̂
k

0(⌧)i = (2⇡)3�(k+ k0)|vk(⌧)|2) (3.80)

= (2⇡)3�(k+ k0)
H2

2k3

(1 + k2⌧ 2) . (3.81)

On the super-Horizon scales, k⌧ ⌧ 1 or k ⌧ aH, we obtain

hv̂
k

(⌧) v̂
k

0(⌧)i = (2⇡)3�(k+ k0)
H2

2k3

. (3.82)

Using Eq. (3.72), we compute the power spectrum of R at horizon crossing time,

aH|t=t⇤ ⇠ k where t⇤ is the horizon crossing time,

hR
k

(t)R
k

0(t)i = (2⇡)3�(k+ k0)PS(k) (3.83)

= (2⇡)3�(k+ k0)
H2

⇤
2k3

H2

⇤

�̇2

⇤
. (3.84)

We define the dimensionless power spectrum, PS(k), in real space, variance of

hRRi =
R 1
0

PS(k)d ln k, as follows

PS(k) ⌘ k2

2⇡2

PS(k) =
H4

⇤

(2⇡)2�̇2

⇤
(3.85)

R approaches a constant on super-Horizon scales, therefore, the spectrum at
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k

and â+�k
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On small scales, k⌧ � 1 or k � aH, the vacuum reduces to the Minkowski

59

Perturbation Theory

the horizon crossing determines the spectrum of a fluctuation mode when it re-

enters the horizon. The scale dependence of the spectrum for scalar fluctuations

is quantified by the spectral index

nS � 1 ⌘ d lnPS

d ln k
= 2⌘V � 6✏V |k=aH (3.86)

In addition, we can also define the running of the spectral index as,

↵S ⌘ dns

d ln k

����
k=aH

. (3.87)

Tensor perurbation: The action, Eq. (3.69) in comoving gauge, for tensor pertur-

bation in second order is
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Fourier expansion is, therefore,
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where s indicates the two polarization modes of gravitational waves, hs
k

⌘ h+,⇥
k

,

✏ii = 0 = ki✏ij and ✏sij(k)✏
s0
ij(k) = 2�ss0 . The quantization of scalar perturbations
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that we discussed earlier helps the corresponding calculation for tensor perturba-

tions. Therefore, the tensor power spectrum at horizon crossing, k = a⇤H⇤,

hh
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. (3.90)

The dimensionless power spectrum of tensor perturbations can be obtained as
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Scale dependence of the spectrum for tensor perturbations is therefore defined as

nT ⌘ d lnPT

d ln k
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The running of the tensor spectral index is

↵T ⌘ dnT

d ln k
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From Eqs. (3.85) and (3.91), we get the tensor-to-scalar ration as

r ⌘ PT

PS

= 16✏V , (3.94)
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at the horizon crossing, k = aH. For the single-field slow-roll inflation models a

following consistency condition between tensor-to-scalar ratio and tensor spectral

index must be satisfied

r = �8nT . (3.95)

Measurements of nS and r are strong discriminators of inflationary models. The

Figure 7: Left: The constraints on r and ns with negligible running. Right: Equiv-
alent constraints with the B-mode polarization results.

Planck, the latest CMB experiment as shown in Fig. 7, result provides us,

nS = 0.9655± 0.0062 , (3.96)

r
0.002 < 0.11 , (3.97)

↵S = �0.0126+0.0098
�0.0087 . (3.98)
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Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.
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conditions. In Sec. III we calculate the power spectra of
scalar and tensor perturbations for the slow-roll inflation.
In Sec. IV our approach is applied to a specific example.
Section V is devoted to conclusions.

II. SLOW-ROLL INFLATION WITH THE GB
CORRECTION

We consider the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi"g

p "
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2
R"!

2
ðr!Þ2 " Vð!Þ " 1
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where ! is a scalar field with a potential Vð!Þ, ! ¼ %1,
R denotes the Ricci scalar, R2

GB ¼ R#$%&R
#$%& "

4R#$R
#$ þ R2 is the GB term, and "ð!Þ is the GB cou-

pling. We work in Planckian units, @ ¼ c ¼ 8'G ¼ 1. In a
spatially flat Friedmann-Robertson-Walker universe with
scale factor a, the background equations read

6H2 ¼ ! _!2 þ 2V þ 24 _"H3; (2)

2 _H ¼ "! _!2 þ 4 €"H2 þ 4 _"Hð2 _H"H2Þ; (3)

!ð €!þ 3H _!Þ þ V;! þ 12";!H
2ð _H þH2Þ ¼ 0; (4)

where a dot represents the time derivative, ð. . .Þ;! denotes a
derivative with respect to !, and H ' _a=a denotes the
expansion rate. Since the GB coupling is a function of !,
one has _" ¼ ";!

_! and €" ¼ ";!!
_!2 þ ";!

€!.

Besides the slow-roll conditions _!2 ( V and j €!j (
3Hj _!j, well known for minimal-coupled single-field in-
flation, we impose two extra conditions, namely, 4j _"jH (
1 and j €"j ( j _"jH. The background equations are approxi-
mately given as

H2 ’ 1
3V; (5)

_H ’ "1
2!

_!2 " 2 _"H3; (6)

_! ’ " 1

3!H
ðV;! þ 12";!H

4Þ; (7)

which allows us to obtain the number of e-folds
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!end

3!V

3V;! þ 4";!V
2 d!: (8)

Following Ref. [13] we define a hierarchy of Hubble
flow parameters,

(1 ¼ "
_H

H2 ; (iþ1 ¼
d lnj(ij
d lna

; i ) 1: (9)

The expansion is accelerated as long as (1 < 1. In the slow-
roll approximation they can be related to the usual slow-
roll parameters. The new degrees of freedom introduced by
the GB coupling function "ð!Þ suggest to define an addi-

tional hierarchy of flow parameters in the same way by

)1 ¼ 4 _"H; )iþ1 ¼
d lnj)ij
d lna

; i ) 1: (10)

The slow-roll approximation becomes j(ij ( 1 and
j)ij ( 1.
The definition of the Hubble and GB flow parameters

renders significant simplification in the involved expres-
sions. From Eqs. (2)–(4) we can express the kinetic term
and the potential in terms of the flow parameters:

! _!2 ¼ ½2(1 " )1ð1þ (1 " )2Þ+H2; (11)

V ¼ 1
2½6" 2(1 þ )1ð"5þ (1 " )2Þ+H2: (12)

We see that the potential energy dominates over the kinetic
energy and the GB energy. During slow roll the sign of! is
determined by the sign of ð2(1 " )1Þ. In the special case of
2(1 ¼ )1, the field is frozen, which corresponds to the
constant Hubble parameter. We will not consider this spe-
cial case further.
It is known that slow roll is an attractor that is rapidly

approached by different initial conditions [14]. Let us
demonstrate that the slow-roll solution (5)–(7) is the at-
tractor of the system (2)–(4) under the slow-roll condition.
From Eqs. (3) and (4) one has
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subject to the Friedmann constraint equation

6H2 ¼ !u2 þ 2V þ 24";!uH
3; (15)

where u ¼ _!. Suppose "Hð!Þ and "uð!Þ is the slow-roll
solution to the system (13)–(15). Add to this a linear
homogeneous perturbation )Hð!Þ and )uð!Þ; the attractor
condition will be satisfied if it becomes small as the
Universe expands. Inserting Hð!Þ ¼ "Hð!Þ þ )Hð!Þ and
uð!Þ ¼ "uð!Þ þ )uð!Þ into Eqs. (13)–(15), we find that
the linear perturbations satisfy
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inflationary scenarios in the market at present [12], remains successful to explain current ob-
servations. However, due to the energy scale of inflation which is considered to be very high
compared to current experimental scale, future observations might detect signals of non-standard
inflationary theory. Especially, if we think over the very early Universe approaching the Planck
scale, such new inflationary theory might contain information of high energy physics. We have
considered the Gauss-Bonnet term to study the importance of theories beyond standard single
field slow-roll inflation models in our previous paper [9]. If particular form of potential is given,
in general, one computes the observable quantities. As a result of the work we computed observ-
able quantities for specific choice of potential and coupling functions and provided constraint on
those quantities in light of observational data [2].

If a particular set of observations of some accuracy is given, one can attempt the task
to reconstruct the inflaton potential from observable quantities [6][7]. Therefore, in our current
work, we are interested in inverse problem of reconstructing inflaton potential and Gauss-Bonnet
coupling functions from observable quantities. Following the approach used in Ref. [7], we extend
the study to the cosmological models with Gauss-Bonnet term that non-minimally coupled to a
dynamical scalar field.

One interesting feature in inflation model with the Gauss-Bonnet term is that the consistency
relation r = �8nt of conventional inflation model is violated. In a conventional inflation model
with minimally coupled to gravity, the Hubble rate monotonically decreases (Ḣ < 0), such that
✏ > 0. Hence, one can conclude that the spectral index of the primordial tensor fluctuation is
always negative, nt = �2✏. Therefore, spectrum of tensor modes is red-tilted. Although the
present observations cannot determine the tilt of tensor spectral index, from the perspective of
theoretical interpretations, it is interesting to investigate the blue spectrum of tensor modes in
the framework of inflationary cosmology.

The paper is organized as follows. In Section 2, we briefly review main findings of our
previous work and describe the procedure for constructing inflaton potential. We consider
example models in Section 3 to reconstruct the inflaton potential as well as the Gauss-Bonnet
coupling function. Section 4 illustrates what can be learned for the reconstructed potential from
observable quantities. In our model, the blue spectrum for tensor spectral index is obtained and
that we will discuss details in the section. We conclude with a discussion in Section 5. The units
of 2 = 8⇡G is used throughout this paper.

2 Setup

The action that we consider is composed of the Einstein-Hilbert term and the canonical
scalar field which couples non-minimally to the Gauss-Bonnet term through coupling function
⇠(�),
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µ⌫ + R2 is the Gauss-Bonnet term and 2 = 8⇡G = M�2

pl is
the reduced Planck mass [9]. The Gauss-Bonnet coupling ⇠(�) is required to be a function of
a scalar field in order to give nontrivial e↵ects on the background dynamics. In a Friedmann-
Robertson-Walker(FRW) universe with a scale factor a and with an arbitrary constant curvature
K,
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inflationary scenarios in the market at present [12], remains successful to explain current ob-
servations. However, due to the energy scale of inflation which is considered to be very high
compared to current experimental scale, future observations might detect signals of non-standard
inflationary theory. Especially, if we think over the very early Universe approaching the Planck
scale, such new inflationary theory might contain information of high energy physics. We have
considered the Gauss-Bonnet term to study the importance of theories beyond standard single
field slow-roll inflation models in our previous paper [9]. If particular form of potential is given,
in general, one computes the observable quantities. As a result of the work we computed observ-
able quantities for specific choice of potential and coupling functions and provided constraint on
those quantities in light of observational data [2].

If a particular set of observations of some accuracy is given, one can attempt the task
to reconstruct the inflaton potential from observable quantities [6][7]. Therefore, in our current
work, we are interested in inverse problem of reconstructing inflaton potential and Gauss-Bonnet
coupling functions from observable quantities. Following the approach used in Ref. [7], we extend
the study to the cosmological models with Gauss-Bonnet term that non-minimally coupled to a
dynamical scalar field.

One interesting feature in inflation model with the Gauss-Bonnet term is that the consistency
relation r = �8nt of conventional inflation model is violated. In a conventional inflation model
with minimally coupled to gravity, the Hubble rate monotonically decreases (Ḣ < 0), such that
✏ > 0. Hence, one can conclude that the spectral index of the primordial tensor fluctuation is
always negative, nt = �2✏. Therefore, spectrum of tensor modes is red-tilted. Although the
present observations cannot determine the tilt of tensor spectral index, from the perspective of
theoretical interpretations, it is interesting to investigate the blue spectrum of tensor modes in
the framework of inflationary cosmology.

The paper is organized as follows. In Section 2, we briefly review main findings of our
previous work and describe the procedure for constructing inflaton potential. We consider
example models in Section 3 to reconstruct the inflaton potential as well as the Gauss-Bonnet
coupling function. Section 4 illustrates what can be learned for the reconstructed potential from
observable quantities. In our model, the blue spectrum for tensor spectral index is obtained and
that we will discuss details in the section. We conclude with a discussion in Section 5. The units
of 2 = 8⇡G is used throughout this paper.

2 Setup
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scalar field which couples non-minimally to the Gauss-Bonnet term through coupling function
⇠(�),

S =

Z
d4x

p
�g


1

22
R� 1

2
gµ⌫@µ�@⌫�� V (�)� 1

2
⇠(�)R2

GB

�
, (1)

where R2
GB = Rµ⌫⇢�R

µ⌫⇢� � 4Rµ⌫R
µ⌫ + R2 is the Gauss-Bonnet term and 2 = 8⇡G = M�2

pl is
the reduced Planck mass [9]. The Gauss-Bonnet coupling ⇠(�) is required to be a function of
a scalar field in order to give nontrivial e↵ects on the background dynamics. In a Friedmann-
Robertson-Walker(FRW) universe with a scale factor a and with an arbitrary constant curvature
K,

ds2 = �dt2 + a2
✓

dr2

1�Kr2
+ r2d⌦2

◆
, (2)

2

inflationary scenarios in the market at present [12], remains successful to explain current ob-
servations. However, due to the energy scale of inflation which is considered to be very high
compared to current experimental scale, future observations might detect signals of non-standard
inflationary theory. Especially, if we think over the very early Universe approaching the Planck
scale, such new inflationary theory might contain information of high energy physics. We have
considered the Gauss-Bonnet term to study the importance of theories beyond standard single
field slow-roll inflation models in our previous paper [9]. If particular form of potential is given,
in general, one computes the observable quantities. As a result of the work we computed observ-
able quantities for specific choice of potential and coupling functions and provided constraint on
those quantities in light of observational data [2].

If a particular set of observations of some accuracy is given, one can attempt the task
to reconstruct the inflaton potential from observable quantities [6][7]. Therefore, in our current
work, we are interested in inverse problem of reconstructing inflaton potential and Gauss-Bonnet
coupling functions from observable quantities. Following the approach used in Ref. [7], we extend
the study to the cosmological models with Gauss-Bonnet term that non-minimally coupled to a
dynamical scalar field.

One interesting feature in inflation model with the Gauss-Bonnet term is that the consistency
relation r = �8nt of conventional inflation model is violated. In a conventional inflation model
with minimally coupled to gravity, the Hubble rate monotonically decreases (Ḣ < 0), such that
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conditions. In Sec. III we calculate the power spectra of
scalar and tensor perturbations for the slow-roll inflation.
In Sec. IV our approach is applied to a specific example.
Section V is devoted to conclusions.

II. SLOW-ROLL INFLATION WITH THE GB
CORRECTION
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where ! is a scalar field with a potential Vð!Þ, ! ¼ %1,
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inflationary scenarios in the market at present [12], remains successful to explain current ob-
servations. However, due to the energy scale of inflation which is considered to be very high
compared to current experimental scale, future observations might detect signals of non-standard
inflationary theory. Especially, if we think over the very early Universe approaching the Planck
scale, such new inflationary theory might contain information of high energy physics. We have
considered the Gauss-Bonnet term to study the importance of theories beyond standard single
field slow-roll inflation models in our previous paper [9]. If particular form of potential is given,
in general, one computes the observable quantities. As a result of the work we computed observ-
able quantities for specific choice of potential and coupling functions and provided constraint on
those quantities in light of observational data [2].

If a particular set of observations of some accuracy is given, one can attempt the task
to reconstruct the inflaton potential from observable quantities [6][7]. Therefore, in our current
work, we are interested in inverse problem of reconstructing inflaton potential and Gauss-Bonnet
coupling functions from observable quantities. Following the approach used in Ref. [7], we extend
the study to the cosmological models with Gauss-Bonnet term that non-minimally coupled to a
dynamical scalar field.

One interesting feature in inflation model with the Gauss-Bonnet term is that the consistency
relation r = �8nt of conventional inflation model is violated. In a conventional inflation model
with minimally coupled to gravity, the Hubble rate monotonically decreases (Ḣ < 0), such that
✏ > 0. Hence, one can conclude that the spectral index of the primordial tensor fluctuation is
always negative, nt = �2✏. Therefore, spectrum of tensor modes is red-tilted. Although the
present observations cannot determine the tilt of tensor spectral index, from the perspective of
theoretical interpretations, it is interesting to investigate the blue spectrum of tensor modes in
the framework of inflationary cosmology.

The paper is organized as follows. In Section 2, we briefly review main findings of our
previous work and describe the procedure for constructing inflaton potential. We consider
example models in Section 3 to reconstruct the inflaton potential as well as the Gauss-Bonnet
coupling function. Section 4 illustrates what can be learned for the reconstructed potential from
observable quantities. In our model, the blue spectrum for tensor spectral index is obtained and
that we will discuss details in the section. We conclude with a discussion in Section 5. The units
of 2 = 8⇡G is used throughout this paper.

2 Setup

The action that we consider is composed of the Einstein-Hilbert term and the canonical
scalar field which couples non-minimally to the Gauss-Bonnet term through coupling function
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The background EoMs in the FRW universe with spacetime metric 
 are:

Inflation with GB term
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.

In this work, we consider the case in which the scalar field slowly rolls down to the minimum
of the potential and the Gauss-Bonnet term is assumed to be a small correction to gravity.
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Ḣ ' �2

2
(�̇2 + 4⇠̇H3) , (9)

3H�̇+ V� + 12⇠�H
4 ' 0 . (10)

We rewrite Eq. (7) in terms of the potential and the Gauss-Bonnet coupling function as

✏ =
1

22
V�

V
Q , (11)

⌘ = � 1

2

✓
V��

V�
Q+Q�

◆
, (12)

�1 = �42

3
⇠�V Q, (13)

�2 = � 1

2

✓
⇠��
⇠�

Q+
1

2

V�

V
Q+Q�

◆
, (14)

with

Q ⌘
V�

V
+

4

3
4⇠�V . (15)

Another key parameter in an inflationary scenario is the e-folding number, N , that measures
the amount of inflationary expansion from a particular time t until the end of inflation te

N =

Z te

t
Hdt '

Z �

�e

2

Q
d�, (16)

3

the background dynamics of this system yields the Einstein and the field equations

H2 =
2

3


1

2
�̇2 + V � 3K

2a2
+ 12⇠̇H

✓
H2 +

K

a2

◆�
, (3)
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the slow-roll condition

conditions. In Sec. III we calculate the power spectra of
scalar and tensor perturbations for the slow-roll inflation.
In Sec. IV our approach is applied to a specific example.
Section V is devoted to conclusions.

II. SLOW-ROLL INFLATION WITH THE GB
CORRECTION

We consider the following action:
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where ! is a scalar field with a potential Vð!Þ, ! ¼ %1,
R denotes the Ricci scalar, R2

GB ¼ R#$%&R
#$%& "

4R#$R
#$ þ R2 is the GB term, and "ð!Þ is the GB cou-

pling. We work in Planckian units, @ ¼ c ¼ 8'G ¼ 1. In a
spatially flat Friedmann-Robertson-Walker universe with
scale factor a, the background equations read
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derivative with respect to !, and H ' _a=a denotes the
expansion rate. Since the GB coupling is a function of !,
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subject to the Friedmann constraint equation

6H2 ¼ !u2 þ 2V þ 24";!uH
3; (15)
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inflationary scenarios in the market at present [12], remains successful to explain current ob-
servations. However, due to the energy scale of inflation which is considered to be very high
compared to current experimental scale, future observations might detect signals of non-standard
inflationary theory. Especially, if we think over the very early Universe approaching the Planck
scale, such new inflationary theory might contain information of high energy physics. We have
considered the Gauss-Bonnet term to study the importance of theories beyond standard single
field slow-roll inflation models in our previous paper [9]. If particular form of potential is given,
in general, one computes the observable quantities. As a result of the work we computed observ-
able quantities for specific choice of potential and coupling functions and provided constraint on
those quantities in light of observational data [2].

If a particular set of observations of some accuracy is given, one can attempt the task
to reconstruct the inflaton potential from observable quantities [6][7]. Therefore, in our current
work, we are interested in inverse problem of reconstructing inflaton potential and Gauss-Bonnet
coupling functions from observable quantities. Following the approach used in Ref. [7], we extend
the study to the cosmological models with Gauss-Bonnet term that non-minimally coupled to a
dynamical scalar field.

One interesting feature in inflation model with the Gauss-Bonnet term is that the consistency
relation r = �8nt of conventional inflation model is violated. In a conventional inflation model
with minimally coupled to gravity, the Hubble rate monotonically decreases (Ḣ < 0), such that
✏ > 0. Hence, one can conclude that the spectral index of the primordial tensor fluctuation is
always negative, nt = �2✏. Therefore, spectrum of tensor modes is red-tilted. Although the
present observations cannot determine the tilt of tensor spectral index, from the perspective of
theoretical interpretations, it is interesting to investigate the blue spectrum of tensor modes in
the framework of inflationary cosmology.

The paper is organized as follows. In Section 2, we briefly review main findings of our
previous work and describe the procedure for constructing inflaton potential. We consider
example models in Section 3 to reconstruct the inflaton potential as well as the Gauss-Bonnet
coupling function. Section 4 illustrates what can be learned for the reconstructed potential from
observable quantities. In our model, the blue spectrum for tensor spectral index is obtained and
that we will discuss details in the section. We conclude with a discussion in Section 5. The units
of 2 = 8⇡G is used throughout this paper.

2 Setup

The action that we consider is composed of the Einstein-Hilbert term and the canonical
scalar field which couples non-minimally to the Gauss-Bonnet term through coupling function
⇠(�),
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Z
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the reduced Planck mass [9]. The Gauss-Bonnet coupling ⇠(�) is required to be a function of
a scalar field in order to give nontrivial e↵ects on the background dynamics. In a Friedmann-
Robertson-Walker(FRW) universe with a scale factor a and with an arbitrary constant curvature
K,
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The background EoMs in the FRW universe with spacetime metric 
 are:

Inflation with GB term



the background dynamics of this system yields the Einstein and the field equations
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.

In this work, we consider the case in which the scalar field slowly rolls down to the minimum
of the potential and the Gauss-Bonnet term is assumed to be a small correction to gravity.
Hence, the following inequality must be satisfied [9];

�̇2/2 ⌧ V , �̈ ⌧ 3H�̇ , 4⇠̇H ⌧ 1 , and ⇠̈ ⌧ ⇠̇H . (6)
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Another key parameter in an inflationary scenario is the e-folding number, N , that measures
the amount of inflationary expansion from a particular time t until the end of inflation te
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.

In this work, we consider the case in which the scalar field slowly rolls down to the minimum
of the potential and the Gauss-Bonnet term is assumed to be a small correction to gravity.
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Ḣ ' �2

2
(�̇2 + 4⇠̇H3) , (9)

3H�̇+ V� + 12⇠�H
4 ' 0 . (10)

We rewrite Eq. (7) in terms of the potential and the Gauss-Bonnet coupling function as

✏ =
1

22
V�

V
Q , (11)

⌘ = � 1

2

✓
V��

V�
Q+Q�

◆
, (12)

�1 = �42

3
⇠�V Q, (13)

�2 = � 1

2

✓
⇠��
⇠�

Q+
1

2

V�

V
Q+Q�

◆
, (14)

with

Q ⌘
V�

V
+

4

3
4⇠�V . (15)

Another key parameter in an inflationary scenario is the e-folding number, N , that measures
the amount of inflationary expansion from a particular time t until the end of inflation te

N =

Z te

t
Hdt '

Z �

�e

2

Q
d�, (16)

3

conditions. In Sec. III we calculate the power spectra of
scalar and tensor perturbations for the slow-roll inflation.
In Sec. IV our approach is applied to a specific example.
Section V is devoted to conclusions.

II. SLOW-ROLL INFLATION WITH THE GB
CORRECTION

We consider the following action:
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where ! is a scalar field with a potential Vð!Þ, ! ¼ %1,
R denotes the Ricci scalar, R2

GB ¼ R#$%&R
#$%& "

4R#$R
#$ þ R2 is the GB term, and "ð!Þ is the GB cou-

pling. We work in Planckian units, @ ¼ c ¼ 8'G ¼ 1. In a
spatially flat Friedmann-Robertson-Walker universe with
scale factor a, the background equations read
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where a dot represents the time derivative, ð. . .Þ;! denotes a
derivative with respect to !, and H ' _a=a denotes the
expansion rate. Since the GB coupling is a function of !,
one has _" ¼ ";!

_! and €" ¼ ";!!
_!2 þ ";!
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Besides the slow-roll conditions _!2 ( V and j €!j (
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Following Ref. [13] we define a hierarchy of Hubble
flow parameters,
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The expansion is accelerated as long as (1 < 1. In the slow-
roll approximation they can be related to the usual slow-
roll parameters. The new degrees of freedom introduced by
the GB coupling function "ð!Þ suggest to define an addi-
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The slow-roll approximation becomes j(ij ( 1 and
j)ij ( 1.
The definition of the Hubble and GB flow parameters

renders significant simplification in the involved expres-
sions. From Eqs. (2)–(4) we can express the kinetic term
and the potential in terms of the flow parameters:
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We see that the potential energy dominates over the kinetic
energy and the GB energy. During slow roll the sign of! is
determined by the sign of ð2(1 " )1Þ. In the special case of
2(1 ¼ )1, the field is frozen, which corresponds to the
constant Hubble parameter. We will not consider this spe-
cial case further.
It is known that slow roll is an attractor that is rapidly

approached by different initial conditions [14]. Let us
demonstrate that the slow-roll solution (5)–(7) is the at-
tractor of the system (2)–(4) under the slow-roll condition.
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subject to the Friedmann constraint equation
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where u ¼ _!. Suppose "Hð!Þ and "uð!Þ is the slow-roll
solution to the system (13)–(15). Add to this a linear
homogeneous perturbation )Hð!Þ and )uð!Þ; the attractor
condition will be satisfied if it becomes small as the
Universe expands. Inserting Hð!Þ ¼ "Hð!Þ þ )Hð!Þ and
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inflationary scenarios in the market at present [12], remains successful to explain current ob-
servations. However, due to the energy scale of inflation which is considered to be very high
compared to current experimental scale, future observations might detect signals of non-standard
inflationary theory. Especially, if we think over the very early Universe approaching the Planck
scale, such new inflationary theory might contain information of high energy physics. We have
considered the Gauss-Bonnet term to study the importance of theories beyond standard single
field slow-roll inflation models in our previous paper [9]. If particular form of potential is given,
in general, one computes the observable quantities. As a result of the work we computed observ-
able quantities for specific choice of potential and coupling functions and provided constraint on
those quantities in light of observational data [2].

If a particular set of observations of some accuracy is given, one can attempt the task
to reconstruct the inflaton potential from observable quantities [6][7]. Therefore, in our current
work, we are interested in inverse problem of reconstructing inflaton potential and Gauss-Bonnet
coupling functions from observable quantities. Following the approach used in Ref. [7], we extend
the study to the cosmological models with Gauss-Bonnet term that non-minimally coupled to a
dynamical scalar field.

One interesting feature in inflation model with the Gauss-Bonnet term is that the consistency
relation r = �8nt of conventional inflation model is violated. In a conventional inflation model
with minimally coupled to gravity, the Hubble rate monotonically decreases (Ḣ < 0), such that
✏ > 0. Hence, one can conclude that the spectral index of the primordial tensor fluctuation is
always negative, nt = �2✏. Therefore, spectrum of tensor modes is red-tilted. Although the
present observations cannot determine the tilt of tensor spectral index, from the perspective of
theoretical interpretations, it is interesting to investigate the blue spectrum of tensor modes in
the framework of inflationary cosmology.

The paper is organized as follows. In Section 2, we briefly review main findings of our
previous work and describe the procedure for constructing inflaton potential. We consider
example models in Section 3 to reconstruct the inflaton potential as well as the Gauss-Bonnet
coupling function. Section 4 illustrates what can be learned for the reconstructed potential from
observable quantities. In our model, the blue spectrum for tensor spectral index is obtained and
that we will discuss details in the section. We conclude with a discussion in Section 5. The units
of 2 = 8⇡G is used throughout this paper.

2 Setup

The action that we consider is composed of the Einstein-Hilbert term and the canonical
scalar field which couples non-minimally to the Gauss-Bonnet term through coupling function
⇠(�),
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a scalar field in order to give nontrivial e↵ects on the background dynamics. In a Friedmann-
Robertson-Walker(FRW) universe with a scale factor a and with an arbitrary constant curvature
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always negative, nt = �2✏. Therefore, spectrum of tensor modes is red-tilted. Although the
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theoretical interpretations, it is interesting to investigate the blue spectrum of tensor modes in
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The paper is organized as follows. In Section 2, we briefly review main findings of our
previous work and describe the procedure for constructing inflaton potential. We consider
example models in Section 3 to reconstruct the inflaton potential as well as the Gauss-Bonnet
coupling function. Section 4 illustrates what can be learned for the reconstructed potential from
observable quantities. In our model, the blue spectrum for tensor spectral index is obtained and
that we will discuss details in the section. We conclude with a discussion in Section 5. The units
of 2 = 8⇡G is used throughout this paper.
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The action is:

Inflation with GB term
the background dynamics of this system yields the Einstein and the field equations
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.

In this work, we consider the case in which the scalar field slowly rolls down to the minimum
of the potential and the Gauss-Bonnet term is assumed to be a small correction to gravity.
Hence, the following inequality must be satisfied [9];
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HḢ
, �1 ⌘ 42⇠̇H , �2 ⌘

⇠̈

⇠̇H
. (7)

Under Eq. (6), the background equations, Eqs. (3)–(5), become for K = 0

H2 ' 2

3
V , (8)
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HḢ
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where �e = �(te) is the field value at the end of inflation. To give standard reheating process,
N ' 50 ⇠ 60 is assumed at the horizon crossing time, k = aH where k is the comoving scale.
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After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
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inflationary scenarios in the market at present [12], remains successful to explain current ob-
servations. However, due to the energy scale of inflation which is considered to be very high
compared to current experimental scale, future observations might detect signals of non-standard
inflationary theory. Especially, if we think over the very early Universe approaching the Planck
scale, such new inflationary theory might contain information of high energy physics. We have
considered the Gauss-Bonnet term to study the importance of theories beyond standard single
field slow-roll inflation models in our previous paper [9]. If particular form of potential is given,
in general, one computes the observable quantities. As a result of the work we computed observ-
able quantities for specific choice of potential and coupling functions and provided constraint on
those quantities in light of observational data [2].

If a particular set of observations of some accuracy is given, one can attempt the task
to reconstruct the inflaton potential from observable quantities [6][7]. Therefore, in our current
work, we are interested in inverse problem of reconstructing inflaton potential and Gauss-Bonnet
coupling functions from observable quantities. Following the approach used in Ref. [7], we extend
the study to the cosmological models with Gauss-Bonnet term that non-minimally coupled to a
dynamical scalar field.

One interesting feature in inflation model with the Gauss-Bonnet term is that the consistency
relation r = �8nt of conventional inflation model is violated. In a conventional inflation model
with minimally coupled to gravity, the Hubble rate monotonically decreases (Ḣ < 0), such that
✏ > 0. Hence, one can conclude that the spectral index of the primordial tensor fluctuation is
always negative, nt = �2✏. Therefore, spectrum of tensor modes is red-tilted. Although the
present observations cannot determine the tilt of tensor spectral index, from the perspective of
theoretical interpretations, it is interesting to investigate the blue spectrum of tensor modes in
the framework of inflationary cosmology.

The paper is organized as follows. In Section 2, we briefly review main findings of our
previous work and describe the procedure for constructing inflaton potential. We consider
example models in Section 3 to reconstruct the inflaton potential as well as the Gauss-Bonnet
coupling function. Section 4 illustrates what can be learned for the reconstructed potential from
observable quantities. In our model, the blue spectrum for tensor spectral index is obtained and
that we will discuss details in the section. We conclude with a discussion in Section 5. The units
of 2 = 8⇡G is used throughout this paper.

2 Setup

The action that we consider is composed of the Einstein-Hilbert term and the canonical
scalar field which couples non-minimally to the Gauss-Bonnet term through coupling function
⇠(�),
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the reduced Planck mass [9]. The Gauss-Bonnet coupling ⇠(�) is required to be a function of
a scalar field in order to give nontrivial e↵ects on the background dynamics. In a Friedmann-
Robertson-Walker(FRW) universe with a scale factor a and with an arbitrary constant curvature
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
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because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.
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conditions. In Sec. III we calculate the power spectra of
scalar and tensor perturbations for the slow-roll inflation.
In Sec. IV our approach is applied to a specific example.
Section V is devoted to conclusions.

II. SLOW-ROLL INFLATION WITH THE GB
CORRECTION

We consider the following action:

S ¼
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where ! is a scalar field with a potential Vð!Þ, ! ¼ %1,
R denotes the Ricci scalar, R2

GB ¼ R#$%&R
#$%& "

4R#$R
#$ þ R2 is the GB term, and "ð!Þ is the GB cou-

pling. We work in Planckian units, @ ¼ c ¼ 8'G ¼ 1. In a
spatially flat Friedmann-Robertson-Walker universe with
scale factor a, the background equations read
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2ð _H þH2Þ ¼ 0; (4)

where a dot represents the time derivative, ð. . .Þ;! denotes a
derivative with respect to !, and H ' _a=a denotes the
expansion rate. Since the GB coupling is a function of !,
one has _" ¼ ";!

_! and €" ¼ ";!!
_!2 þ ";!

€!.

Besides the slow-roll conditions _!2 ( V and j €!j (
3Hj _!j, well known for minimal-coupled single-field in-
flation, we impose two extra conditions, namely, 4j _"jH (
1 and j €"j ( j _"jH. The background equations are approxi-
mately given as
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which allows us to obtain the number of e-folds
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2 d!: (8)

Following Ref. [13] we define a hierarchy of Hubble
flow parameters,

(1 ¼ "
_H

H2 ; (iþ1 ¼
d lnj(ij
d lna

; i ) 1: (9)

The expansion is accelerated as long as (1 < 1. In the slow-
roll approximation they can be related to the usual slow-
roll parameters. The new degrees of freedom introduced by
the GB coupling function "ð!Þ suggest to define an addi-

tional hierarchy of flow parameters in the same way by

)1 ¼ 4 _"H; )iþ1 ¼
d lnj)ij
d lna

; i ) 1: (10)

The slow-roll approximation becomes j(ij ( 1 and
j)ij ( 1.
The definition of the Hubble and GB flow parameters

renders significant simplification in the involved expres-
sions. From Eqs. (2)–(4) we can express the kinetic term
and the potential in terms of the flow parameters:

! _!2 ¼ ½2(1 " )1ð1þ (1 " )2Þ+H2; (11)

V ¼ 1
2½6" 2(1 þ )1ð"5þ (1 " )2Þ+H2: (12)

We see that the potential energy dominates over the kinetic
energy and the GB energy. During slow roll the sign of! is
determined by the sign of ð2(1 " )1Þ. In the special case of
2(1 ¼ )1, the field is frozen, which corresponds to the
constant Hubble parameter. We will not consider this spe-
cial case further.
It is known that slow roll is an attractor that is rapidly

approached by different initial conditions [14]. Let us
demonstrate that the slow-roll solution (5)–(7) is the at-
tractor of the system (2)–(4) under the slow-roll condition.
From Eqs. (3) and (4) one has
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subject to the Friedmann constraint equation

6H2 ¼ !u2 þ 2V þ 24";!uH
3; (15)

where u ¼ _!. Suppose "Hð!Þ and "uð!Þ is the slow-roll
solution to the system (13)–(15). Add to this a linear
homogeneous perturbation )Hð!Þ and )uð!Þ; the attractor
condition will be satisfied if it becomes small as the
Universe expands. Inserting Hð!Þ ¼ "Hð!Þ þ )Hð!Þ and
uð!Þ ¼ "uð!Þ þ )uð!Þ into Eqs. (13)–(15), we find that
the linear perturbations satisfy
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inflationary scenarios in the market at present [12], remains successful to explain current ob-
servations. However, due to the energy scale of inflation which is considered to be very high
compared to current experimental scale, future observations might detect signals of non-standard
inflationary theory. Especially, if we think over the very early Universe approaching the Planck
scale, such new inflationary theory might contain information of high energy physics. We have
considered the Gauss-Bonnet term to study the importance of theories beyond standard single
field slow-roll inflation models in our previous paper [9]. If particular form of potential is given,
in general, one computes the observable quantities. As a result of the work we computed observ-
able quantities for specific choice of potential and coupling functions and provided constraint on
those quantities in light of observational data [2].

If a particular set of observations of some accuracy is given, one can attempt the task
to reconstruct the inflaton potential from observable quantities [6][7]. Therefore, in our current
work, we are interested in inverse problem of reconstructing inflaton potential and Gauss-Bonnet
coupling functions from observable quantities. Following the approach used in Ref. [7], we extend
the study to the cosmological models with Gauss-Bonnet term that non-minimally coupled to a
dynamical scalar field.

One interesting feature in inflation model with the Gauss-Bonnet term is that the consistency
relation r = �8nt of conventional inflation model is violated. In a conventional inflation model
with minimally coupled to gravity, the Hubble rate monotonically decreases (Ḣ < 0), such that
✏ > 0. Hence, one can conclude that the spectral index of the primordial tensor fluctuation is
always negative, nt = �2✏. Therefore, spectrum of tensor modes is red-tilted. Although the
present observations cannot determine the tilt of tensor spectral index, from the perspective of
theoretical interpretations, it is interesting to investigate the blue spectrum of tensor modes in
the framework of inflationary cosmology.

The paper is organized as follows. In Section 2, we briefly review main findings of our
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The action is:
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.

In this work, we consider the case in which the scalar field slowly rolls down to the minimum
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Another key parameter in an inflationary scenario is the e-folding number, N , that measures
the amount of inflationary expansion from a particular time t until the end of inflation te
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scalar ratio. For the tensor perturbations we assume a
power-law power spectrum, with a uniform prior on nT
as !0:5< nT < 0. In Fig. 2 we show the 1! and 2!
contours derived from the data combination ofWMAP7þ
BAOþH0 by using the COSMOMC package [17].
Compared to the contours of Fig. 1 we find that the joint
constraint on nR and r becomes a little tighter. The
WMAP7þ BAOþH0 data do not constrain nT .
Basically all values allowed by the prior are also allowed
by the potential and the coupling.

In Fig. 2 we plot the values of nR and r in the models
with n ¼ 2 (top panel) and n ¼ 4 (bottom panel) for differ-
ent values ofN and". We can see that the model parameter
" can shift the predicted r vertically for a fixed number of
e-folds. For n ¼ 2, the model with a positive " is more
favored observationally. For n ¼ 4, the model with ">
0:7 is consistent with the data within the 95% confidence
level, in which the prediction for the tensor-to-scalar ratio
is smaller than the " ¼ 0 case while the prediction for nR
is the same as the " ¼ 0 case. Other ways to avoid the
exclusion of the #4 potential have been studied in
Ref. [18].

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have studied slow-roll inflation with a
nonminimally coupled Gauss-Bonnet term. We have de-
fined a combined hierarchy ð$i;%iÞ of Hubble and GB flow
functions such that j$ij & 1 and j%ij & 1 is the analogue
of the standard slow-roll approximation. It has been dem-
onstrated that slow-roll solution is the attractor solution
under the slow-roll condition. We have analytically derived
the power spectra of scalar and tensor perturbations. In
general the spectral index of scalar perturbations depends
on the Hubble flow parameters and the GB flow parame-
ters. However, the spectral index of tensor perturbations is
independent of the GB flow parameters to first order in the
slow-roll approximation. In this scenario the standard
consistency relation does not hold because of the GB
correction.
We apply our general formalism to large-field inflation

with a monomial potential and the GB coupling (49). We
focus on the case of! ¼ 1 and "< 1 since the field theory
of phantom-type fields encounters the problem of stability.
In this case, the GB term with the positive (or negative)
coupling slows down (or speeds up) the evolution of the
inflaton during inflation, which decreases (or increases) the
energy scale of the potential to be in agreement with the
amplitude of scalar perturbations. However the amplitude
of tensor perturbations only depends on the energy scale of
the potential at the horizon-crossing time. Therefore, the
tensor-to-scalar ratio is suppressed for "> 0 while it is
enhanced for "< 0.
As shown in Fig. 2, the model parameter " can shift the

predicted r vertically for a fixed number of e-folds in the
nR-r plane. For n ¼ 2, the quadratic potential can be made
a better fit to the data by the positive GB coupling. For n ¼
4, it is known that the model with " ¼ 0 is excluded by the
WMAP7þ BAOþH0 analysis. However, in our scenario
of inflation "> 0:7 is within the 2! contour for N > 50,
and it is consistent with the data within the 95% confidence
level.
The results of this work are generic as soon as non-

minimal couplings are considered. While it is always
possible by means of a conformal transformation to work
in the Einstein frame and to avoid the presence of a #2R
term in the Lagrangian, the coupling of the scalar field to
the GB term cannot be argued away by the same conformal
transformation. While we studied perturbation spectra in
the Einstein frame, similar properties hold in the Jordan
frame.
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FIG. 2. Tensor-to-scalar ratio r versus the spectral index nR
for the inflation model (49) with n ¼ 2 (top panel) and n ¼ 4
(bottom panel). The contours show the 68% and 95% confidence
level derived from WMAP7þ BAOþH0 without the consis-
tency relation.
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4, it is known that the model with " ¼ 0 is excluded by the
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level.
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possible by means of a conformal transformation to work
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where Q # !ðV;#=V þ 4";#V=3Þ.
The key result of our paper is the general slow-roll

expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.

IV. AN EXAMPLE MODEL

Let us consider a specific inflation model

Vð#Þ ¼ V0#
n; "ð#Þ ¼ "0#

!n: (49)

This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)

%2 ’ 2nð1! $Þ#!2; (51)

!1 ’ n2$ð1! $Þ#!2; (52)

!2 ’ 2nð1! $Þ#!2: (53)

From Eqs. (42) and (44) one gets

nR ! 1 ¼ !nðnþ 2Þð1! $Þ#!2; (54)

r ¼ 8n2ð1! $Þ2#!2: (55)

Inflation ends at %1ð#endÞ ¼ 1, which gives the value of the
field at the end of inflation:

#2
end ¼ 1

2n
2ð1! $Þ: (56)

Then from (8) we find the value of the field N e-folds
before the end of inflation:

#2 ¼ 2nð1! $Þ
!
N þ n

4

"
: (57)

The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:

nR ! 1 ¼ ! 2ðnþ 2Þ
4N þ n

; (58)

r ¼ 16nð1! $Þ
4N þ n

: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)

%2 ’ 2nð1! $Þ#!2; (51)

!1 ’ n2$ð1! $Þ#!2; (52)

!2 ’ 2nð1! $Þ#!2: (53)

From Eqs. (42) and (44) one gets

nR ! 1 ¼ !nðnþ 2Þð1! $Þ#!2; (54)

r ¼ 8n2ð1! $Þ2#!2: (55)

Inflation ends at %1ð#endÞ ¼ 1, which gives the value of the
field at the end of inflation:

#2
end ¼ 1

2n
2ð1! $Þ: (56)

Then from (8) we find the value of the field N e-folds
before the end of inflation:

#2 ¼ 2nð1! $Þ
!
N þ n

4

"
: (57)

The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:

nR ! 1 ¼ ! 2ðnþ 2Þ
4N þ n

; (58)

r ¼ 16nð1! $Þ
4N þ n

: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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!1 ’ ! 4

3
";#QV; (47)

!2 ’ !Q
!
";##

";#
þ V;#

V
þQ;#

Q

"
; (48)

where Q # !ðV;#=V þ 4";#V=3Þ.
The key result of our paper is the general slow-roll
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Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
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Vð!Þ ¼ V0!
n; "ð!Þ ¼ "0!

$n: (22)

This class of potentials has been widely studied as the
simplest inflationary model. Without the GB coupling the
!4 potential is well outside of the joint 99.7% CL region
and the !2 potential lies outside the joint 95% CL for the
PlanckþWPþ high$ l data, as discussed in [2]. Here we
show that the GB coupling may revive this class of poten-
tials. Such a specific choice of GB coupling allows us to
find an analytic relation between r and nR in terms of N.
This model, in which #1¼n=ð4NþnÞ, $1¼2n%=ð4NþnÞ,
and #2 ¼ $2 ¼ 4=ð4N þ nÞ, predicts [14]

nR $ 1 ¼ $ 2ðnþ 2Þ
4N þ n

; (23)

r ¼ 16nð1$ %Þ
4N þ n

: (24)

To confront the theoretical predictions with the Planck
constraints, in Fig. 1 we plot the values of nR and r in
the model with n ¼ 2 for different values of N and %. We
see that for a fixed number of e-folds, the parameter % can
shift the predicted r vertically and keep nR invariant.
Figure 1 shows that the model with a positive % can be
consistent with the Planck data, while one with a negative
% is disfavored.

C. Chaotic inflation with a dilatonlike coupling

In the two classes of models discussed above, we notice
that the GB coupling and potential satisfy "ð!ÞVð!Þ ¼
3%=4, so that the relation between r and nR can analyti-
cally be expressed in terms of model parameters. Here we
consider a more general model with a monomial potential
and a dilatonlike coupling

Vð!Þ ¼ V0!
n; "ð!Þ ¼ "0e

$&!: (25)

For this model the Hubble and GB flow parameters are
given by

#1 ¼
nðn$ %&e$&!!nþ1Þ

2!2 ; (26)

#2 ¼
2n$ %&e$&!!nþ1ð&!$ nþ 1Þ

!2 ; (27)

$1 ¼
%&e$&!!nþ1ðn$ %&e$&!!nþ1Þ

!2 ; (28)

$2 ¼
nð&!$ nþ 1Þ $ 2%&e$&!!nþ1ð&!$ nÞ

!2 : (29)

From Eqs. (13) and (14) one gets the scalar spectral index
and tensor-to-scalar ratio

nR $ 1 ¼ $nðnþ 2Þ þ %&e$&!!nþ1ð2&!$ nÞ
!2 ; (30)

r ¼ 8ðn$ %&e$&!!nþ1Þ2
!2 ; (31)

which involve three model parameters n, & and % in the
slow-roll approximation. Hereafter, we restrict ourselves to
a quadratic potential, n ¼ 2, often considered the simplest
example for inflation [17]. The value of ! in (30) and (31)
depends on the number of e-folds and the value of !end

by setting max ð#i;$iÞð!endÞ ¼ 1. For simplicity we set
N ¼ 60.
In Fig. 2 we plot the scalar spectral index and tensor-to-

scalar ratio for different values of & and %. There exist
parameter regions in which the predicted nR and r are
excellently consistent with the Planck constraints. We see
that the scalar spectral index is sensitive to & for a given
value of %. Compared to the inverse monomial coupling
discussed in subsection B, these observable quantities are
more sensitive to the dilatonlike coupling.

IV. DISCUSSIONS AND CONCLUSIONS

In this general slow-roll inflationary scenario, the poten-
tial dominates the energy density of the Universe and the
contribution from the GB coupling can be ignored. The GB
coupling may slow down the evolution of the inflaton by
balancing the potential force, which decreases the energy
scale of the potential to be in agreement with the observed
amplitude of scalar perturbation. Hence, the tensor-to-
scalar ratio is suppressed. In principle, even for a steep
potential, slow-roll inflation can occur with the help of the
nonminimal coupling of the inflaton to the GB term. In the
framework of the standard slow-roll inflation, it is known
that the energy scale of inflation can be established by the
detection of the amplitude of tensor perturbations [2,18]. In
the presence of the GB coupling, one needs to further
measure the tensor tilt to establish the energy scale of
inflation because the new degree of freedom is introduced
by the GB coupling.
Under the general slow-roll approximation, since the

Hubble and GB flow parameters, #i and $i, are much
smaller than 1, the propagation speed of scalar perturba-
tions (9) is very close to 1. It is shown that the effect of the
GB coupling on primordial non-Gaussianities appears in-
directly through the change of c2R [19]. For the equilateral
configuration, the nonlinearity parameter is [19]

fequilNL & 55

36
#1 $

25

72
$1 þ

5

12

2#1#2 $ $1$2

2#1 $ $1
; (32)

which means that these extra contributions from the GB
coupling remain of the order of small slow-roll parameters,
just as in the minimally coupled single-field case. This is
consistent with the Planck results [20].
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To confront the theoretical predictions with the Planck
constraints, in Fig. 1 we plot the values of nR and r in
the model with n ¼ 2 for different values of N and %. We
see that for a fixed number of e-folds, the parameter % can
shift the predicted r vertically and keep nR invariant.
Figure 1 shows that the model with a positive % can be
consistent with the Planck data, while one with a negative
% is disfavored.

C. Chaotic inflation with a dilatonlike coupling

In the two classes of models discussed above, we notice
that the GB coupling and potential satisfy "ð!ÞVð!Þ ¼
3%=4, so that the relation between r and nR can analyti-
cally be expressed in terms of model parameters. Here we
consider a more general model with a monomial potential
and a dilatonlike coupling
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example for inflation [17]. The value of ! in (30) and (31)
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parameter regions in which the predicted nR and r are
excellently consistent with the Planck constraints. We see
that the scalar spectral index is sensitive to & for a given
value of %. Compared to the inverse monomial coupling
discussed in subsection B, these observable quantities are
more sensitive to the dilatonlike coupling.

IV. DISCUSSIONS AND CONCLUSIONS

In this general slow-roll inflationary scenario, the poten-
tial dominates the energy density of the Universe and the
contribution from the GB coupling can be ignored. The GB
coupling may slow down the evolution of the inflaton by
balancing the potential force, which decreases the energy
scale of the potential to be in agreement with the observed
amplitude of scalar perturbation. Hence, the tensor-to-
scalar ratio is suppressed. In principle, even for a steep
potential, slow-roll inflation can occur with the help of the
nonminimal coupling of the inflaton to the GB term. In the
framework of the standard slow-roll inflation, it is known
that the energy scale of inflation can be established by the
detection of the amplitude of tensor perturbations [2,18]. In
the presence of the GB coupling, one needs to further
measure the tensor tilt to establish the energy scale of
inflation because the new degree of freedom is introduced
by the GB coupling.
Under the general slow-roll approximation, since the

Hubble and GB flow parameters, #i and $i, are much
smaller than 1, the propagation speed of scalar perturba-
tions (9) is very close to 1. It is shown that the effect of the
GB coupling on primordial non-Gaussianities appears in-
directly through the change of c2R [19]. For the equilateral
configuration, the nonlinearity parameter is [19]
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!1 ¼
Q

2

V;"

V
; (16)

!2 ¼ "Q
!
V;""

V;"
" V;"

V
þQ;"

Q

"
; (17)

#1 ¼ " 4Q

3
$;"V; (18)

#2 ¼ "Q
!
$;""

$;"
þ V;"

V
þQ;"

Q

"
: (19)

III. MODELS AND OBSERVATIONS

In this section we will study several inflationary models
as an illustration. We assume that the power spectra of
scalar and tensor perturbations can be parametrized as
power law at the pivot scale k0 ¼ 0:002 Mpc"1. As
described in the previous section, the inflation consistency
relation nT ¼ "r=8 is violated by the GB coupling. Hence,
nT should be allowed to vary independent of the tensor-to-
scalar ratio. We adopt a flat prior on nT of ½"3; 0%. We use
the Planck CMB temperature likelihood [2], which com-
bines a Gaussian likelihood approximation at high multi-
poles with a pixel-based approach at low multipoles,
supplemented by the large scale 9-year WMAP polariza-
tion data [1] that gives a constraint on the reionization
optical depth. Figures 1 and 2 show the PlanckþWP
constraints in the nR " r plane for a varying nT .
Compared to the Planck results for the standard slow-roll
inflation [2], relaxing the consistency relation leads to a
slightly tighter upper bound on r < 0:10 at 95% confidence
level. In the standard slow-roll inflation, the consistency
relation imposes a nearly scale-invariant spectrum of ten-
sor modes since the upper limits of r is of the order 10"1.
Deviations from scale invariance lead to more contribution

of tensor modes to the temperature power spectrum of the
CMB. In what follows we consider several commonly
discussed inflationary models in light of the Planck obser-
vations. Comparisons of these models with observations
are implemented by using predictions of nR and r.

A. Power-law inflation

Let us first consider power-law inflation with an expo-
nential potential and an exponential GB coupling

Vð"Þ ¼ V0e
"%"; $ð"Þ ¼ $0e

%"; (20)

where V0, $0, and % are constants. For later convenience
we define & ( 4V0$0=3 throughout the rest of the paper.
Such a model was considered as power-law inflation in
[13]. It can also provide an alternative explanation for the
current acceleration of the Universe [8]. Like the standard
power-law inflation, there is no natural end to inflation
within the model. Hence an additional mechanism is
required to stop it. In the general slow-roll formalism this
model, in which !1 ¼ %2ð1" &Þ=2, #1 ¼ %2&ð1" &Þ,
and both !2 and #2 vanish, predicts nR"1¼"%2ð1"&Þ
and r ¼ 8%2ð1" &Þ2. One gets the relation between r and
nR as

r ¼ "8ð1" &ÞðnR " 1Þ; (21)

which indicates that a positive (or negative)& can suppress
(or enhance) the tensor-to-scalar ratio. It is known that the
model with & ¼ 0 is now outside the joint 99.7% CL
region in the nR " r plane derived from the Planckþ
WP data. If & * 0:5, this class of models can be consistent
with the Planck constraints.

B. Chaotic inflation with an inverse power-law coupling

We now consider another model with a monomial
potential and an inverse monomial GB coupling
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FIG. 1 (color online). Marginalized joint 68% and 95% CL
regions for nR and r without the consistency relation from the
PlanckþWP data, compared to the theoretical predictions of the
model (22) with n ¼ 2.
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FIG. 2 (color online). Predicted nR versus r in the model (25)
with n ¼ 2 for different values of % and &. Here we choose
N ¼ 60. The contours show the 68% and 95% CL from the
PlanckþWP data.
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II. SLOW-ROLL INFLATION

We consider the following action

S ¼
Z

d4x
ffiffiffiffiffiffiffi"g

p "
R

2
" 1

2
@!"@!"" Vð"Þ " 1

2
#ð"ÞR2

GB

#
;

(1)

where " is the inflaton field with a potential Vð"Þ, R is the
Ricci scalar, R2

GB % R!$%&R
!$%& " 4R!$R

!$ þ R2 is the
GB term, and #ð"Þ is a coupling function of". We work in
Planckian units, i.e., ℏ ¼ c ¼ 8'G ¼ 1. In the weak cou-
pling limit of the low-energy effective string theory, the
coupling may take the form of # / e"" [4]. As the system
enters a large coupling region, it is expected that the form
of the function #ð"Þ becomes complicated. The potential
may arise naturally from supersymmetry breaking or other
nonperturbative effects. Hence, we work on the general
action (1). In a spatially flat Friedmann-Robertson-Walker
Universe with the scale factor a, from the action (1) we
obtain the background equations

3H2 ¼ 1

2
_"2 þ V þ 12 _#H3; (2)

€"þ 3H _" ¼ "V;" " 12#;"H
2ð _H þH2Þ; (3)

where a dot represents the time derivative, ð. . .Þ;" denotes a
derivative with respect to ", and H % _a=a is the Hubble
parameter. Note that the coupling function # works as the
effective potential for the inflaton ".

As discussed in [14], since the new degree of freedom is
introduced by the GB coupling function #ð"Þ, it is useful to
introduce a combined hierarchy of Hubble and Gauss-
Bonnet flow parameters. Following Refs. [15], we define
the hierarchy as (1 ¼ " _H=H2, )1 ¼ 4 _#H, (iþ1 ¼
d ln j(ij=d ln a, and )iþ1 ¼ d ln j)ij=d ln a for i ' 1. The
slow-roll conditions become j(ij ( 1 and j)ij ( 1, analo-
gous to the standard slow-roll approximation. Under such
conditions the background equations (2) and (3) reduce to

H2 ’ 1

3
V; (4)

H _" ’ " 1

3
VQ; (5)

with Q % V;"=V þ 4#;"V=3. If Q ¼ 0, the motion of in-
flaton is frozen because of the force due to the slope of the
potential is exactly balanced by one from the GB coupling.
In the case of V;"#;" > 0, the GB coupling makes the
evolution of the inflaton faster than in the case of standard
slow-roll inflation, which decreases the Hubble expansion
rate. If V;"#;" < 0, since the GB coupling slows the field
evolution, inflation may occur even for a steep potential.
The number of e-folds is computed as the following

Nð"Þ ’
Z "

"end

d"

Qð"Þ : (6)

The primordial power spectra of scalar and tensor
perturbations are derived in [14]

PR ¼ H2

4'2c3RFR
; (7)

P T ¼ 2H2

'2c3TFT
; (8)

where the expressions are evaluated at the time of horizon
crossing at cRk ¼ aH and cTk ¼ aH, respectively. As
shown in [14], to lowest order in the slow-roll parameters
this difference of horizon-crossing time is unimportant. We
have assumed that time derivatives of the flow parameters
can be neglected during slow-roll inflation, which allows
us to obtain the leading contribution to the slow-roll
approximation. Here cR, FR, cT , and FT are given by

c2R ¼ 1þ 8" _#H _H þ 2"2H2ð €#" _#HÞ
_"2 þ 6" _#H3

; (9)

FR ¼
_"2 þ 6" _#H3

ð1" "=2Þ2H2 ; (10)

c2T ¼ 1" 4ð €#" _#HÞ
1" 4 _#H

; (11)

FT ¼ 1" 4 _#H; (12)

with " % 4 _#H=ð1" 4 _#HÞ. The tensor-to-scalar ratio r %
P T=PR and spectral indices of scalar and tensor perturba-
tions are given in terms of the Hubble and GB flow
parameters

r ’ 8ð2(1 " )1Þ; (13)

nR " 1 ’ "2(1 "
2(1(2 " )1)2

2(1 " )1
; (14)

nT ’ "2(1: (15)

For a positive (1,QV;" > 0 is required. In this scenario, we
see that the degeneracy of the standard consistency relation
between r and nT is broken due to the presence of the extra
degree of freedom )1. For this reason, the future experi-
mental checking of this relation is usually regarded as an
important test of the simplest forms of inflation [16]. The
tensor-to-scalar ratio is suppressed for a positive )1 while it
is enhanced for a negative )1. The Hubble and GB flow
parameters can be expressed in terms of the potential and
GB coupling function
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II. SLOW-ROLL INFLATION

We consider the following action

S ¼
Z

d4x
ffiffiffiffiffiffiffi"g

p "
R

2
" 1

2
@!"@!"" Vð"Þ " 1

2
#ð"ÞR2

GB

#
;

(1)

where " is the inflaton field with a potential Vð"Þ, R is the
Ricci scalar, R2

GB % R!$%&R
!$%& " 4R!$R

!$ þ R2 is the
GB term, and #ð"Þ is a coupling function of". We work in
Planckian units, i.e., ℏ ¼ c ¼ 8'G ¼ 1. In the weak cou-
pling limit of the low-energy effective string theory, the
coupling may take the form of # / e"" [4]. As the system
enters a large coupling region, it is expected that the form
of the function #ð"Þ becomes complicated. The potential
may arise naturally from supersymmetry breaking or other
nonperturbative effects. Hence, we work on the general
action (1). In a spatially flat Friedmann-Robertson-Walker
Universe with the scale factor a, from the action (1) we
obtain the background equations

3H2 ¼ 1

2
_"2 þ V þ 12 _#H3; (2)

€"þ 3H _" ¼ "V;" " 12#;"H
2ð _H þH2Þ; (3)

where a dot represents the time derivative, ð. . .Þ;" denotes a
derivative with respect to ", and H % _a=a is the Hubble
parameter. Note that the coupling function # works as the
effective potential for the inflaton ".

As discussed in [14], since the new degree of freedom is
introduced by the GB coupling function #ð"Þ, it is useful to
introduce a combined hierarchy of Hubble and Gauss-
Bonnet flow parameters. Following Refs. [15], we define
the hierarchy as (1 ¼ " _H=H2, )1 ¼ 4 _#H, (iþ1 ¼
d ln j(ij=d ln a, and )iþ1 ¼ d ln j)ij=d ln a for i ' 1. The
slow-roll conditions become j(ij ( 1 and j)ij ( 1, analo-
gous to the standard slow-roll approximation. Under such
conditions the background equations (2) and (3) reduce to

H2 ’ 1

3
V; (4)

H _" ’ " 1

3
VQ; (5)

with Q % V;"=V þ 4#;"V=3. If Q ¼ 0, the motion of in-
flaton is frozen because of the force due to the slope of the
potential is exactly balanced by one from the GB coupling.
In the case of V;"#;" > 0, the GB coupling makes the
evolution of the inflaton faster than in the case of standard
slow-roll inflation, which decreases the Hubble expansion
rate. If V;"#;" < 0, since the GB coupling slows the field
evolution, inflation may occur even for a steep potential.
The number of e-folds is computed as the following

Nð"Þ ’
Z "

"end

d"

Qð"Þ : (6)

The primordial power spectra of scalar and tensor
perturbations are derived in [14]

PR ¼ H2

4'2c3RFR
; (7)

P T ¼ 2H2

'2c3TFT
; (8)

where the expressions are evaluated at the time of horizon
crossing at cRk ¼ aH and cTk ¼ aH, respectively. As
shown in [14], to lowest order in the slow-roll parameters
this difference of horizon-crossing time is unimportant. We
have assumed that time derivatives of the flow parameters
can be neglected during slow-roll inflation, which allows
us to obtain the leading contribution to the slow-roll
approximation. Here cR, FR, cT , and FT are given by

c2R ¼ 1þ 8" _#H _H þ 2"2H2ð €#" _#HÞ
_"2 þ 6" _#H3

; (9)

FR ¼
_"2 þ 6" _#H3

ð1" "=2Þ2H2 ; (10)

c2T ¼ 1" 4ð €#" _#HÞ
1" 4 _#H

; (11)

FT ¼ 1" 4 _#H; (12)

with " % 4 _#H=ð1" 4 _#HÞ. The tensor-to-scalar ratio r %
P T=PR and spectral indices of scalar and tensor perturba-
tions are given in terms of the Hubble and GB flow
parameters

r ’ 8ð2(1 " )1Þ; (13)

nR " 1 ’ "2(1 "
2(1(2 " )1)2

2(1 " )1
; (14)

nT ’ "2(1: (15)

For a positive (1,QV;" > 0 is required. In this scenario, we
see that the degeneracy of the standard consistency relation
between r and nT is broken due to the presence of the extra
degree of freedom )1. For this reason, the future experi-
mental checking of this relation is usually regarded as an
important test of the simplest forms of inflation [16]. The
tensor-to-scalar ratio is suppressed for a positive )1 while it
is enhanced for a negative )1. The Hubble and GB flow
parameters can be expressed in terms of the potential and
GB coupling function
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!1 ’ ! 4

3
";#QV; (47)

!2 ’ !Q
!
";##

";#
þ V;#

V
þQ;#

Q

"
; (48)

where Q # !ðV;#=V þ 4";#V=3Þ.
The key result of our paper is the general slow-roll

expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.

IV. AN EXAMPLE MODEL

Let us consider a specific inflation model

Vð#Þ ¼ V0#
n; "ð#Þ ¼ "0#

!n: (49)

This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)

%2 ’ 2nð1! $Þ#!2; (51)

!1 ’ n2$ð1! $Þ#!2; (52)

!2 ’ 2nð1! $Þ#!2: (53)

From Eqs. (42) and (44) one gets

nR ! 1 ¼ !nðnþ 2Þð1! $Þ#!2; (54)

r ¼ 8n2ð1! $Þ2#!2: (55)

Inflation ends at %1ð#endÞ ¼ 1, which gives the value of the
field at the end of inflation:

#2
end ¼ 1

2n
2ð1! $Þ: (56)

Then from (8) we find the value of the field N e-folds
before the end of inflation:

#2 ¼ 2nð1! $Þ
!
N þ n

4

"
: (57)

The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:

nR ! 1 ¼ ! 2ðnþ 2Þ
4N þ n

; (58)

r ¼ 16nð1! $Þ
4N þ n

: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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scalar ratio. For the tensor perturbations we assume a
power-law power spectrum, with a uniform prior on nT
as !0:5< nT < 0. In Fig. 2 we show the 1! and 2!
contours derived from the data combination ofWMAP7þ
BAOþH0 by using the COSMOMC package [17].
Compared to the contours of Fig. 1 we find that the joint
constraint on nR and r becomes a little tighter. The
WMAP7þ BAOþH0 data do not constrain nT .
Basically all values allowed by the prior are also allowed
by the potential and the coupling.

In Fig. 2 we plot the values of nR and r in the models
with n ¼ 2 (top panel) and n ¼ 4 (bottom panel) for differ-
ent values ofN and". We can see that the model parameter
" can shift the predicted r vertically for a fixed number of
e-folds. For n ¼ 2, the model with a positive " is more
favored observationally. For n ¼ 4, the model with ">
0:7 is consistent with the data within the 95% confidence
level, in which the prediction for the tensor-to-scalar ratio
is smaller than the " ¼ 0 case while the prediction for nR
is the same as the " ¼ 0 case. Other ways to avoid the
exclusion of the #4 potential have been studied in
Ref. [18].

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have studied slow-roll inflation with a
nonminimally coupled Gauss-Bonnet term. We have de-
fined a combined hierarchy ð$i;%iÞ of Hubble and GB flow
functions such that j$ij & 1 and j%ij & 1 is the analogue
of the standard slow-roll approximation. It has been dem-
onstrated that slow-roll solution is the attractor solution
under the slow-roll condition. We have analytically derived
the power spectra of scalar and tensor perturbations. In
general the spectral index of scalar perturbations depends
on the Hubble flow parameters and the GB flow parame-
ters. However, the spectral index of tensor perturbations is
independent of the GB flow parameters to first order in the
slow-roll approximation. In this scenario the standard
consistency relation does not hold because of the GB
correction.
We apply our general formalism to large-field inflation

with a monomial potential and the GB coupling (49). We
focus on the case of! ¼ 1 and "< 1 since the field theory
of phantom-type fields encounters the problem of stability.
In this case, the GB term with the positive (or negative)
coupling slows down (or speeds up) the evolution of the
inflaton during inflation, which decreases (or increases) the
energy scale of the potential to be in agreement with the
amplitude of scalar perturbations. However the amplitude
of tensor perturbations only depends on the energy scale of
the potential at the horizon-crossing time. Therefore, the
tensor-to-scalar ratio is suppressed for "> 0 while it is
enhanced for "< 0.
As shown in Fig. 2, the model parameter " can shift the

predicted r vertically for a fixed number of e-folds in the
nR-r plane. For n ¼ 2, the quadratic potential can be made
a better fit to the data by the positive GB coupling. For n ¼
4, it is known that the model with " ¼ 0 is excluded by the
WMAP7þ BAOþH0 analysis. However, in our scenario
of inflation "> 0:7 is within the 2! contour for N > 50,
and it is consistent with the data within the 95% confidence
level.
The results of this work are generic as soon as non-

minimal couplings are considered. While it is always
possible by means of a conformal transformation to work
in the Einstein frame and to avoid the presence of a #2R
term in the Lagrangian, the coupling of the scalar field to
the GB term cannot be argued away by the same conformal
transformation. While we studied perturbation spectra in
the Einstein frame, similar properties hold in the Jordan
frame.
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FIG. 2. Tensor-to-scalar ratio r versus the spectral index nR
for the inflation model (49) with n ¼ 2 (top panel) and n ¼ 4
(bottom panel). The contours show the 68% and 95% confidence
level derived from WMAP7þ BAOþH0 without the consis-
tency relation.
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scalar ratio. For the tensor perturbations we assume a
power-law power spectrum, with a uniform prior on nT
as !0:5< nT < 0. In Fig. 2 we show the 1! and 2!
contours derived from the data combination ofWMAP7þ
BAOþH0 by using the COSMOMC package [17].
Compared to the contours of Fig. 1 we find that the joint
constraint on nR and r becomes a little tighter. The
WMAP7þ BAOþH0 data do not constrain nT .
Basically all values allowed by the prior are also allowed
by the potential and the coupling.

In Fig. 2 we plot the values of nR and r in the models
with n ¼ 2 (top panel) and n ¼ 4 (bottom panel) for differ-
ent values ofN and". We can see that the model parameter
" can shift the predicted r vertically for a fixed number of
e-folds. For n ¼ 2, the model with a positive " is more
favored observationally. For n ¼ 4, the model with ">
0:7 is consistent with the data within the 95% confidence
level, in which the prediction for the tensor-to-scalar ratio
is smaller than the " ¼ 0 case while the prediction for nR
is the same as the " ¼ 0 case. Other ways to avoid the
exclusion of the #4 potential have been studied in
Ref. [18].

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have studied slow-roll inflation with a
nonminimally coupled Gauss-Bonnet term. We have de-
fined a combined hierarchy ð$i;%iÞ of Hubble and GB flow
functions such that j$ij & 1 and j%ij & 1 is the analogue
of the standard slow-roll approximation. It has been dem-
onstrated that slow-roll solution is the attractor solution
under the slow-roll condition. We have analytically derived
the power spectra of scalar and tensor perturbations. In
general the spectral index of scalar perturbations depends
on the Hubble flow parameters and the GB flow parame-
ters. However, the spectral index of tensor perturbations is
independent of the GB flow parameters to first order in the
slow-roll approximation. In this scenario the standard
consistency relation does not hold because of the GB
correction.
We apply our general formalism to large-field inflation

with a monomial potential and the GB coupling (49). We
focus on the case of! ¼ 1 and "< 1 since the field theory
of phantom-type fields encounters the problem of stability.
In this case, the GB term with the positive (or negative)
coupling slows down (or speeds up) the evolution of the
inflaton during inflation, which decreases (or increases) the
energy scale of the potential to be in agreement with the
amplitude of scalar perturbations. However the amplitude
of tensor perturbations only depends on the energy scale of
the potential at the horizon-crossing time. Therefore, the
tensor-to-scalar ratio is suppressed for "> 0 while it is
enhanced for "< 0.
As shown in Fig. 2, the model parameter " can shift the

predicted r vertically for a fixed number of e-folds in the
nR-r plane. For n ¼ 2, the quadratic potential can be made
a better fit to the data by the positive GB coupling. For n ¼
4, it is known that the model with " ¼ 0 is excluded by the
WMAP7þ BAOþH0 analysis. However, in our scenario
of inflation "> 0:7 is within the 2! contour for N > 50,
and it is consistent with the data within the 95% confidence
level.
The results of this work are generic as soon as non-

minimal couplings are considered. While it is always
possible by means of a conformal transformation to work
in the Einstein frame and to avoid the presence of a #2R
term in the Lagrangian, the coupling of the scalar field to
the GB term cannot be argued away by the same conformal
transformation. While we studied perturbation spectra in
the Einstein frame, similar properties hold in the Jordan
frame.
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FIG. 2. Tensor-to-scalar ratio r versus the spectral index nR
for the inflation model (49) with n ¼ 2 (top panel) and n ¼ 4
(bottom panel). The contours show the 68% and 95% confidence
level derived from WMAP7þ BAOþH0 without the consis-
tency relation.
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!1 ’ ! 4

3
";#QV; (47)

!2 ’ !Q
!
";##

";#
þ V;#

V
þQ;#

Q

"
; (48)

where Q # !ðV;#=V þ 4";#V=3Þ.
The key result of our paper is the general slow-roll

expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.

IV. AN EXAMPLE MODEL

Let us consider a specific inflation model

Vð#Þ ¼ V0#
n; "ð#Þ ¼ "0#

!n: (49)

This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)

%2 ’ 2nð1! $Þ#!2; (51)

!1 ’ n2$ð1! $Þ#!2; (52)

!2 ’ 2nð1! $Þ#!2: (53)

From Eqs. (42) and (44) one gets

nR ! 1 ¼ !nðnþ 2Þð1! $Þ#!2; (54)

r ¼ 8n2ð1! $Þ2#!2: (55)

Inflation ends at %1ð#endÞ ¼ 1, which gives the value of the
field at the end of inflation:

#2
end ¼ 1

2n
2ð1! $Þ: (56)

Then from (8) we find the value of the field N e-folds
before the end of inflation:

#2 ¼ 2nð1! $Þ
!
N þ n

4

"
: (57)

The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:

nR ! 1 ¼ ! 2ðnþ 2Þ
4N þ n

; (58)

r ¼ 16nð1! $Þ
4N þ n

: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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!1 ’ ! 4

3
";#QV; (47)

!2 ’ !Q
!
";##

";#
þ V;#

V
þQ;#

Q

"
; (48)

where Q # !ðV;#=V þ 4";#V=3Þ.
The key result of our paper is the general slow-roll

expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.

IV. AN EXAMPLE MODEL

Let us consider a specific inflation model

Vð#Þ ¼ V0#
n; "ð#Þ ¼ "0#

!n: (49)

This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)

%2 ’ 2nð1! $Þ#!2; (51)

!1 ’ n2$ð1! $Þ#!2; (52)

!2 ’ 2nð1! $Þ#!2: (53)

From Eqs. (42) and (44) one gets

nR ! 1 ¼ !nðnþ 2Þð1! $Þ#!2; (54)

r ¼ 8n2ð1! $Þ2#!2: (55)

Inflation ends at %1ð#endÞ ¼ 1, which gives the value of the
field at the end of inflation:

#2
end ¼ 1

2n
2ð1! $Þ: (56)

Then from (8) we find the value of the field N e-folds
before the end of inflation:

#2 ¼ 2nð1! $Þ
!
N þ n

4

"
: (57)

The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:

nR ! 1 ¼ ! 2ðnþ 2Þ
4N þ n

; (58)

r ¼ 16nð1! $Þ
4N þ n

: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
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where Q # !ðV;#=V þ 4";#V=3Þ.
The key result of our paper is the general slow-roll

expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.

IV. AN EXAMPLE MODEL

Let us consider a specific inflation model

Vð#Þ ¼ V0#
n; "ð#Þ ¼ "0#

!n: (49)

This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)

%2 ’ 2nð1! $Þ#!2; (51)
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"
: (57)

The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:
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; (58)

r ¼ 16nð1! $Þ
4N þ n

: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
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Vð!Þ ¼ V0!
n; "ð!Þ ¼ "0!

$n: (22)

This class of potentials has been widely studied as the
simplest inflationary model. Without the GB coupling the
!4 potential is well outside of the joint 99.7% CL region
and the !2 potential lies outside the joint 95% CL for the
PlanckþWPþ high$ l data, as discussed in [2]. Here we
show that the GB coupling may revive this class of poten-
tials. Such a specific choice of GB coupling allows us to
find an analytic relation between r and nR in terms of N.
This model, in which #1¼n=ð4NþnÞ, $1¼2n%=ð4NþnÞ,
and #2 ¼ $2 ¼ 4=ð4N þ nÞ, predicts [14]

nR $ 1 ¼ $ 2ðnþ 2Þ
4N þ n

; (23)

r ¼ 16nð1$ %Þ
4N þ n

: (24)

To confront the theoretical predictions with the Planck
constraints, in Fig. 1 we plot the values of nR and r in
the model with n ¼ 2 for different values of N and %. We
see that for a fixed number of e-folds, the parameter % can
shift the predicted r vertically and keep nR invariant.
Figure 1 shows that the model with a positive % can be
consistent with the Planck data, while one with a negative
% is disfavored.

C. Chaotic inflation with a dilatonlike coupling

In the two classes of models discussed above, we notice
that the GB coupling and potential satisfy "ð!ÞVð!Þ ¼
3%=4, so that the relation between r and nR can analyti-
cally be expressed in terms of model parameters. Here we
consider a more general model with a monomial potential
and a dilatonlike coupling

Vð!Þ ¼ V0!
n; "ð!Þ ¼ "0e

$&!: (25)

For this model the Hubble and GB flow parameters are
given by

#1 ¼
nðn$ %&e$&!!nþ1Þ

2!2 ; (26)

#2 ¼
2n$ %&e$&!!nþ1ð&!$ nþ 1Þ

!2 ; (27)

$1 ¼
%&e$&!!nþ1ðn$ %&e$&!!nþ1Þ

!2 ; (28)

$2 ¼
nð&!$ nþ 1Þ $ 2%&e$&!!nþ1ð&!$ nÞ

!2 : (29)

From Eqs. (13) and (14) one gets the scalar spectral index
and tensor-to-scalar ratio

nR $ 1 ¼ $nðnþ 2Þ þ %&e$&!!nþ1ð2&!$ nÞ
!2 ; (30)

r ¼ 8ðn$ %&e$&!!nþ1Þ2
!2 ; (31)

which involve three model parameters n, & and % in the
slow-roll approximation. Hereafter, we restrict ourselves to
a quadratic potential, n ¼ 2, often considered the simplest
example for inflation [17]. The value of ! in (30) and (31)
depends on the number of e-folds and the value of !end

by setting max ð#i;$iÞð!endÞ ¼ 1. For simplicity we set
N ¼ 60.
In Fig. 2 we plot the scalar spectral index and tensor-to-

scalar ratio for different values of & and %. There exist
parameter regions in which the predicted nR and r are
excellently consistent with the Planck constraints. We see
that the scalar spectral index is sensitive to & for a given
value of %. Compared to the inverse monomial coupling
discussed in subsection B, these observable quantities are
more sensitive to the dilatonlike coupling.

IV. DISCUSSIONS AND CONCLUSIONS

In this general slow-roll inflationary scenario, the poten-
tial dominates the energy density of the Universe and the
contribution from the GB coupling can be ignored. The GB
coupling may slow down the evolution of the inflaton by
balancing the potential force, which decreases the energy
scale of the potential to be in agreement with the observed
amplitude of scalar perturbation. Hence, the tensor-to-
scalar ratio is suppressed. In principle, even for a steep
potential, slow-roll inflation can occur with the help of the
nonminimal coupling of the inflaton to the GB term. In the
framework of the standard slow-roll inflation, it is known
that the energy scale of inflation can be established by the
detection of the amplitude of tensor perturbations [2,18]. In
the presence of the GB coupling, one needs to further
measure the tensor tilt to establish the energy scale of
inflation because the new degree of freedom is introduced
by the GB coupling.
Under the general slow-roll approximation, since the

Hubble and GB flow parameters, #i and $i, are much
smaller than 1, the propagation speed of scalar perturba-
tions (9) is very close to 1. It is shown that the effect of the
GB coupling on primordial non-Gaussianities appears in-
directly through the change of c2R [19]. For the equilateral
configuration, the nonlinearity parameter is [19]

fequilNL & 55

36
#1 $

25

72
$1 þ

5

12

2#1#2 $ $1$2

2#1 $ $1
; (32)

which means that these extra contributions from the GB
coupling remain of the order of small slow-roll parameters,
just as in the minimally coupled single-field case. This is
consistent with the Planck results [20].

PENG-XU JIANG, JIAN-WEI HU, AND ZONG-KUAN GUO PHYSICAL REVIEW D 88, 123508 (2013)

123508-4

for inflation to occur. Unfortunately, these parameter ranges
of α and λ are not favored by observational data.

B. Power-law potential and power-law
Gauss-Bonnet coupling

We consider an inflationary model with the power-law
potential and power-law coupling to the Gauss-Bonnet term
characterized as follows:

VðϕÞ ¼ V0ϕn; ξðϕÞ ¼ ξ0ϕn: ð73Þ

This class of potential has been widely studied as a simplest
inflationary model and includes the simplest chaotic
models, in which inflation starts from the large values of
an inflaton field, ϕ > Mp.
For the model with the choice of (73), the slow-roll

parameters can be calculated using (18)–(23) as

ϵ≃ n2

2κ2
ð1þ αϕ2nÞϕ−2; ð74Þ

η≃ −
n
κ2

½n − 2þ ð3n − 2Þαϕ2n&ϕ−2; ð75Þ

ζ ≃ n2

2κ4
½16 − 14nþ 3n2 þ 4ðn − 1Þð7n − 8Þαϕ2n

þ ð3n − 2Þð11n − 8Þα2ϕ4n&ϕ−4; ð76Þ

δ1≃ −
n2

κ2
αϕ2nð1þ αϕ2nÞϕ−2; ð77Þ

δ2≃ −
n
2κ2

ð3n − 4þ ð7n − 4Þαϕ2nÞϕ−2; ð78Þ

δ3 ≃ n2

κ4
½8 − 10nþ 3n2 þ 4ðn − 1Þð5n − 4Þαϕ2n

þ ð3n − 2Þð7n − 4Þα2ϕ4n&ϕ−4: ð79Þ

The number of e-folds before the end of inflation for the
choices of (73) is given in (17) by

N ≃ κ2ϕ2

2n 2F1

!
1;
1

n
; 1þ 1

n
;−αϕ2n

"
:

It turns out that 2F1ð1; 1n ; 1þ
1
n ; 0Þ ¼ 1 for α ¼ 0; then we

can reproduce the standard chaotic inflation results,
κ2ϕ2 ¼ 2nN. Here, we assume the term of −αϕ2n to be
much smaller than 1, so that we could expand the hyper-
geometric function up to the leading order in α,

2F1

!
1;
1

n
; 1þ 1

n
;−αϕ2n

"
≈ 1 −

αϕ2n

nþ 1
þOðα2Þ: ð80Þ

Then the number of e-folds becomes

N ≃ κ2ϕ2

2n

!
1 −

αϕ2n

nþ 1

"
þOðα2Þ: ð81Þ

As we described in Sec. II, α≲ 10−6M−4
p for n ¼ 2 and

α≲ 10−12M−8
p for n ¼ 4 to have enough e-folding,N ≳ 60.

This implies that α can be treated as a small parameter.
We also expand ϕ to the leading order in ~α, which is a

dimensionless parameter, ~α ¼ αM2n
p ,

ϕ ¼ ϕð0Þ þ ~αϕð1Þ þOð eα2Þ: ð82Þ

Substituting (82) into (81), we obtain

ϕ≃
ffiffiffiffiffiffiffiffiffi
2nN
κ2

r $
1þ αð2nNÞn

2ðnþ 1Þκ2n

%
: ð83Þ

With (83), one can rewrite (74)–(78) as follows:

ϵ≃ n
4N

þ n2ð2nNÞnα
4ð1þ nÞNκ2n

; ð84Þ

η≃ 2 − n
2N

−
3n2ð2nNÞnα
2ð1þ nÞNκ2n

; ð85Þ

ζ ≃ ðn − 2Þð3n − 8Þ
8N2

þ n2ð14n − 19Þð2nNÞnα
4ð1þ nÞN2κ2n

; ð86Þ

δ1≃ −
nð2nNÞnα
2Nκ2n

; ð87Þ

δ2 ≃ 4 − 3n
4N

−
7n2ð2nNÞnα
4ð1þ nÞNκ2n

; ð88Þ

δ3 ≃ ðn − 2Þð3n − 4Þ
4N2

þ n2ð10n − 11Þð2nNÞnα
2ð1þ nÞN2κ2n

: ð89Þ

Substituting (84)–(89) into (53)–(57), we obtain
ns; r; nt;

dns
d ln k, and

dnt
d ln k, respectively, as follows:

ns − 1≃ −
nþ 2

2N
þ nð3nþ 2Þð2nNÞnα

2ð1þ nÞNκ2n
; ð90Þ

nt≃ −
n
2N

−
n2ð2nNÞnα

2ð1þ nÞNκ2n
; ð91Þ

r≃ 4n
N

þ 4nð2nþ 1Þð2nNÞnα
ð1þ nÞNκ2n

; ð92Þ

dns
d ln k

≃ −
nþ 2

2N2
−
nðn − 1Þð3nþ 2Þð2nNÞnα

2ð1þ nÞN2κ2n
; ð93Þ
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Vð!Þ ¼ V0!
n; "ð!Þ ¼ "0!

$n: (22)

This class of potentials has been widely studied as the
simplest inflationary model. Without the GB coupling the
!4 potential is well outside of the joint 99.7% CL region
and the !2 potential lies outside the joint 95% CL for the
PlanckþWPþ high$ l data, as discussed in [2]. Here we
show that the GB coupling may revive this class of poten-
tials. Such a specific choice of GB coupling allows us to
find an analytic relation between r and nR in terms of N.
This model, in which #1¼n=ð4NþnÞ, $1¼2n%=ð4NþnÞ,
and #2 ¼ $2 ¼ 4=ð4N þ nÞ, predicts [14]

nR $ 1 ¼ $ 2ðnþ 2Þ
4N þ n

; (23)

r ¼ 16nð1$ %Þ
4N þ n

: (24)

To confront the theoretical predictions with the Planck
constraints, in Fig. 1 we plot the values of nR and r in
the model with n ¼ 2 for different values of N and %. We
see that for a fixed number of e-folds, the parameter % can
shift the predicted r vertically and keep nR invariant.
Figure 1 shows that the model with a positive % can be
consistent with the Planck data, while one with a negative
% is disfavored.

C. Chaotic inflation with a dilatonlike coupling

In the two classes of models discussed above, we notice
that the GB coupling and potential satisfy "ð!ÞVð!Þ ¼
3%=4, so that the relation between r and nR can analyti-
cally be expressed in terms of model parameters. Here we
consider a more general model with a monomial potential
and a dilatonlike coupling

Vð!Þ ¼ V0!
n; "ð!Þ ¼ "0e

$&!: (25)

For this model the Hubble and GB flow parameters are
given by

#1 ¼
nðn$ %&e$&!!nþ1Þ

2!2 ; (26)

#2 ¼
2n$ %&e$&!!nþ1ð&!$ nþ 1Þ

!2 ; (27)

$1 ¼
%&e$&!!nþ1ðn$ %&e$&!!nþ1Þ

!2 ; (28)

$2 ¼
nð&!$ nþ 1Þ $ 2%&e$&!!nþ1ð&!$ nÞ

!2 : (29)

From Eqs. (13) and (14) one gets the scalar spectral index
and tensor-to-scalar ratio

nR $ 1 ¼ $nðnþ 2Þ þ %&e$&!!nþ1ð2&!$ nÞ
!2 ; (30)

r ¼ 8ðn$ %&e$&!!nþ1Þ2
!2 ; (31)

which involve three model parameters n, & and % in the
slow-roll approximation. Hereafter, we restrict ourselves to
a quadratic potential, n ¼ 2, often considered the simplest
example for inflation [17]. The value of ! in (30) and (31)
depends on the number of e-folds and the value of !end

by setting max ð#i;$iÞð!endÞ ¼ 1. For simplicity we set
N ¼ 60.
In Fig. 2 we plot the scalar spectral index and tensor-to-

scalar ratio for different values of & and %. There exist
parameter regions in which the predicted nR and r are
excellently consistent with the Planck constraints. We see
that the scalar spectral index is sensitive to & for a given
value of %. Compared to the inverse monomial coupling
discussed in subsection B, these observable quantities are
more sensitive to the dilatonlike coupling.

IV. DISCUSSIONS AND CONCLUSIONS

In this general slow-roll inflationary scenario, the poten-
tial dominates the energy density of the Universe and the
contribution from the GB coupling can be ignored. The GB
coupling may slow down the evolution of the inflaton by
balancing the potential force, which decreases the energy
scale of the potential to be in agreement with the observed
amplitude of scalar perturbation. Hence, the tensor-to-
scalar ratio is suppressed. In principle, even for a steep
potential, slow-roll inflation can occur with the help of the
nonminimal coupling of the inflaton to the GB term. In the
framework of the standard slow-roll inflation, it is known
that the energy scale of inflation can be established by the
detection of the amplitude of tensor perturbations [2,18]. In
the presence of the GB coupling, one needs to further
measure the tensor tilt to establish the energy scale of
inflation because the new degree of freedom is introduced
by the GB coupling.
Under the general slow-roll approximation, since the

Hubble and GB flow parameters, #i and $i, are much
smaller than 1, the propagation speed of scalar perturba-
tions (9) is very close to 1. It is shown that the effect of the
GB coupling on primordial non-Gaussianities appears in-
directly through the change of c2R [19]. For the equilateral
configuration, the nonlinearity parameter is [19]

fequilNL & 55

36
#1 $

25

72
$1 þ

5

12

2#1#2 $ $1$2

2#1 $ $1
; (32)

which means that these extra contributions from the GB
coupling remain of the order of small slow-roll parameters,
just as in the minimally coupled single-field case. This is
consistent with the Planck results [20].
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þQ;"

Q

"
; (17)

#1 ¼ " 4Q

3
$;"V; (18)

#2 ¼ "Q
!
$;""

$;"
þ V;"

V
þQ;"

Q

"
: (19)

III. MODELS AND OBSERVATIONS

In this section we will study several inflationary models
as an illustration. We assume that the power spectra of
scalar and tensor perturbations can be parametrized as
power law at the pivot scale k0 ¼ 0:002 Mpc"1. As
described in the previous section, the inflation consistency
relation nT ¼ "r=8 is violated by the GB coupling. Hence,
nT should be allowed to vary independent of the tensor-to-
scalar ratio. We adopt a flat prior on nT of ½"3; 0%. We use
the Planck CMB temperature likelihood [2], which com-
bines a Gaussian likelihood approximation at high multi-
poles with a pixel-based approach at low multipoles,
supplemented by the large scale 9-year WMAP polariza-
tion data [1] that gives a constraint on the reionization
optical depth. Figures 1 and 2 show the PlanckþWP
constraints in the nR " r plane for a varying nT .
Compared to the Planck results for the standard slow-roll
inflation [2], relaxing the consistency relation leads to a
slightly tighter upper bound on r < 0:10 at 95% confidence
level. In the standard slow-roll inflation, the consistency
relation imposes a nearly scale-invariant spectrum of ten-
sor modes since the upper limits of r is of the order 10"1.
Deviations from scale invariance lead to more contribution

of tensor modes to the temperature power spectrum of the
CMB. In what follows we consider several commonly
discussed inflationary models in light of the Planck obser-
vations. Comparisons of these models with observations
are implemented by using predictions of nR and r.

A. Power-law inflation

Let us first consider power-law inflation with an expo-
nential potential and an exponential GB coupling

Vð"Þ ¼ V0e
"%"; $ð"Þ ¼ $0e

%"; (20)

where V0, $0, and % are constants. For later convenience
we define & ( 4V0$0=3 throughout the rest of the paper.
Such a model was considered as power-law inflation in
[13]. It can also provide an alternative explanation for the
current acceleration of the Universe [8]. Like the standard
power-law inflation, there is no natural end to inflation
within the model. Hence an additional mechanism is
required to stop it. In the general slow-roll formalism this
model, in which !1 ¼ %2ð1" &Þ=2, #1 ¼ %2&ð1" &Þ,
and both !2 and #2 vanish, predicts nR"1¼"%2ð1"&Þ
and r ¼ 8%2ð1" &Þ2. One gets the relation between r and
nR as

r ¼ "8ð1" &ÞðnR " 1Þ; (21)

which indicates that a positive (or negative)& can suppress
(or enhance) the tensor-to-scalar ratio. It is known that the
model with & ¼ 0 is now outside the joint 99.7% CL
region in the nR " r plane derived from the Planckþ
WP data. If & * 0:5, this class of models can be consistent
with the Planck constraints.

B. Chaotic inflation with an inverse power-law coupling

We now consider another model with a monomial
potential and an inverse monomial GB coupling
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FIG. 1 (color online). Marginalized joint 68% and 95% CL
regions for nR and r without the consistency relation from the
PlanckþWP data, compared to the theoretical predictions of the
model (22) with n ¼ 2.
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FIG. 2 (color online). Predicted nR versus r in the model (25)
with n ¼ 2 for different values of % and &. Here we choose
N ¼ 60. The contours show the 68% and 95% CL from the
PlanckþWP data.
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II. SLOW-ROLL INFLATION

We consider the following action

S ¼
Z

d4x
ffiffiffiffiffiffiffi"g

p "
R

2
" 1

2
@!"@!"" Vð"Þ " 1

2
#ð"ÞR2

GB

#
;

(1)

where " is the inflaton field with a potential Vð"Þ, R is the
Ricci scalar, R2

GB % R!$%&R
!$%& " 4R!$R

!$ þ R2 is the
GB term, and #ð"Þ is a coupling function of". We work in
Planckian units, i.e., ℏ ¼ c ¼ 8'G ¼ 1. In the weak cou-
pling limit of the low-energy effective string theory, the
coupling may take the form of # / e"" [4]. As the system
enters a large coupling region, it is expected that the form
of the function #ð"Þ becomes complicated. The potential
may arise naturally from supersymmetry breaking or other
nonperturbative effects. Hence, we work on the general
action (1). In a spatially flat Friedmann-Robertson-Walker
Universe with the scale factor a, from the action (1) we
obtain the background equations

3H2 ¼ 1

2
_"2 þ V þ 12 _#H3; (2)

€"þ 3H _" ¼ "V;" " 12#;"H
2ð _H þH2Þ; (3)

where a dot represents the time derivative, ð. . .Þ;" denotes a
derivative with respect to ", and H % _a=a is the Hubble
parameter. Note that the coupling function # works as the
effective potential for the inflaton ".

As discussed in [14], since the new degree of freedom is
introduced by the GB coupling function #ð"Þ, it is useful to
introduce a combined hierarchy of Hubble and Gauss-
Bonnet flow parameters. Following Refs. [15], we define
the hierarchy as (1 ¼ " _H=H2, )1 ¼ 4 _#H, (iþ1 ¼
d ln j(ij=d ln a, and )iþ1 ¼ d ln j)ij=d ln a for i ' 1. The
slow-roll conditions become j(ij ( 1 and j)ij ( 1, analo-
gous to the standard slow-roll approximation. Under such
conditions the background equations (2) and (3) reduce to

H2 ’ 1

3
V; (4)

H _" ’ " 1

3
VQ; (5)

with Q % V;"=V þ 4#;"V=3. If Q ¼ 0, the motion of in-
flaton is frozen because of the force due to the slope of the
potential is exactly balanced by one from the GB coupling.
In the case of V;"#;" > 0, the GB coupling makes the
evolution of the inflaton faster than in the case of standard
slow-roll inflation, which decreases the Hubble expansion
rate. If V;"#;" < 0, since the GB coupling slows the field
evolution, inflation may occur even for a steep potential.
The number of e-folds is computed as the following

Nð"Þ ’
Z "

"end

d"

Qð"Þ : (6)

The primordial power spectra of scalar and tensor
perturbations are derived in [14]

PR ¼ H2

4'2c3RFR
; (7)

P T ¼ 2H2

'2c3TFT
; (8)

where the expressions are evaluated at the time of horizon
crossing at cRk ¼ aH and cTk ¼ aH, respectively. As
shown in [14], to lowest order in the slow-roll parameters
this difference of horizon-crossing time is unimportant. We
have assumed that time derivatives of the flow parameters
can be neglected during slow-roll inflation, which allows
us to obtain the leading contribution to the slow-roll
approximation. Here cR, FR, cT , and FT are given by

c2R ¼ 1þ 8" _#H _H þ 2"2H2ð €#" _#HÞ
_"2 þ 6" _#H3

; (9)

FR ¼
_"2 þ 6" _#H3

ð1" "=2Þ2H2 ; (10)

c2T ¼ 1" 4ð €#" _#HÞ
1" 4 _#H

; (11)

FT ¼ 1" 4 _#H; (12)

with " % 4 _#H=ð1" 4 _#HÞ. The tensor-to-scalar ratio r %
P T=PR and spectral indices of scalar and tensor perturba-
tions are given in terms of the Hubble and GB flow
parameters

r ’ 8ð2(1 " )1Þ; (13)

nR " 1 ’ "2(1 "
2(1(2 " )1)2

2(1 " )1
; (14)

nT ’ "2(1: (15)

For a positive (1,QV;" > 0 is required. In this scenario, we
see that the degeneracy of the standard consistency relation
between r and nT is broken due to the presence of the extra
degree of freedom )1. For this reason, the future experi-
mental checking of this relation is usually regarded as an
important test of the simplest forms of inflation [16]. The
tensor-to-scalar ratio is suppressed for a positive )1 while it
is enhanced for a negative )1. The Hubble and GB flow
parameters can be expressed in terms of the potential and
GB coupling function
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potential is exactly balanced by one from the GB coupling.
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evolution of the inflaton faster than in the case of standard
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evolution, inflation may occur even for a steep potential.
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where the expressions are evaluated at the time of horizon
crossing at cRk ¼ aH and cTk ¼ aH, respectively. As
shown in [14], to lowest order in the slow-roll parameters
this difference of horizon-crossing time is unimportant. We
have assumed that time derivatives of the flow parameters
can be neglected during slow-roll inflation, which allows
us to obtain the leading contribution to the slow-roll
approximation. Here cR, FR, cT , and FT are given by
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For a positive (1,QV;" > 0 is required. In this scenario, we
see that the degeneracy of the standard consistency relation
between r and nT is broken due to the presence of the extra
degree of freedom )1. For this reason, the future experi-
mental checking of this relation is usually regarded as an
important test of the simplest forms of inflation [16]. The
tensor-to-scalar ratio is suppressed for a positive )1 while it
is enhanced for a negative )1. The Hubble and GB flow
parameters can be expressed in terms of the potential and
GB coupling function
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!1 ’ ! 4

3
";#QV; (47)

!2 ’ !Q
!
";##

";#
þ V;#

V
þQ;#

Q

"
; (48)

where Q # !ðV;#=V þ 4";#V=3Þ.
The key result of our paper is the general slow-roll

expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.

IV. AN EXAMPLE MODEL

Let us consider a specific inflation model

Vð#Þ ¼ V0#
n; "ð#Þ ¼ "0#

!n: (49)

This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)

%2 ’ 2nð1! $Þ#!2; (51)

!1 ’ n2$ð1! $Þ#!2; (52)

!2 ’ 2nð1! $Þ#!2: (53)

From Eqs. (42) and (44) one gets

nR ! 1 ¼ !nðnþ 2Þð1! $Þ#!2; (54)

r ¼ 8n2ð1! $Þ2#!2: (55)

Inflation ends at %1ð#endÞ ¼ 1, which gives the value of the
field at the end of inflation:

#2
end ¼ 1

2n
2ð1! $Þ: (56)

Then from (8) we find the value of the field N e-folds
before the end of inflation:

#2 ¼ 2nð1! $Þ
!
N þ n

4

"
: (57)

The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:

nR ! 1 ¼ ! 2ðnþ 2Þ
4N þ n

; (58)

r ¼ 16nð1! $Þ
4N þ n

: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-

nR

r
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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scalar ratio. For the tensor perturbations we assume a
power-law power spectrum, with a uniform prior on nT
as !0:5< nT < 0. In Fig. 2 we show the 1! and 2!
contours derived from the data combination ofWMAP7þ
BAOþH0 by using the COSMOMC package [17].
Compared to the contours of Fig. 1 we find that the joint
constraint on nR and r becomes a little tighter. The
WMAP7þ BAOþH0 data do not constrain nT .
Basically all values allowed by the prior are also allowed
by the potential and the coupling.

In Fig. 2 we plot the values of nR and r in the models
with n ¼ 2 (top panel) and n ¼ 4 (bottom panel) for differ-
ent values ofN and". We can see that the model parameter
" can shift the predicted r vertically for a fixed number of
e-folds. For n ¼ 2, the model with a positive " is more
favored observationally. For n ¼ 4, the model with ">
0:7 is consistent with the data within the 95% confidence
level, in which the prediction for the tensor-to-scalar ratio
is smaller than the " ¼ 0 case while the prediction for nR
is the same as the " ¼ 0 case. Other ways to avoid the
exclusion of the #4 potential have been studied in
Ref. [18].

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have studied slow-roll inflation with a
nonminimally coupled Gauss-Bonnet term. We have de-
fined a combined hierarchy ð$i;%iÞ of Hubble and GB flow
functions such that j$ij & 1 and j%ij & 1 is the analogue
of the standard slow-roll approximation. It has been dem-
onstrated that slow-roll solution is the attractor solution
under the slow-roll condition. We have analytically derived
the power spectra of scalar and tensor perturbations. In
general the spectral index of scalar perturbations depends
on the Hubble flow parameters and the GB flow parame-
ters. However, the spectral index of tensor perturbations is
independent of the GB flow parameters to first order in the
slow-roll approximation. In this scenario the standard
consistency relation does not hold because of the GB
correction.
We apply our general formalism to large-field inflation

with a monomial potential and the GB coupling (49). We
focus on the case of! ¼ 1 and "< 1 since the field theory
of phantom-type fields encounters the problem of stability.
In this case, the GB term with the positive (or negative)
coupling slows down (or speeds up) the evolution of the
inflaton during inflation, which decreases (or increases) the
energy scale of the potential to be in agreement with the
amplitude of scalar perturbations. However the amplitude
of tensor perturbations only depends on the energy scale of
the potential at the horizon-crossing time. Therefore, the
tensor-to-scalar ratio is suppressed for "> 0 while it is
enhanced for "< 0.
As shown in Fig. 2, the model parameter " can shift the

predicted r vertically for a fixed number of e-folds in the
nR-r plane. For n ¼ 2, the quadratic potential can be made
a better fit to the data by the positive GB coupling. For n ¼
4, it is known that the model with " ¼ 0 is excluded by the
WMAP7þ BAOþH0 analysis. However, in our scenario
of inflation "> 0:7 is within the 2! contour for N > 50,
and it is consistent with the data within the 95% confidence
level.
The results of this work are generic as soon as non-

minimal couplings are considered. While it is always
possible by means of a conformal transformation to work
in the Einstein frame and to avoid the presence of a #2R
term in the Lagrangian, the coupling of the scalar field to
the GB term cannot be argued away by the same conformal
transformation. While we studied perturbation spectra in
the Einstein frame, similar properties hold in the Jordan
frame.
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scalar ratio. For the tensor perturbations we assume a
power-law power spectrum, with a uniform prior on nT
as !0:5< nT < 0. In Fig. 2 we show the 1! and 2!
contours derived from the data combination ofWMAP7þ
BAOþH0 by using the COSMOMC package [17].
Compared to the contours of Fig. 1 we find that the joint
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functions such that j$ij & 1 and j%ij & 1 is the analogue
of the standard slow-roll approximation. It has been dem-
onstrated that slow-roll solution is the attractor solution
under the slow-roll condition. We have analytically derived
the power spectra of scalar and tensor perturbations. In
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on the Hubble flow parameters and the GB flow parame-
ters. However, the spectral index of tensor perturbations is
independent of the GB flow parameters to first order in the
slow-roll approximation. In this scenario the standard
consistency relation does not hold because of the GB
correction.
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with a monomial potential and the GB coupling (49). We
focus on the case of! ¼ 1 and "< 1 since the field theory
of phantom-type fields encounters the problem of stability.
In this case, the GB term with the positive (or negative)
coupling slows down (or speeds up) the evolution of the
inflaton during inflation, which decreases (or increases) the
energy scale of the potential to be in agreement with the
amplitude of scalar perturbations. However the amplitude
of tensor perturbations only depends on the energy scale of
the potential at the horizon-crossing time. Therefore, the
tensor-to-scalar ratio is suppressed for "> 0 while it is
enhanced for "< 0.
As shown in Fig. 2, the model parameter " can shift the

predicted r vertically for a fixed number of e-folds in the
nR-r plane. For n ¼ 2, the quadratic potential can be made
a better fit to the data by the positive GB coupling. For n ¼
4, it is known that the model with " ¼ 0 is excluded by the
WMAP7þ BAOþH0 analysis. However, in our scenario
of inflation "> 0:7 is within the 2! contour for N > 50,
and it is consistent with the data within the 95% confidence
level.
The results of this work are generic as soon as non-

minimal couplings are considered. While it is always
possible by means of a conformal transformation to work
in the Einstein frame and to avoid the presence of a #2R
term in the Lagrangian, the coupling of the scalar field to
the GB term cannot be argued away by the same conformal
transformation. While we studied perturbation spectra in
the Einstein frame, similar properties hold in the Jordan
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(bottom panel). The contours show the 68% and 95% confidence
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where Q # !ðV;#=V þ 4";#V=3Þ.
The key result of our paper is the general slow-roll

expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.

IV. AN EXAMPLE MODEL

Let us consider a specific inflation model

Vð#Þ ¼ V0#
n; "ð#Þ ¼ "0#

!n: (49)

This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)

%2 ’ 2nð1! $Þ#!2; (51)

!1 ’ n2$ð1! $Þ#!2; (52)

!2 ’ 2nð1! $Þ#!2: (53)

From Eqs. (42) and (44) one gets

nR ! 1 ¼ !nðnþ 2Þð1! $Þ#!2; (54)

r ¼ 8n2ð1! $Þ2#!2: (55)

Inflation ends at %1ð#endÞ ¼ 1, which gives the value of the
field at the end of inflation:

#2
end ¼ 1

2n
2ð1! $Þ: (56)

Then from (8) we find the value of the field N e-folds
before the end of inflation:

#2 ¼ 2nð1! $Þ
!
N þ n

4

"
: (57)

The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:

nR ! 1 ¼ ! 2ðnþ 2Þ
4N þ n

; (58)

r ¼ 16nð1! $Þ
4N þ n

: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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The key result of our paper is the general slow-roll

expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.

IV. AN EXAMPLE MODEL

Let us consider a specific inflation model

Vð#Þ ¼ V0#
n; "ð#Þ ¼ "0#

!n: (49)

This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)
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From Eqs. (42) and (44) one gets

nR ! 1 ¼ !nðnþ 2Þð1! $Þ#!2; (54)

r ¼ 8n2ð1! $Þ2#!2: (55)

Inflation ends at %1ð#endÞ ¼ 1, which gives the value of the
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Then from (8) we find the value of the field N e-folds
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The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:

nR ! 1 ¼ ! 2ðnþ 2Þ
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; (58)

r ¼ 16nð1! $Þ
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: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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Figures 4–6 show the ns-r contour plot of the models
that are given by (73) with n ¼ 1, n ¼ 2, and n ¼ 4 for
the different values of N and α in comparison with the

observational data. The red contour comes from the Planck
data and the BICEP2 data set are included in the blue
contour. The Planck and WMAP data constrain on r as
r < 0.12, but BICEP2 claims that r≃ 0.2. There seems to
be some discrepancy between Planck and BICEP2. One
way out of this discrepancy might be to take into account
the running spectral index of the scalar modes [3].
Black, brown, and gray dashed lines represent the

theoretical predictions for α ¼ 0 (black), α > 0 (brown),
and α < 0 (gray), respectively, and the pairs of red and
blue dots represent N ¼ 50 and N ¼ 60, respectively, in
Figs. 4–6.
Without the Gauss-Bonnet term (α ¼ 0), Planck data say

that the ϕ4 model lies well outside of the joint 99.7% CL
(confidence level) region in the ns-r plane (Fig. 6) and the
ϕ2 model lies outside of the 95% CL region for N ≲ 50
(Fig. 5). On the contrary, the inflationary models with
n ¼ 1 lie within the 95% CL regions (Fig. 4). If we
consider the combination of BICEP2 and Planck, even
N ¼ 60 for ϕ4 reside within the 95% CL regions, but n ¼ 1
model might be ruled out.
Both ns and r are suppressed if α ≠ 0 and has negative

values, but, for α > 0, those are enhanced. These results are
completely opposite compared to Ref. [16], in which r
is enhanced for negative α and reduced for positive α for
V ¼ V0ϕn with ξ ¼ ξ0ϕ−n. Because r becomes suppressed
as n decreases, Planck data alone favor the n ¼ 1 model,
but the BICEP2þ Planck favors n ¼ 2. Even for α ≠ 0,
BICEP2 with Planck seems to rule out n ¼ 1 at 95% CL
(Fig. 4). For n ¼ 2 with α ≠ 0 (Fig. 5), negative α with

FIG. 5 (color online). Marginalized joint 68% and 95% CL
regions for (ns, r), using observational data sets with and without
a running spectral index, compared to the theoretical prediction
of the model (73) with n ¼ 2. The black dashed line is for the
case where model parameter α ¼ 0 while gray and brown are for
the case where α ¼ −2 × 10−6 and α ¼ 1.5 × 10−6, respectively.
The pairs of red and green dots represent the number of e-folds,
N ¼ 50 and N ¼ 60, respectively.

FIG. 4 (color online). Marginalized joint 68% and 95% CL
regions for (ns, r), using observational data sets with and without
a running spectral index, compared to the theoretical prediction of
the model (73) with n ¼ 1. The black dashed line is for the case
where model parameter α ¼ 0 while gray and brown are for the
case where α ¼ −0.003 and α ¼ 0.001, respectively. The pairs of
red and green dots represent the number of e-folds, N ¼ 50 and
N ¼ 60, respectively.

FIG. 6 (color online). Marginalized joint 68% and 95% CL
regions for (ns, r), using observational data sets with and without
a running spectral index, compared to the theoretical prediction of
the model (73) with n ¼ 4. The black dashed line is for the case
where model parameter α ¼ 0 while gray and brown are for the
case where α ¼ −0.7 × 10−12 and α ¼ 1.5 × 10−12, respectively.
The pairs of red and green dots represent the number of e-folds,
N ¼ 50 and N ¼ 60, respectively.
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expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.
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This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are
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Then from (8) we find the value of the field N e-folds
before the end of inflation:
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The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:
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; (58)

r ¼ 16nð1! $Þ
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: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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Figures 4–6 show the ns-r contour plot of the models
that are given by (73) with n ¼ 1, n ¼ 2, and n ¼ 4 for
the different values of N and α in comparison with the

observational data. The red contour comes from the Planck
data and the BICEP2 data set are included in the blue
contour. The Planck and WMAP data constrain on r as
r < 0.12, but BICEP2 claims that r≃ 0.2. There seems to
be some discrepancy between Planck and BICEP2. One
way out of this discrepancy might be to take into account
the running spectral index of the scalar modes [3].
Black, brown, and gray dashed lines represent the

theoretical predictions for α ¼ 0 (black), α > 0 (brown),
and α < 0 (gray), respectively, and the pairs of red and
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Without the Gauss-Bonnet term (α ¼ 0), Planck data say

that the ϕ4 model lies well outside of the joint 99.7% CL
(confidence level) region in the ns-r plane (Fig. 6) and the
ϕ2 model lies outside of the 95% CL region for N ≲ 50
(Fig. 5). On the contrary, the inflationary models with
n ¼ 1 lie within the 95% CL regions (Fig. 4). If we
consider the combination of BICEP2 and Planck, even
N ¼ 60 for ϕ4 reside within the 95% CL regions, but n ¼ 1
model might be ruled out.
Both ns and r are suppressed if α ≠ 0 and has negative

values, but, for α > 0, those are enhanced. These results are
completely opposite compared to Ref. [16], in which r
is enhanced for negative α and reduced for positive α for
V ¼ V0ϕn with ξ ¼ ξ0ϕ−n. Because r becomes suppressed
as n decreases, Planck data alone favor the n ¼ 1 model,
but the BICEP2þ Planck favors n ¼ 2. Even for α ≠ 0,
BICEP2 with Planck seems to rule out n ¼ 1 at 95% CL
(Fig. 4). For n ¼ 2 with α ≠ 0 (Fig. 5), negative α with
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regions for (ns, r), using observational data sets with and without
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";#QV; (47)

!2 ’ !Q
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";##

";#
þ V;#

V
þQ;#

Q

"
; (48)

where Q # !ðV;#=V þ 4";#V=3Þ.
The key result of our paper is the general slow-roll

expression for GB inflation, Eqs. (42)–(44), which is new
and follows from a nontrivial calculation.

IV. AN EXAMPLE MODEL

Let us consider a specific inflation model

Vð#Þ ¼ V0#
n; "ð#Þ ¼ "0#

!n: (49)

This potential has been widely studied. The specific choice
of GB coupling allows us to find an analytic relation
between the spectral index of curvature perturbations and
the tensor-to-scalar ratio. If $ # 4V0"0=3 ¼ 1, all flow
parameters vanish. The motion of the inflaton is frozen
because the force due to the slope of the potential is exactly
balanced by one, the slope of the GB coupling. In this case,
exact de Sitter inflation can be realized for the monomial
potential and the inverse monomial GB coupling. If $< 1,
choosing ! ¼ 1 is required for a positive %1. In this case
the contribution of the positive GB term increases the
Hubble expansion rate during inflation, which makes the
evolution of the inflaton slower than in the case of standard
slow-roll inflation, while the contribution of the negative
GB term decreases the Hubble expansion rate. If $> 1, we
choose ! ¼ !1 to guarantee %1 > 0. The potential force
drives the inflaton to climb up the potential while the GB
force drives the field to roll down. Since the GB force
dominates over the potential force, slow-roll inflation can
be realized. In what follows we restrict our discussion to
the case of $< 1.

The flow parameters are

%1 ’ 1
2n

2ð1! $Þ#!2; (50)

%2 ’ 2nð1! $Þ#!2; (51)

!1 ’ n2$ð1! $Þ#!2; (52)

!2 ’ 2nð1! $Þ#!2: (53)

From Eqs. (42) and (44) one gets

nR ! 1 ¼ !nðnþ 2Þð1! $Þ#!2; (54)

r ¼ 8n2ð1! $Þ2#!2: (55)

Inflation ends at %1ð#endÞ ¼ 1, which gives the value of the
field at the end of inflation:

#2
end ¼ 1

2n
2ð1! $Þ: (56)

Then from (8) we find the value of the field N e-folds
before the end of inflation:

#2 ¼ 2nð1! $Þ
!
N þ n

4

"
: (57)

The spectral index nR and the tensor-to-scalar ratio r can
be written in terms of the function of N:

nR ! 1 ¼ ! 2ðnþ 2Þ
4N þ n

; (58)

r ¼ 16nð1! $Þ
4N þ n

: (59)

Note that the spectral index is independent of V0 and "0,
but the tensor-to-scalar ratio depends on $ ¼ 4V0"0=3.
The GB correction leads to a reduction of the tensor-to-
scalar ratio if "0 > 0 while an enhancement if "0 < 0,
which is still valid in the power-law inflation model with
the exponential potential and GB coupling [11].
Figure 1 shows the two-dimensional joint marginalized

constraint (68% and 95% confidence level) on nR and r
from the 7-year WMAPþ BAOþH0 (BAO stands for
baryon acoustic oscillations) by imposing the standard
consistency relation [16]. The symbols show the predic-
tions from the #4-potential (solid line) and #2-potential
(dashed line) models with the number of e-folds equal to
50 (small) and 60 (large). We can see that the predicted
points with N ¼ 50; 60 for the quartic potential are far
away from the 95% region. The quadratic potential is
consistent with the data.
However, the consistency relation nT ¼ !r=8 is broken

in the slow-roll inflation with the GB correction. Therefore,
in our analysis, nT is varied independent of the tensor-to-

nR
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FIG. 1. Two-dimensional joint marginalized constraint (68%
and 95% confidence level) on the scalar spectral index nR and
the tensor-to-scalar ratio r derived from the data combination of
WMAP7þ BAOþH0 by imposing the standard consistency
relation. The symbols show the predictions from the
#4-potential (solid line) and #2-potential (dashed line) models
with the number of e-folds equal to 50 (small) and 60 (large).
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Since �2 is always positive (�2 > 0) and ↵ can be negative or positive, we can reach to

the following results: if ↵ > 0, 0 < ↵ < e�2�2
N , then �p

2 < � <
p
2. Or if ↵ < 0,

then � < �p
2 or � >

p
2. With these parameter ranges, we can freely choose the model

parameters ↵ and � that are valid for inflation to occur. Unfortunately, these parameter

ranges of ↵ and � are not favored by observational data.

B. Power-law potential and power-law Gauss-Bonnet coupling

We consider an inflationary model with the power-law potential and power-law coupling

to the Gauss-Bonnet term characterized as follows:

V (�) = V0�
n, ⇠(�) = ⇠0�

n. (73)

This class of potential has been widely studied as a simplest inflationary model and includes

the simplest chaotic models, in which inflation starts from the large values of an inflaton

field, � > M
p

.

For the model with the choice of (73), the slow-roll parameters can be calculated using

(18)–(23) as
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The number of e-folds before the end of inflation for the choices of (73) is given in (17) by
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where �e = �(te) is the field value at the end of inflation. To give standard reheating process,
N ' 50 ⇠ 60 is assumed at the horizon crossing time, k = aH where k is the comoving scale.

If the potential and the Gauss-Bonnet coupling functions are given, the observable quantities
can easily be obtained [9] up to leading order in terms of the slow-roll parameters as

ns � 1 ⇡ �2✏� 2✏(2✏+ ⌘)� �1(�2 � ✏)

2✏� �1
, (17)

r ⇡ 8(2✏� �1) , (18)

nt ⇡ �2✏ . (19)

After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
rest is to check its consistency with the observational data.

However, in this work, we are interested in an inverse problem of reconstructing the inflaton
potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
using Eqs. (17)–(19). To reconstruct V (�) and ⇠(�) we use ns and r that are functions of N .
Therefore, first, we construct them in terms of N , then write N as a function of � by using
Eq. (16).

Since the observable quantities can be expressed as functions of N [1–3], it is convenient to
work with the slow-roll parameters as the functions of N and we obtain

✏ =
1

2

VN

V
, (20)

⌘ = �VNN

VN
= �2✏� d ln ✏

dN
, (21)
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� 1

2

VN

V
= ✏� d ln �1

dN
. (23)

To write Eqs. (20)–(23) from Eqs. (11)–(14), we use expressions given in Appendix. By using
the Eqs. (20)–(23), we rewrite Eqs. (17)–(19) as

ns(N)� 1 =


ln

✓
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V 2
+

4

3
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By using Eqs. (24) and (25), we write scalar field potential as

V (N) =
1

8c1
r(N)e�

R
[ns(N)�1]dN . (27)

Substituting Eq. (27) into Eq. (25), we find

⇠(N) =
3

44
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1

V (N)
+

Z
r(N)

8V (N)
dN + c2

�
. (28)

Therefore, for given relations of ns � 1 and r, we can construct the scalar field potential and
Gauss-Bonnet coupling functions. Using Eq. (16) together with Eq. (25), one can find the
relation between the number of e-folding N and the scalar field � as,

Z �

�e

d� =

Z r
r(N)

82
dN . (29)
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potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
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N ' 50 ⇠ 60 is assumed at the horizon crossing time, k = aH where k is the comoving scale.
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After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
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potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.

In this work, we consider the case in which the scalar field slowly rolls down to the minimum
of the potential and the Gauss-Bonnet term is assumed to be a small correction to gravity.
Hence, the following inequality must be satisfied [9];
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Another key parameter in an inflationary scenario is the e-folding number, N , that measures
the amount of inflationary expansion from a particular time t until the end of inflation te

N =

Z te

t
Hdt '

Z �

�e

2

Q
d�, (16)

3



Reverse Problem
where �e = �(te) is the field value at the end of inflation. To give standard reheating process,
N ' 50 ⇠ 60 is assumed at the horizon crossing time, k = aH where k is the comoving scale.

If the potential and the Gauss-Bonnet coupling functions are given, the observable quantities
can easily be obtained [9] up to leading order in terms of the slow-roll parameters as

ns � 1 ⇡ �2✏� 2✏(2✏+ ⌘)� �1(�2 � ✏)

2✏� �1
, (17)

r ⇡ 8(2✏� �1) , (18)

nt ⇡ �2✏ . (19)

After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
rest is to check its consistency with the observational data.

However, in this work, we are interested in an inverse problem of reconstructing the inflaton
potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
using Eqs. (17)–(19). To reconstruct V (�) and ⇠(�) we use ns and r that are functions of N .
Therefore, first, we construct them in terms of N , then write N as a function of � by using
Eq. (16).

Since the observable quantities can be expressed as functions of N [1–3], it is convenient to
work with the slow-roll parameters as the functions of N and we obtain

✏ =
1

2

VN

V
, (20)

⌘ = �VNN

VN
= �2✏� d ln ✏

dN
, (21)

�1 = �4

3
4⇠NV , (22)

�2 = �⇠NN

⇠N
� 1

2

VN

V
= ✏� d ln �1

dN
. (23)

To write Eqs. (20)–(23) from Eqs. (11)–(14), we use expressions given in Appendix. By using
the Eqs. (20)–(23), we rewrite Eqs. (17)–(19) as

ns(N)� 1 =


ln

✓
VN

V 2
+

4

3
4⇠N

◆�

,N

, (24)

r(N) = 8

✓
VN

V
+

4

3
4⇠NV

◆
= 8Q(N) , (25)

nt(N) = �VN

V
. (26)

By using Eqs. (24) and (25), we write scalar field potential as

V (N) =
1

8c1
r(N)e�

R
[ns(N)�1]dN . (27)

Substituting Eq. (27) into Eq. (25), we find

⇠(N) =
3

44


1

V (N)
+

Z
r(N)

8V (N)
dN + c2

�
. (28)

Therefore, for given relations of ns � 1 and r, we can construct the scalar field potential and
Gauss-Bonnet coupling functions. Using Eq. (16) together with Eq. (25), one can find the
relation between the number of e-folding N and the scalar field � as,

Z �

�e

d� =

Z r
r(N)

82
dN . (29)

4

the background dynamics of this system yields the Einstein and the field equations

H2 =
2

3


1

2
�̇2 + V � 3K

2a2
+ 12⇠̇H

✓
H2 +

K

a2

◆�
, (3)
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H2
, ⌘ ⌘ Ḧ
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2Ḣ �H2 � 3K

a2

◆�
, (4)

�̈+ 3H�̇+ V� + 12⇠�

✓
H2 +

K

a2

◆⇣
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where �e = �(te) is the field value at the end of inflation. To give standard reheating process,
N ' 50 ⇠ 60 is assumed at the horizon crossing time, k = aH where k is the comoving scale.

If the potential and the Gauss-Bonnet coupling functions are given, the observable quantities
can easily be obtained [9] up to leading order in terms of the slow-roll parameters as

ns � 1 ⇡ �2✏� 2✏(2✏+ ⌘)� �1(�2 � ✏)
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, (17)

r ⇡ 8(2✏� �1) , (18)

nt ⇡ �2✏ . (19)

After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
rest is to check its consistency with the observational data.

However, in this work, we are interested in an inverse problem of reconstructing the inflaton
potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
using Eqs. (17)–(19). To reconstruct V (�) and ⇠(�) we use ns and r that are functions of N .
Therefore, first, we construct them in terms of N , then write N as a function of � by using
Eq. (16).

Since the observable quantities can be expressed as functions of N [1–3], it is convenient to
work with the slow-roll parameters as the functions of N and we obtain
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To write Eqs. (20)–(23) from Eqs. (11)–(14), we use expressions given in Appendix. By using
the Eqs. (20)–(23), we rewrite Eqs. (17)–(19) as
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By using Eqs. (24) and (25), we write scalar field potential as
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Substituting Eq. (27) into Eq. (25), we find
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Z
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Therefore, for given relations of ns � 1 and r, we can construct the scalar field potential and
Gauss-Bonnet coupling functions. Using Eq. (16) together with Eq. (25), one can find the
relation between the number of e-folding N and the scalar field � as,
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.

In this work, we consider the case in which the scalar field slowly rolls down to the minimum
of the potential and the Gauss-Bonnet term is assumed to be a small correction to gravity.
Hence, the following inequality must be satisfied [9];
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H2
, ⌘ ⌘ Ḧ

HḢ
, �1 ⌘ 42⇠̇H , �2 ⌘

⇠̈

⇠̇H
. (7)

Under Eq. (6), the background equations, Eqs. (3)–(5), become for K = 0

H2 ' 2

3
V , (8)
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Ḣ = �2

2


�̇2 � 2K

2a2
� 4⇠̈

✓
H2 +

K

a2

◆
� 4⇠̇H

✓
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HḢ
, �1 ⌘ 42⇠̇H , �2 ⌘

⇠̈

⇠̇H
. (7)

Under Eq. (6), the background equations, Eqs. (3)–(5), become for K = 0

H2 ' 2

3
V , (8)
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where �e = �(te) is the field value at the end of inflation. To give standard reheating process,
N ' 50 ⇠ 60 is assumed at the horizon crossing time, k = aH where k is the comoving scale.

If the potential and the Gauss-Bonnet coupling functions are given, the observable quantities
can easily be obtained [9] up to leading order in terms of the slow-roll parameters as
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After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
rest is to check its consistency with the observational data.

However, in this work, we are interested in an inverse problem of reconstructing the inflaton
potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
using Eqs. (17)–(19). To reconstruct V (�) and ⇠(�) we use ns and r that are functions of N .
Therefore, first, we construct them in terms of N , then write N as a function of � by using
Eq. (16).

Since the observable quantities can be expressed as functions of N [1–3], it is convenient to
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HḢ
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
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H2
, ⌘ ⌘ Ḧ
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where �e = �(te) is the field value at the end of inflation. To give standard reheating process,
N ' 50 ⇠ 60 is assumed at the horizon crossing time, k = aH where k is the comoving scale.

If the potential and the Gauss-Bonnet coupling functions are given, the observable quantities
can easily be obtained [9] up to leading order in terms of the slow-roll parameters as

ns � 1 ⇡ �2✏� 2✏(2✏+ ⌘)� �1(�2 � ✏)
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, (17)

r ⇡ 8(2✏� �1) , (18)

nt ⇡ �2✏ . (19)

After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
rest is to check its consistency with the observational data.

However, in this work, we are interested in an inverse problem of reconstructing the inflaton
potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
using Eqs. (17)–(19). To reconstruct V (�) and ⇠(�) we use ns and r that are functions of N .
Therefore, first, we construct them in terms of N , then write N as a function of � by using
Eq. (16).

Since the observable quantities can be expressed as functions of N [1–3], it is convenient to
work with the slow-roll parameters as the functions of N and we obtain
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Therefore, for given relations of ns � 1 and r, we can construct the scalar field potential and
Gauss-Bonnet coupling functions. Using Eq. (16) together with Eq. (25), one can find the
relation between the number of e-folding N and the scalar field � as,
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.
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Ḣ = �2

2


�̇2 � 2K

2a2
� 4⇠̈

✓
H2 +

K

a2

◆
� 4⇠̇H

✓
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H2
, ⌘ ⌘ Ḧ
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After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
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However, in this work, we are interested in an inverse problem of reconstructing the inflaton
potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
using Eqs. (17)–(19). To reconstruct V (�) and ⇠(�) we use ns and r that are functions of N .
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the background dynamics of this system yields the Einstein and the field equations
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where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.

In this work, we consider the case in which the scalar field slowly rolls down to the minimum
of the potential and the Gauss-Bonnet term is assumed to be a small correction to gravity.
Hence, the following inequality must be satisfied [9];
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Another key parameter in an inflationary scenario is the e-folding number, N , that measures
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where �e = �(te) is the field value at the end of inflation. To give standard reheating process,
N ' 50 ⇠ 60 is assumed at the horizon crossing time, k = aH where k is the comoving scale.

If the potential and the Gauss-Bonnet coupling functions are given, the observable quantities
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After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
rest is to check its consistency with the observational data.
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potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
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Therefore, for given relations of ns � 1 and r, we can construct the scalar field potential and
Gauss-Bonnet coupling functions. Using Eq. (16) together with Eq. (25), one can find the
relation between the number of e-folding N and the scalar field � as,
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the background dynamics of this system yields the Einstein and the field equations

H2 =
2

3


1

2
�̇2 + V � 3K

2a2
+ 12⇠̇H

✓
H2 +

K

a2

◆�
, (3)

Ḣ = �2

2


�̇2 � 2K

2a2
� 4⇠̈

✓
H2 +

K

a2

◆
� 4⇠̇H

✓
2Ḣ �H2 � 3K

a2

◆�
, (4)

�̈+ 3H�̇+ V� + 12⇠�

✓
H2 +

K

a2

◆⇣
Ḣ +H2

⌘
= 0, (5)

where a dot represents a derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter and V� = @V/@�, ⇠� = @⇠/@�. Since ⇠ is a function of �, ⇠̇ implies ⇠̇ = ⇠��̇.
If ⇠ is a constant, the background dynamics would not be influenced by the Gauss-Bonnet term
because it is known that the Gauss-Bonnet in four dimensional spacetime is a topological term.

In this work, we consider the case in which the scalar field slowly rolls down to the minimum
of the potential and the Gauss-Bonnet term is assumed to be a small correction to gravity.
Hence, the following inequality must be satisfied [9];

�̇2/2 ⌧ V , �̈ ⌧ 3H�̇ , 4⇠̇H ⌧ 1 , and ⇠̈ ⌧ ⇠̇H . (6)

We define following slow-roll parameters to reflect slow-roll approximations above:

✏ ⌘ � Ḣ

H2
, ⌘ ⌘ Ḧ

HḢ
, �1 ⌘ 42⇠̇H , �2 ⌘

⇠̈

⇠̇H
. (7)

Under Eq. (6), the background equations, Eqs. (3)–(5), become for K = 0

H2 ' 2

3
V , (8)

Ḣ ' �2

2
(�̇2 + 4⇠̇H3) , (9)

3H�̇+ V� + 12⇠�H
4 ' 0 . (10)

We rewrite Eq. (7) in terms of the potential and the Gauss-Bonnet coupling function as

✏ =
1

22
V�

V
Q , (11)

⌘ = � 1

2

✓
V��

V�
Q+Q�

◆
, (12)

�1 = �42

3
⇠�V Q, (13)

�2 = � 1

2

✓
⇠��
⇠�

Q+
1

2

V�

V
Q+Q�

◆
, (14)

with

Q ⌘
V�

V
+

4

3
4⇠�V . (15)

Another key parameter in an inflationary scenario is the e-folding number, N , that measures
the amount of inflationary expansion from a particular time t until the end of inflation te

N =

Z te

t
Hdt '

Z �

�e

2

Q
d�, (16)

3

V (�) and ⇠(�)



Let’s check with some 
examples…



General Ansatz

3 Example models

There are hundreds of inflation models in the market [12] that show good fit with the
observational data, hence it is hard to figure out a unique inflation model even when model
parameters accurately fit with data. Therefore, in this section, we construct the inflaton potential
as well as the Gauss-Bonnet coupling functions by using general relations of ns and r that are
in good agreement with the latest Planck data [2, 3]. As the input, we consider

ns � 1 = � �

N + ↵
, (30)

r =
q

Np + �N + ↵
, (31)

where �, �, p and q parameters are arbitrary integers while ↵ is also an arbitrary constant but
not necessary to be an integer. These model parameters can be chosen such a way that relations
in Eqs. (30)–(31) to be consistent with observational data [2, 3].

Previously the authors of Ref. [7] have studied the inverse problem of reconstructing inflaton
potential from spectral index for a model without the Gauss-Bonnet term in the action. They
used the same relation as Eq. (30), but without ↵, to construct the potential. As the result the
authors obtained the tensor-to-scalar ratio, r, with a similar form as Eq. (31) with no ↵. In our
case, if the Gauss-Bonnet coupling in Eq. (1) is constant or zero, the consequent result must
converge to that of the Ref. [7]. Because it is known that the Gauss-Bonnet term is topological
in four dimensions as we mentioned earlier. Therefore, the scalar field potential that obtained
in Ref. [7] must be possible to be reproduced in model.

In the following two subsections, we work with a specific models to construct the scalar
field potential and the Gauss-Bonnet coupling functions from Eqs. (30)–(31). The aim of In
Section 3.1 is to test our method and to reproduce the scalar field potential that obtained in
Ref. [7]. Therefore, without loss of generality, we set � = 1. Then, in Section 3.2, we extend our
studies to other examples. For simplicity, we set � = 0 through out the section.

3.1 Model with � = 1

To be consistent with [7], we set � = p = 2 and q = 8 such that Eqs. (30)–(31) become

ns � 1 = � 2

N + ↵
, (32)

r =
8

N2 +N + ↵
. (33)

After substituting Eqs. (32)–(33) into Eqs. (28) and (27), we obtain,

V (N) =
(N + ↵)2

c1 (N2 +N + ↵)
. (34)

⇠(N) = � 3

44


� N2

(N + ↵)2
c1 + c2

�
, (35)

With the help of Eq. (29), we find

N =
1

4

h
(1� 4↵)e�(��C) + e(��C) � 2

i
, (36)

where C is the integration constant which is responsible for the shift of �.
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By substituting Eq. (36) into Eqs. (35) and (34), we rewrite both the potential and the
coupling functions in terms of scalar field, �, as

V (�) =

�
e(��C) � 1

�2 �
4↵+ e(��C) � 1

�2

c1
�
4↵+ e2(��C) � 1

�2 , (37)

⇠(�) =
3

44

" �
1� 2e(C��) � (4↵� 1)e2(C��)

�2
�
1� e�(��C)

�2 �
1 + (4↵� 1)e�(��C)

�2 c1 � c2

#
. (38)

In ↵ ! 0 limit, the leading order contribution of a series expansion gives

V (�) = c1 tanh
2

✓
1

2
(�� C)

◆
, (39)

⇠(�) =
3

44
(c1 � c2) . (40)

Gauss-Bonnet coupling function in Eq. (40) becomes zero if c2 = �c1 or constant otherwise.
In either cases, the Gauss-Bonnet term does not give any e↵ects on the background evolution
in four dimensions. Therefore, the background evolution in our model reduces to the Einstein
gravity, no Gauss-Bonnet correction term, when ↵ ! 0 limit and Eq. (39) shows that our result
reproduces the potentials obtained in [7][10].
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where � 6= 1 is assumed. 1 The scalar-field potential can also be obtained with the help of
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where ↵ > 0 is necessary since observations [2, 3] favor positive q, and this equation is to be
solved as N(�) for given p. It is often assumed for the large field inflation that the field value
at the end of inflation is negligible compared to that of the beginning of inflation, �e ⌧ �.
Therefore, from now and thought out the rest of paper, we will ignore �e with having in mind
that we are dealing with the large field inflation model. In the following two subsections, we
will consider p = 1 and p = 2 cases, respectively, for simplicity.

1We do not consider a case with � = 1 in this paper due to our interest. Because if � = 1, from Eq. (41), the
number of e-folds should approximately be N ⇠ 30� ↵ in order to be consistent with the observational value of
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◆
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in four dimensions. Therefore, the background evolution in our model reduces to the Einstein
gravity, no Gauss-Bonnet correction term, when ↵ ! 0 limit and Eq. (39) shows that our result
reproduces the potentials obtained in [7][10].

3.2 Model with � = 0

In this section, we consider � = 0 case to obtain the scalar field potential as well as the
Gauss-Bonnet coupling term. For � = 0, Eqs. (30)–(31) become

ns(N)� 1 = � �

N + ↵
, (41)

r(N) =
q

Np + ↵
. (42)

After substituting Eqs. (41)–(42) into Eq. (28), we obtain

⇠(N) =
3

44

✓
8

q

Np + ↵

(N + ↵)�
+

(N + ↵)1��

1� �

◆
c1 + c2

�
, (43)

where � 6= 1 is assumed. 1 The scalar-field potential can also be obtained with the help of
Eq. (27) as

V (N) =
q

8c1

(N + ↵)�

Np + ↵
. (44)

Eq. (29) gives

�� �e = N

r
q

82↵
2F1

✓
1

2
,
1

p
; 1 +

1

p
;�Np

↵

◆
, (45)

where ↵ > 0 is necessary since observations [2, 3] favor positive q, and this equation is to be
solved as N(�) for given p. It is often assumed for the large field inflation that the field value
at the end of inflation is negligible compared to that of the beginning of inflation, �e ⌧ �.
Therefore, from now and thought out the rest of paper, we will ignore �e with having in mind
that we are dealing with the large field inflation model. In the following two subsections, we
will consider p = 1 and p = 2 cases, respectively, for simplicity.

1We do not consider a case with � = 1 in this paper due to our interest. Because if � = 1, from Eq. (41), the
number of e-folds should approximately be N ⇠ 30� ↵ in order to be consistent with the observational value of
ns ⇠ 0.9655± 0.0062 [3]. On the other hand, we need N ' 50 ⇠ 60 for inflation, therefore ↵ must take negative
value between �30  ↵  �20 which later conflicts with Eq. (45) where ↵ > 0 is necessary. For � = 2 case,
however, we have no such contradictions and everything is fine.

6

3 Example models

There are hundreds of inflation models in the market [12] that show good fit with the
observational data, hence it is hard to figure out a unique inflation model even when model
parameters accurately fit with data. Therefore, in this section, we construct the inflaton potential
as well as the Gauss-Bonnet coupling functions by using general relations of ns and r that are
in good agreement with the latest Planck data [2, 3]. As the input, we consider

ns � 1 = � �

N + ↵
, (30)

r =
q

Np + �N + ↵
, (31)

where �, �, p and q parameters are arbitrary integers while ↵ is also an arbitrary constant but
not necessary to be an integer. These model parameters can be chosen such a way that relations
in Eqs. (30)–(31) to be consistent with observational data [2, 3].

Previously the authors of Ref. [7] have studied the inverse problem of reconstructing inflaton
potential from spectral index for a model without the Gauss-Bonnet term in the action. They
used the same relation as Eq. (30), but without ↵, to construct the potential. As the result the
authors obtained the tensor-to-scalar ratio, r, with a similar form as Eq. (31) with no ↵. In our
case, if the Gauss-Bonnet coupling in Eq. (1) is constant or zero, the consequent result must
converge to that of the Ref. [7]. Because it is known that the Gauss-Bonnet term is topological
in four dimensions as we mentioned earlier. Therefore, the scalar field potential that obtained
in Ref. [7] must be possible to be reproduced in model.

In the following two subsections, we work with a specific models to construct the scalar
field potential and the Gauss-Bonnet coupling functions from Eqs. (30)–(31). The aim of In
Section 3.1 is to test our method and to reproduce the scalar field potential that obtained in
Ref. [7]. Therefore, without loss of generality, we set � = 1. Then, in Section 3.2, we extend our
studies to other examples. For simplicity, we set � = 0 through out the section.
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To be consistent with [7], we set � = p = 2 and q = 8 such that Eqs. (30)–(31) become
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i
, (36)

where C is the integration constant which is responsible for the shift of �.
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where ↵ > 0 is necessary since observations [2, 3] favor positive q, and this equation is to be
solved as N(�) for given p. It is often assumed for the large field inflation that the field value
at the end of inflation is negligible compared to that of the beginning of inflation, �e ⌧ �.
Therefore, from now and thought out the rest of paper, we will ignore �e with having in mind
that we are dealing with the large field inflation model. In the following two subsections, we
will consider p = 1 and p = 2 cases, respectively, for simplicity.

1We do not consider a case with � = 1 in this paper due to our interest. Because if � = 1, from Eq. (41), the
number of e-folds should approximately be N ⇠ 30� ↵ in order to be consistent with the observational value of
ns ⇠ 0.9655± 0.0062 [3]. On the other hand, we need N ' 50 ⇠ 60 for inflation, therefore ↵ must take negative
value between �30  ↵  �20 which later conflicts with Eq. (45) where ↵ > 0 is necessary. For � = 2 case,
however, we have no such contradictions and everything is fine.
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3.2.1 p = 1 case

If p = 1 in Eq. (42), the corresponding ns and r relations look same as those obtained in
Ref. [13]. Therefore, if our method is right, one may expect to see the power-law potential and
inverse power-law coupling functions as a result in the end of this section. When p = 1, we
obtain from Eq. (45)

N =

✓
22

q
�2 +

r
8↵

q
�

◆
, (46)

where q 6= 0 and from Eqs. (43)–(44)

V (�) =
q

8c1

✓
↵+

2

q
2�2 +

r
8↵

q
�

◆��1

, (47)

⇠(�) =
3

44

"
q + 8(1� �)

q(1� �)

✓
↵+

2

q
2�2 +

r
8↵

q
�

◆1��

c1 + c2

#
. (48)

To be more consistent with Ref. [13], it is worth to introduce express ↵ and � in terms of new
parameter, n, as follows

↵ =
n

4
, � =

n+ 2

2
. (49)

Eqs. (47)–(48) can be rewritten as

V (�) =
q

8c1

✓
n

4
+

2

q
2�2 +

r
2n

q
�

◆n
2

, (50)

⇠(�) =
3

44

"
8n� 2q

nq

✓
n

4
+

2

q
2�2 +

r
2n

q
�

◆�n
2

c1 + c2

#
. (51)

For ↵ ! 0 limit in Eqs. (47)–(48), the leading order contribution of a series expansion gives

V (�) =
q

8c1

✓
2

q
2�2

◆��1

, (52)

⇠(�) =
3

44

"
q + 8(1� �)

q(1� �)

✓
2

q
2�2

◆1��

c1 + c2

#
, (53)

where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
and in Eq. (51), ⇠(�) = 0 for every q = 4n when c2 = 0 or ⇠(�) = const. when c2 6= 0. In either
case, the background evolution would be described by the Einstein gravity with dynamical scalar
field. The potential takes its minimum value at �min = 0 for ↵ = 0, however, the minimum
shifts as

�min = �
r

nq

82
, (54)

for ↵ 6= 0 depending on both q and n values.
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(a) (b)

Figure 1: Numerical plot of Eq. (50) and Eq. (51) with c1 = 1, c2 = 0, 2 = 1 and n = 2.

3.2.2 p = 2 case

From Eq. (45) with p = 2, we obtain

N =
p
↵ sinh

✓r
8

q
�

◆
, (55)

where ↵ > 0 and q > 0 are assumed. By substituting Eq. (55) into Eqs. (43)–(44), we obtain

V (�) =
q

8c1↵
sech2

✓r
8

q
�

◆
↵+

p
↵ sinh

✓r
8

q
�

◆��
, (56)

⇠(�) =
3

44

2

64
q
⇣
↵+

p
↵ sinh

⇣q
8
q�

⌘⌘
+ 8(1� �)↵ cosh2

⇣q
8
q�

⌘

q(1� �)
⇣
↵+

p
↵ sinh

⇣q
8
q�

⌘⌘�
c1 + c2

3

75 , (57)

where � 6= 1. In Fig. 2, we plot Eqs. (56)–(57) for � = 2. Previously for p = 1 case, we were able
to see that potential and Gauss-Bonnet coupling functions hold inverse relation to each other
when c2 = 0. Unfortunately, in p = 2 case such relation seems not to be hold even when c2 6= 0
as shown in Fig. 2(c).
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3 Example models

There are hundreds of inflation models in the market [12] that show good fit with the
observational data, hence it is hard to figure out a unique inflation model even when model
parameters accurately fit with data. Therefore, in this section, we construct the inflaton potential
as well as the Gauss-Bonnet coupling functions by using general relations of ns and r that are
in good agreement with the latest Planck data [2, 3]. As the input, we consider

ns � 1 = � �

N + ↵
, (30)

r =
q

Np + �N + ↵
, (31)

where �, �, p and q parameters are arbitrary integers while ↵ is also an arbitrary constant but
not necessary to be an integer. These model parameters can be chosen such a way that relations
in Eqs. (30)–(31) to be consistent with observational data [2, 3].

Previously the authors of Ref. [7] have studied the inverse problem of reconstructing inflaton
potential from spectral index for a model without the Gauss-Bonnet term in the action. They
used the same relation as Eq. (30), but without ↵, to construct the potential. As the result the
authors obtained the tensor-to-scalar ratio, r, with a similar form as Eq. (31) with no ↵. In our
case, if the Gauss-Bonnet coupling in Eq. (1) is constant or zero, the consequent result must
converge to that of the Ref. [7]. Because it is known that the Gauss-Bonnet term is topological
in four dimensions as we mentioned earlier. Therefore, the scalar field potential that obtained
in Ref. [7] must be possible to be reproduced in model.

In the following two subsections, we work with a specific models to construct the scalar
field potential and the Gauss-Bonnet coupling functions from Eqs. (30)–(31). The aim of In
Section 3.1 is to test our method and to reproduce the scalar field potential that obtained in
Ref. [7]. Therefore, without loss of generality, we set � = 1. Then, in Section 3.2, we extend our
studies to other examples. For simplicity, we set � = 0 through out the section.

3.1 Model with � = 1

To be consistent with [7], we set � = p = 2 and q = 8 such that Eqs. (30)–(31) become

ns � 1 = � 2

N + ↵
, (32)

r =
8

N2 +N + ↵
. (33)

After substituting Eqs. (32)–(33) into Eqs. (28) and (27), we obtain,

V (N) =
(N + ↵)2
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� N2

(N + ↵)2
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where C is the integration constant which is responsible for the shift of �.
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By substituting Eq. (36) into Eqs. (35) and (34), we rewrite both the potential and the
coupling functions in terms of scalar field, �, as

V (�) =

�
e(��C) � 1

�2 �
4↵+ e(��C) � 1

�2

c1
�
4↵+ e2(��C) � 1
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⇠(�) =
3

44

" �
1� 2e(C��) � (4↵� 1)e2(C��)

�2
�
1� e�(��C)

�2 �
1 + (4↵� 1)e�(��C)
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#
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In ↵ ! 0 limit, the leading order contribution of a series expansion gives

V (�) = c1 tanh
2

✓
1

2
(�� C)

◆
, (39)

⇠(�) =
3

44
(c1 � c2) . (40)

Gauss-Bonnet coupling function in Eq. (40) becomes zero if c2 = �c1 or constant otherwise.
In either cases, the Gauss-Bonnet term does not give any e↵ects on the background evolution
in four dimensions. Therefore, the background evolution in our model reduces to the Einstein
gravity, no Gauss-Bonnet correction term, when ↵ ! 0 limit and Eq. (39) shows that our result
reproduces the potentials obtained in [7][10].

3.2 Model with � = 0

In this section, we consider � = 0 case to obtain the scalar field potential as well as the
Gauss-Bonnet coupling term. For � = 0, Eqs. (30)–(31) become

ns(N)� 1 = � �

N + ↵
, (41)

r(N) =
q

Np + ↵
. (42)

After substituting Eqs. (41)–(42) into Eq. (28), we obtain
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◆
c1 + c2

�
, (43)

where � 6= 1 is assumed. 1 The scalar-field potential can also be obtained with the help of
Eq. (27) as

V (N) =
q

8c1

(N + ↵)�

Np + ↵
. (44)

Eq. (29) gives

�� �e = N

r
q

82↵
2F1

✓
1

2
,
1

p
; 1 +

1

p
;�Np

↵

◆
, (45)

where ↵ > 0 is necessary since observations [2, 3] favor positive q, and this equation is to be
solved as N(�) for given p. It is often assumed for the large field inflation that the field value
at the end of inflation is negligible compared to that of the beginning of inflation, �e ⌧ �.
Therefore, from now and thought out the rest of paper, we will ignore �e with having in mind
that we are dealing with the large field inflation model. In the following two subsections, we
will consider p = 1 and p = 2 cases, respectively, for simplicity.

1We do not consider a case with � = 1 in this paper due to our interest. Because if � = 1, from Eq. (41), the
number of e-folds should approximately be N ⇠ 30� ↵ in order to be consistent with the observational value of
ns ⇠ 0.9655± 0.0062 [3]. On the other hand, we need N ' 50 ⇠ 60 for inflation, therefore ↵ must take negative
value between �30  ↵  �20 which later conflicts with Eq. (45) where ↵ > 0 is necessary. For � = 2 case,
however, we have no such contradictions and everything is fine.
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By substituting Eq. (36) into Eqs. (35) and (34), we rewrite both the potential and the
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�2 �
4↵+ e(��C) � 1
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�
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" �
1� 2e(C��) � (4↵� 1)e2(C��)

�2
�
1� e�(��C)

�2 �
1 + (4↵� 1)e�(��C)

�2 c1 � c2

#
. (38)

In ↵ ! 0 limit, the leading order contribution of a series expansion gives

V (�) = c1 tanh
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✓
1

2
(�� C)

◆
, (39)

⇠(�) =
3

44
(c1 � c2) . (40)

Gauss-Bonnet coupling function in Eq. (40) becomes zero if c2 = �c1 or constant otherwise.
In either cases, the Gauss-Bonnet term does not give any e↵ects on the background evolution
in four dimensions. Therefore, the background evolution in our model reduces to the Einstein
gravity, no Gauss-Bonnet correction term, when ↵ ! 0 limit and Eq. (39) shows that our result
reproduces the potentials obtained in [7][10].

3.2 Model with � = 0

In this section, we consider � = 0 case to obtain the scalar field potential as well as the
Gauss-Bonnet coupling term. For � = 0, Eqs. (30)–(31) become
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where � 6= 1 is assumed. 1 The scalar-field potential can also be obtained with the help of
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◆
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where ↵ > 0 is necessary since observations [2, 3] favor positive q, and this equation is to be
solved as N(�) for given p. It is often assumed for the large field inflation that the field value
at the end of inflation is negligible compared to that of the beginning of inflation, �e ⌧ �.
Therefore, from now and thought out the rest of paper, we will ignore �e with having in mind
that we are dealing with the large field inflation model. In the following two subsections, we
will consider p = 1 and p = 2 cases, respectively, for simplicity.

1We do not consider a case with � = 1 in this paper due to our interest. Because if � = 1, from Eq. (41), the
number of e-folds should approximately be N ⇠ 30� ↵ in order to be consistent with the observational value of
ns ⇠ 0.9655± 0.0062 [3]. On the other hand, we need N ' 50 ⇠ 60 for inflation, therefore ↵ must take negative
value between �30  ↵  �20 which later conflicts with Eq. (45) where ↵ > 0 is necessary. For � = 2 case,
however, we have no such contradictions and everything is fine.

6

3.2.1 p = 1 case

If p = 1 in Eq. (42), the corresponding ns and r relations look same as those obtained in
Ref. [13]. Therefore, if our method is right, one may expect to see the power-law potential and
inverse power-law coupling functions as a result in the end of this section. When p = 1, we
obtain from Eq. (45)

N =

✓
22

q
�2 +

r
8↵

q
�

◆
, (46)

where q 6= 0 and from Eqs. (43)–(44)

V (�) =
q

8c1

✓
↵+

2

q
2�2 +

r
8↵

q
�

◆��1

, (47)

⇠(�) =
3

44

"
q + 8(1� �)

q(1� �)

✓
↵+

2

q
2�2 +

r
8↵

q
�

◆1��

c1 + c2

#
. (48)

To be more consistent with Ref. [13], it is worth to introduce express ↵ and � in terms of new
parameter, n, as follows

↵ =
n

4
, � =

n+ 2

2
. (49)

Eqs. (47)–(48) can be rewritten as

V (�) =
q

8c1

✓
n

4
+

2

q
2�2 +

r
2n

q
�

◆n
2

, (50)

⇠(�) =
3

44

"
8n� 2q

nq

✓
n

4
+

2

q
2�2 +

r
2n

q
�

◆�n
2

c1 + c2

#
. (51)

For ↵ ! 0 limit in Eqs. (47)–(48), the leading order contribution of a series expansion gives

V (�) =
q

8c1

✓
2

q
2�2

◆��1

, (52)

⇠(�) =
3

44

"
q + 8(1� �)

q(1� �)

✓
2

q
2�2

◆1��

c1 + c2

#
, (53)

where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
and in Eq. (51), ⇠(�) = 0 for every q = 4n when c2 = 0 or ⇠(�) = const. when c2 6= 0. In either
case, the background evolution would be described by the Einstein gravity with dynamical scalar
field. The potential takes its minimum value at �min = 0 for ↵ = 0, however, the minimum
shifts as

�min = �
r

nq

82
, (54)

for ↵ 6= 0 depending on both q and n values.
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where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
and in Eq. (51), ⇠(�) = 0 for every q = 4n when c2 = 0 or ⇠(�) = const. when c2 6= 0. In either
case, the background evolution would be described by the Einstein gravity with dynamical scalar
field. The potential takes its minimum value at �min = 0 for ↵ = 0, however, the minimum
shifts as

�min = �
r

nq

82
, (54)

for ↵ 6= 0 depending on both q and n values.
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Figure 1: Numerical plot of Eq. (50) and Eq. (51) with c1 = 1, c2 = 0, 2 = 1 and n = 2.

3.2.2 p = 2 case

From Eq. (45) with p = 2, we obtain

N =
p
↵ sinh

✓r
8

q
�

◆
, (55)

where ↵ > 0 and q > 0 are assumed. By substituting Eq. (55) into Eqs. (43)–(44), we obtain

V (�) =
q

8c1↵
sech2

✓r
8

q
�

◆
↵+

p
↵ sinh

✓r
8

q
�

◆��
, (56)

⇠(�) =
3

44

2

64
q
⇣
↵+

p
↵ sinh

⇣q
8
q�

⌘⌘
+ 8(1� �)↵ cosh2

⇣q
8
q�

⌘

q(1� �)
⇣
↵+

p
↵ sinh

⇣q
8
q�

⌘⌘�
c1 + c2

3

75 , (57)

where � 6= 1. In Fig. 2, we plot Eqs. (56)–(57) for � = 2. Previously for p = 1 case, we were able
to see that potential and Gauss-Bonnet coupling functions hold inverse relation to each other
when c2 = 0. Unfortunately, in p = 2 case such relation seems not to be hold even when c2 6= 0
as shown in Fig. 2(c).
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By substituting Eq. (36) into Eqs. (35) and (34), we rewrite both the potential and the
coupling functions in terms of scalar field, �, as

V (�) =

�
e(��C) � 1

�2 �
4↵+ e(��C) � 1

�2

c1
�
4↵+ e2(��C) � 1

�2 , (37)

⇠(�) =
3

44

" �
1� 2e(C��) � (4↵� 1)e2(C��)

�2
�
1� e�(��C)

�2 �
1 + (4↵� 1)e�(��C)

�2 c1 � c2

#
. (38)

In ↵ ! 0 limit, the leading order contribution of a series expansion gives

V (�) = c1 tanh
2

✓
1

2
(�� C)

◆
, (39)

⇠(�) =
3

44
(c1 � c2) . (40)

Gauss-Bonnet coupling function in Eq. (40) becomes zero if c2 = �c1 or constant otherwise.
In either cases, the Gauss-Bonnet term does not give any e↵ects on the background evolution
in four dimensions. Therefore, the background evolution in our model reduces to the Einstein
gravity, no Gauss-Bonnet correction term, when ↵ ! 0 limit and Eq. (39) shows that our result
reproduces the potentials obtained in [7][10].

3.2 Model with � = 0

In this section, we consider � = 0 case to obtain the scalar field potential as well as the
Gauss-Bonnet coupling term. For � = 0, Eqs. (30)–(31) become

ns(N)� 1 = � �

N + ↵
, (41)

r(N) =
q

Np + ↵
. (42)

After substituting Eqs. (41)–(42) into Eq. (28), we obtain

⇠(N) =
3

44

✓
8

q

Np + ↵

(N + ↵)�
+

(N + ↵)1��

1� �

◆
c1 + c2

�
, (43)

where � 6= 1 is assumed. 1 The scalar-field potential can also be obtained with the help of
Eq. (27) as

V (N) =
q

8c1

(N + ↵)�

Np + ↵
. (44)

Eq. (29) gives

�� �e = N

r
q

82↵
2F1

✓
1

2
,
1

p
; 1 +

1

p
;�Np

↵

◆
, (45)

where ↵ > 0 is necessary since observations [2, 3] favor positive q, and this equation is to be
solved as N(�) for given p. It is often assumed for the large field inflation that the field value
at the end of inflation is negligible compared to that of the beginning of inflation, �e ⌧ �.
Therefore, from now and thought out the rest of paper, we will ignore �e with having in mind
that we are dealing with the large field inflation model. In the following two subsections, we
will consider p = 1 and p = 2 cases, respectively, for simplicity.

1We do not consider a case with � = 1 in this paper due to our interest. Because if � = 1, from Eq. (41), the
number of e-folds should approximately be N ⇠ 30� ↵ in order to be consistent with the observational value of
ns ⇠ 0.9655± 0.0062 [3]. On the other hand, we need N ' 50 ⇠ 60 for inflation, therefore ↵ must take negative
value between �30  ↵  �20 which later conflicts with Eq. (45) where ↵ > 0 is necessary. For � = 2 case,
however, we have no such contradictions and everything is fine.

6

3.2.1 p = 1 case

If p = 1 in Eq. (42), the corresponding ns and r relations look same as those obtained in
Ref. [13]. Therefore, if our method is right, one may expect to see the power-law potential and
inverse power-law coupling functions as a result in the end of this section. When p = 1, we
obtain from Eq. (45)

N =

✓
22

q
�2 +

r
8↵

q
�

◆
, (46)

where q 6= 0 and from Eqs. (43)–(44)

V (�) =
q

8c1

✓
↵+

2

q
2�2 +

r
8↵

q
�

◆��1

, (47)

⇠(�) =
3

44

"
q + 8(1� �)

q(1� �)

✓
↵+

2

q
2�2 +

r
8↵

q
�

◆1��

c1 + c2

#
. (48)

To be more consistent with Ref. [13], it is worth to introduce express ↵ and � in terms of new
parameter, n, as follows

↵ =
n

4
, � =

n+ 2

2
. (49)

Eqs. (47)–(48) can be rewritten as

V (�) =
q

8c1

✓
n

4
+

2

q
2�2 +

r
2n

q
�

◆n
2

, (50)

⇠(�) =
3

44

"
8n� 2q

nq

✓
n

4
+

2

q
2�2 +

r
2n

q
�

◆�n
2

c1 + c2

#
. (51)

For ↵ ! 0 limit in Eqs. (47)–(48), the leading order contribution of a series expansion gives

V (�) =
q

8c1

✓
2

q
2�2

◆��1

, (52)

⇠(�) =
3

44

"
q + 8(1� �)

q(1� �)

✓
2

q
2�2

◆1��

c1 + c2

#
, (53)

where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
and in Eq. (51), ⇠(�) = 0 for every q = 4n when c2 = 0 or ⇠(�) = const. when c2 6= 0. In either
case, the background evolution would be described by the Einstein gravity with dynamical scalar
field. The potential takes its minimum value at �min = 0 for ↵ = 0, however, the minimum
shifts as

�min = �
r

nq

82
, (54)

for ↵ 6= 0 depending on both q and n values.
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where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
and in Eq. (51), ⇠(�) = 0 for every q = 4n when c2 = 0 or ⇠(�) = const. when c2 6= 0. In either
case, the background evolution would be described by the Einstein gravity with dynamical scalar
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Gauss-Bonnet coupling function in Eq. (40) becomes zero if c2 = �c1 or constant otherwise.
In either cases, the Gauss-Bonnet term does not give any e↵ects on the background evolution
in four dimensions. Therefore, the background evolution in our model reduces to the Einstein
gravity, no Gauss-Bonnet correction term, when ↵ ! 0 limit and Eq. (39) shows that our result
reproduces the potentials obtained in [7][10].
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where ↵ > 0 is necessary since observations [2, 3] favor positive q, and this equation is to be
solved as N(�) for given p. It is often assumed for the large field inflation that the field value
at the end of inflation is negligible compared to that of the beginning of inflation, �e ⌧ �.
Therefore, from now and thought out the rest of paper, we will ignore �e with having in mind
that we are dealing with the large field inflation model. In the following two subsections, we
will consider p = 1 and p = 2 cases, respectively, for simplicity.

1We do not consider a case with � = 1 in this paper due to our interest. Because if � = 1, from Eq. (41), the
number of e-folds should approximately be N ⇠ 30� ↵ in order to be consistent with the observational value of
ns ⇠ 0.9655± 0.0062 [3]. On the other hand, we need N ' 50 ⇠ 60 for inflation, therefore ↵ must take negative
value between �30  ↵  �20 which later conflicts with Eq. (45) where ↵ > 0 is necessary. For � = 2 case,
however, we have no such contradictions and everything is fine.
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For ↵ ! 0 limit in Eqs. (47)–(48), the leading order contribution of a series expansion gives
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where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
and in Eq. (51), ⇠(�) = 0 for every q = 4n when c2 = 0 or ⇠(�) = const. when c2 6= 0. In either
case, the background evolution would be described by the Einstein gravity with dynamical scalar
field. The potential takes its minimum value at �min = 0 for ↵ = 0, however, the minimum
shifts as

�min = �
r

nq

82
, (54)

for ↵ 6= 0 depending on both q and n values.
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where � 6= 1. In Fig. 2, we plot Eqs. (56)–(57) for � = 2. Previously for p = 1 case, we were able
to see that potential and Gauss-Bonnet coupling functions hold inverse relation to each other
when c2 = 0. Unfortunately, in p = 2 case such relation seems not to be hold even when c2 6= 0
as shown in Fig. 2(c).
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where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
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Figure 2: Numerical plots of Eqs. (56)–(57) with c1 = 1, c2 = 0, 2 = 1, � = 2 and q=16. The
bump shown in Fig. 2(a) increases as ↵ increases and vice versa.

In ↵ ! 0 limit, also as is seen in Fig. 2, Eqs. (56)–(57) reduce to
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Fig. 2 shows the general shape of reconstructed potential is similar with that of a “T-model” [10]
with a small bump on the side which eventually disappears as ↵ goes zero and vice versa.
The existence of such bump in the potential plays an important role for possible blue-tilt of
the primordial tensor fluctuations as it is discussed in Ref. [11]. Before we go into details of
discussion of the blue spectrum of the tensor mode in the next section, let us obtain slow-roll
solution to the background equations of motion. Recalling approximate Eqs. (8)–(10) together
with Eq. (56) and Eq. (57) for � = 2, we obtain following slow-roll solution for scalar field in
terms of N ,

�(N) = �
r

q

82
arcsinh

 
Np
↵
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s
82

q
C

!
. (60)

where C is the arbitrary constant. In Fig. 3, we compare numerically solution of Eqs. (3)–(5)
with slow-roll solution in Eq. (60). It has been shown in Fig. 3 that slow-roll solution fits well
with exact and numerical solution during inflation.
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where C is the arbitrary constant. In Fig. 3, we compare numerically solution of Eqs. (3)–(5)
with slow-roll solution in Eq. (60). It has been shown in Fig. 3 that slow-roll solution fits well
with exact and numerical solution during inflation.
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By substituting Eq. (36) into Eqs. (35) and (34), we rewrite both the potential and the
coupling functions in terms of scalar field, �, as
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In ↵ ! 0 limit, the leading order contribution of a series expansion gives
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Gauss-Bonnet coupling function in Eq. (40) becomes zero if c2 = �c1 or constant otherwise.
In either cases, the Gauss-Bonnet term does not give any e↵ects on the background evolution
in four dimensions. Therefore, the background evolution in our model reduces to the Einstein
gravity, no Gauss-Bonnet correction term, when ↵ ! 0 limit and Eq. (39) shows that our result
reproduces the potentials obtained in [7][10].

3.2 Model with � = 0

In this section, we consider � = 0 case to obtain the scalar field potential as well as the
Gauss-Bonnet coupling term. For � = 0, Eqs. (30)–(31) become

ns(N)� 1 = � �
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After substituting Eqs. (41)–(42) into Eq. (28), we obtain
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where � 6= 1 is assumed. 1 The scalar-field potential can also be obtained with the help of
Eq. (27) as
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Eq. (29) gives
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◆
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where ↵ > 0 is necessary since observations [2, 3] favor positive q, and this equation is to be
solved as N(�) for given p. It is often assumed for the large field inflation that the field value
at the end of inflation is negligible compared to that of the beginning of inflation, �e ⌧ �.
Therefore, from now and thought out the rest of paper, we will ignore �e with having in mind
that we are dealing with the large field inflation model. In the following two subsections, we
will consider p = 1 and p = 2 cases, respectively, for simplicity.

1We do not consider a case with � = 1 in this paper due to our interest. Because if � = 1, from Eq. (41), the
number of e-folds should approximately be N ⇠ 30� ↵ in order to be consistent with the observational value of
ns ⇠ 0.9655± 0.0062 [3]. On the other hand, we need N ' 50 ⇠ 60 for inflation, therefore ↵ must take negative
value between �30  ↵  �20 which later conflicts with Eq. (45) where ↵ > 0 is necessary. For � = 2 case,
however, we have no such contradictions and everything is fine.
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If p = 1 in Eq. (42), the corresponding ns and r relations look same as those obtained in
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To be more consistent with Ref. [13], it is worth to introduce express ↵ and � in terms of new
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For ↵ ! 0 limit in Eqs. (47)–(48), the leading order contribution of a series expansion gives
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where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
and in Eq. (51), ⇠(�) = 0 for every q = 4n when c2 = 0 or ⇠(�) = const. when c2 6= 0. In either
case, the background evolution would be described by the Einstein gravity with dynamical scalar
field. The potential takes its minimum value at �min = 0 for ↵ = 0, however, the minimum
shifts as

�min = �
r

nq

82
, (54)

for ↵ 6= 0 depending on both q and n values.
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where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
and in Eq. (51), ⇠(�) = 0 for every q = 4n when c2 = 0 or ⇠(�) = const. when c2 6= 0. In either
case, the background evolution would be described by the Einstein gravity with dynamical scalar
field. The potential takes its minimum value at �min = 0 for ↵ = 0, however, the minimum
shifts as
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for ↵ 6= 0 depending on both q and n values.
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where if c2 = 0, the Gauss-Bonnet coupling function holds inverse relation to power-law poten-
tial, ⇠(�) ⇠ 1/V (�). In Fig. 1, we plot Eqs. (50)–(51) for n = 2 and n = 4. As is seen in Fig. 1
and in Eq. (51), ⇠(�) = 0 for every q = 4n when c2 = 0 or ⇠(�) = const. when c2 6= 0. In either
case, the background evolution would be described by the Einstein gravity with dynamical scalar
field. The potential takes its minimum value at �min = 0 for ↵ = 0, however, the minimum
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for ↵ 6= 0 depending on both q and n values.
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Fig. 2 shows the general shape of reconstructed potential is similar with that of a “T-model” [10]
with a small bump on the side which eventually disappears as ↵ goes zero and vice versa.
The existence of such bump in the potential plays an important role for possible blue-tilt of
the primordial tensor fluctuations as it is discussed in Ref. [11]. Before we go into details of
discussion of the blue spectrum of the tensor mode in the next section, let us obtain slow-roll
solution to the background equations of motion. Recalling approximate Eqs. (8)–(10) together
with Eq. (56) and Eq. (57) for � = 2, we obtain following slow-roll solution for scalar field in
terms of N ,
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where C is the arbitrary constant. In Fig. 3, we compare numerically solution of Eqs. (3)–(5)
with slow-roll solution in Eq. (60). It has been shown in Fig. 3 that slow-roll solution fits well
with exact and numerical solution during inflation.
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Figure 3: Plot of numerical solution (solid) of Eqs. (3)–(5) when K = 0 and slow-roll solution
(dashed) obtained Eq. (60). We set parameters as; c1 = 1, c2 = 0, 2 = 1, ↵ = 10�4, � = 2,
q = 16, �0 = 13.28, C = 8.4⇥ 103 and �̇0 = 0.

4 The blue-tilt of the tensor modes in � = 0 model with p = 2

According to Ref. [11], an interesting feature of our model is that the spectrum of the pri-
mordial tensor fluctuations can be blue-tilted if the potential and the Gauss-Bonnet coupling
functions take a form given in Eqs. (56)–(57) where � = 2, respectively. The blue-tilt of the
tensor fluctuations is impossible to be achieved for conventional inflation models, those consid-
ered in Ref. [2, 3]. The Hubble rate H monotonically decreases during slow-roll inflation for
these conventional models of inflation, (Ḣ < 0), and it is implied that ✏ > 0. Therefore, one can
conclude that the spectral index of the primordial tensor fluctuations for conventional inflation
models is always negative, nt < 0, hence spectrum is red-tilted [14].

The situation is violated such that the spectrum is blue-tilted if the scalar field climbs up the
potential slope, see Fig. 4, in its early evolution before it rolls down in its late time evolution [11].
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Figure 4: Marginalized part of the potential (left) and the Gauss-Bonnet coupling (right) shown
in Figs. 2(a) and 2(b) where we set ↵ = 10�4. Vertical line corresponds to the field value, �⇤,
at which the potential takes its maximum value. At early stage, the e↵ective potential ⇠ makes
� climb up the potential slope. At late stage, � rolls down as usual.

We can see from Fig. 4 that if the initial value of the scalar field, �0, is larger than the field
value at which the potential takes its maximum, �⇤, such that �0 > �⇤, the scalar field needs
to climb up the potential slope otherwise it simple rolls down the hill. Therefore, we argue
that the blue-tilt of the spectrum for tensor modes would be realized when the scalar field is
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Hence
But such case is violated in our model:
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initially released at �0 > �⇤. If scalar field is initially released at �0 < �⇤, the spectrum would
be red-tilted. It is called the spectrum is scale invariant if �0 = �⇤ [11].

On the other hand, to achieve the blue-tilted spectrum for the tensor fluctuations, nt > 0,
in our model, ✏ < 0 must be satisfied from Eq. (19), such that Ḣ > 0 is necessary from Eq. (7).
Using Eq. (11) together with Eq. (15), we can easily obtain following condition for Gauss-Bonnet
coupling function,

⇠,� > � 3

44
V,�

V 2
, (61)

where V� < 0 for the scalar field which is climbing up the potential slope. Once this conditions
is satisfied, the blue-tilt of the tensor modes would be achieved in our model. By substituting
Eqs. (56)–(57) with � = 2 into Eq. (61), we obtain
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and is clearly satisfied for all values of ↵ > 0 and q > 0, hence the spectrum would be blue-tilted.
We can make following analysis for the blue-tilt of the primordial tensor fluctuations. As we

mentioned earlier ✏ is required to be negative, ✏ < 0, for achieving blue spectrum. In addition to
this, slow-roll inflation requires the slow-roll parameters to satisfy slow-roll condition in which
|✏|, |�1| ⌧ 1. Therefore, first slow-roll parameter takes values between �1 ⌧ ✏ < 0. After
substituting Eqs. (43)–(44) with p = 2 = � into Eq. (20), we obtain

✏ =
1

↵+N
� N

↵+N2
. (63)

where ↵ > 0. We find from Eq. (63) the condition �1 ⌧ ✏ < 0 is satisfied only for N > 1 such
that spectrum is blue-tilted, nt > 0. On the other hand, ✏ > 0 between 0  N < 1, hence the
spectrum is red-tilted, nt < 0. At N = 1, ✏ = 0 hence nt = 0 and the spectrum would be scale
invariant. In Fig. 5, we plot ✏ and nt as function of N by choosing ↵ = 10�4. The red color in
Fig. 5, 0  N < 1 for both, indicates positive ✏ and the red-tilted spectrum while the blue color
corresponds to negative ✏ and blue-tilted spectrum. However, at N = 1 the spectrum would be
scale independent.
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Figure 5: ✏(N) and nt(N) plot where we use Eqs. (56)–(57) with 2 = 1, c1 = 1, c2 = 0,
↵ = 10�4, � = 2 and q = 16. At N = 1, both ✏ and nt is zero, ✏ = 0 = nt.

For the second slow-roll parameter, from Eqs. (18)–(19), we find �1 ⌧ �1 < 0 because the
tensor-to-scalar ratio is positive r > 0 in our model due to our choice in Eq. (31). Substituting
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Using Eq. (11) together with Eq. (15), we can easily obtain following condition for Gauss-Bonnet
coupling function,

⇠,� > � 3

44
V,�

V 2
, (61)

where V� < 0 for the scalar field which is climbing up the potential slope. Once this conditions
is satisfied, the blue-tilt of the tensor modes would be achieved in our model. By substituting
Eqs. (56)–(57) with � = 2 into Eq. (61), we obtain

cosh

 s
82

q
�

! 
p
↵+ sinh

 s
82

q
�

!!2

> 0 , (62)

and is clearly satisfied for all values of ↵ > 0 and q > 0, hence the spectrum would be blue-tilted.
We can make following analysis for the blue-tilt of the primordial tensor fluctuations. As we

mentioned earlier ✏ is required to be negative, ✏ < 0, for achieving blue spectrum. In addition to
this, slow-roll inflation requires the slow-roll parameters to satisfy slow-roll condition in which
|✏|, |�1| ⌧ 1. Therefore, first slow-roll parameter takes values between �1 ⌧ ✏ < 0. After
substituting Eqs. (43)–(44) with p = 2 = � into Eq. (20), we obtain

✏ =
1

↵+N
� N

↵+N2
. (63)

where ↵ > 0. We find from Eq. (63) the condition �1 ⌧ ✏ < 0 is satisfied only for N > 1 such
that spectrum is blue-tilted, nt > 0. On the other hand, ✏ > 0 between 0  N < 1, hence the
spectrum is red-tilted, nt < 0. At N = 1, ✏ = 0 hence nt = 0 and the spectrum would be scale
invariant. In Fig. 5, we plot ✏ and nt as function of N by choosing ↵ = 10�4. The red color in
Fig. 5, 0  N < 1 for both, indicates positive ✏ and the red-tilted spectrum while the blue color
corresponds to negative ✏ and blue-tilted spectrum. However, at N = 1 the spectrum would be
scale independent.

0 10 20 30 40 50 60
-0.000015

0

0.000015

N

ϵ(
N
)

(a)

0 10 20 30 40 50 60

-0.00003

0

0.00003

N

n
t
(N

)

(b)

Figure 5: ✏(N) and nt(N) plot where we use Eqs. (56)–(57) with 2 = 1, c1 = 1, c2 = 0,
↵ = 10�4, � = 2 and q = 16. At N = 1, both ✏ and nt is zero, ✏ = 0 = nt.

For the second slow-roll parameter, from Eqs. (18)–(19), we find �1 ⌧ �1 < 0 because the
tensor-to-scalar ratio is positive r > 0 in our model due to our choice in Eq. (31). Substituting

11

Blue-spectrum for 

Figure 3: Plot of numerical solution (solid) of Eqs. (3)–(5) when K = 0 and slow-roll solution
(dashed) obtained Eq. (60). We set parameters as; c1 = 1, c2 = 0, 2 = 1, ↵ = 10�4, � = 2,
q = 16, �0 = 13.28, C = 8.4⇥ 103 and �̇0 = 0.

4 The blue-tilt of the tensor modes in � = 0 model with p = 2

According to Ref. [11], an interesting feature of our model is that the spectrum of the pri-
mordial tensor fluctuations can be blue-tilted if the potential and the Gauss-Bonnet coupling
functions take a form given in Eqs. (56)–(57) where � = 2, respectively. The blue-tilt of the
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be red-tilted. It is called the spectrum is scale invariant if �0 = �⇤ [11].
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and is clearly satisfied for all values of ↵ > 0 and q > 0, hence the spectrum would be blue-tilted.
We can make following analysis for the blue-tilt of the primordial tensor fluctuations. As we

mentioned earlier ✏ is required to be negative, ✏ < 0, for achieving blue spectrum. In addition to
this, slow-roll inflation requires the slow-roll parameters to satisfy slow-roll condition in which
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where ↵ > 0. We find from Eq. (63) the condition �1 ⌧ ✏ < 0 is satisfied only for N > 1 such
that spectrum is blue-tilted, nt > 0. On the other hand, ✏ > 0 between 0  N < 1, hence the
spectrum is red-tilted, nt < 0. At N = 1, ✏ = 0 hence nt = 0 and the spectrum would be scale
invariant. In Fig. 5, we plot ✏ and nt as function of N by choosing ↵ = 10�4. The red color in
Fig. 5, 0  N < 1 for both, indicates positive ✏ and the red-tilted spectrum while the blue color
corresponds to negative ✏ and blue-tilted spectrum. However, at N = 1 the spectrum would be
scale independent.
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For the second slow-roll parameter, from Eqs. (18)–(19), we find �1 ⌧ �1 < 0 because the
tensor-to-scalar ratio is positive r > 0 in our model due to our choice in Eq. (31). Substituting
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where �e = �(te) is the field value at the end of inflation. To give standard reheating process,
N ' 50 ⇠ 60 is assumed at the horizon crossing time, k = aH where k is the comoving scale.

If the potential and the Gauss-Bonnet coupling functions are given, the observable quantities
can easily be obtained [9] up to leading order in terms of the slow-roll parameters as

ns � 1 ⇡ �2✏� 2✏(2✏+ ⌘)� �1(�2 � ✏)

2✏� �1
, (17)

r ⇡ 8(2✏� �1) , (18)

nt ⇡ �2✏ . (19)

After computing Eqs. (17)–(19) for a given potential and Gauss-Bonnet coupling function, the
rest is to check its consistency with the observational data.

However, in this work, we are interested in an inverse problem of reconstructing the inflaton
potential V (�) and the Gauss-Bonnet coupling function ⇠(�) from the observational data [2, 3]
using Eqs. (17)–(19). To reconstruct V (�) and ⇠(�) we use ns and r that are functions of N .
Therefore, first, we construct them in terms of N , then write N as a function of � by using
Eq. (16).

Since the observable quantities can be expressed as functions of N [1–3], it is convenient to
work with the slow-roll parameters as the functions of N and we obtain

✏ =
1

2

VN

V
, (20)

⌘ = �VNN

VN
= �2✏� d ln ✏

dN
, (21)

�1 = �4

3
4⇠NV , (22)

�2 = �⇠NN

⇠N
� 1

2

VN

V
= ✏� d ln �1

dN
. (23)

To write Eqs. (20)–(23) from Eqs. (11)–(14), we use expressions given in Appendix. By using
the Eqs. (20)–(23), we rewrite Eqs. (17)–(19) as

ns(N)� 1 =


ln

✓
VN

V 2
+

4

3
4⇠N

◆�

,N

, (24)

r(N) = 8

✓
VN

V
+

4

3
4⇠NV

◆
= 8Q(N) , (25)

nt(N) = �VN

V
. (26)

By using Eqs. (24) and (25), we write scalar field potential as

V (N) =
1

8c1
r(N)e�

R
[ns(N)�1]dN . (27)

Substituting Eq. (27) into Eq. (25), we find

⇠(N) =
3

44


1

V (N)
+

Z
r(N)

8V (N)
dN + c2

�
. (28)

Therefore, for given relations of ns � 1 and r, we can construct the scalar field potential and
Gauss-Bonnet coupling functions. Using Eq. (16) together with Eq. (25), one can find the
relation between the number of e-folding N and the scalar field � as,

Z �

�e

d� =

Z r
r(N)

82
dN . (29)
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Eqs. (43)–(44) with p = 2 = � into Eq. (22), we obtain

�1 =
2

↵+N
� 16N + q

8 (↵+N2)
. (64)

Although �1 has nothing to do with the blue spectrum for tensor modes, it provides a constraint
on model parameter range for q. Let us search for the valid range of �1 in which r > 0 yields.
In order the condition, �1 ⌧ �1 < 0, to be satisfied the model parameter q must take values in
following ranges:

8
><

>:

16↵(1�N)
↵+N < q  8N3+8↵N2�8↵N+8↵2+16↵

↵+N for 0 � N � 1

0 < q  8N3+8↵N2�8↵N+8↵2+16↵
↵+N for N > 1 ,

(65)

where ↵ > 0 for both cases. We plot �1(N) and r(N) in Fig. 6 as an example that the model
parameter q, particularly we set q = 16, which satisfies the Eq. (65) gives rise to negative �1 and
positive r.
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Figure 6: �1(N) and r(N) plot where we use Eq. (56) and Eq. (57) with c1 = 1, c2 = 0, 2 = 1,
↵ = 10�4, � = 2 and q = 16. Horizontal line in Fig. 6(b) represents the current upper limit of
the tensor-to-scalar ratio.

The most interesting and unique phenomenon for our model is that the constructed config-
urations of the potential and the Gauss-Bonnet coupling functions given in Eq. (56)–(57) give
rise to the blue-tilled spectral index for tensor modes.

5 Conclusion

We have investigated cosmological models with a Gauss-Bonnet term to reconstruct the
scalar field potential, V (�), and the Gauss-Bonnet coupling function, ⇠(�), from observable
quantities of ns and r. The main results of this work analytically derived in Eqs. (27)–(28)
where both ns and r are assumed to be functions of N . We chose certain ansatz for ns(N) and
r(N) as seen in Eqs. (30)–(31) that are in good agreement with observational data [2,3]. As an
exercise, we considered � = 1 and � = 0 cases of Eq. (31) in Sec. 3, respectively.

First we considered the model with � = 1 in Eq. (31) and obtained the scalar field potential
and the Gauss-Bonnet coupling functions, Eqs. (37)–(38). In this case, as ↵ ! 0 limit, our
model reduces to the Einstein gravity because of the Gauss-Bonnet coupling function becomes
either zero or constant such that it has no e↵ect to the background evolution. Our result of this
section is consistent with that of Ref. [7] in ↵ ! 0 limit. After this, we considered the model
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Blue-spectrum for 

Figure 3: Plot of numerical solution (solid) of Eqs. (3)–(5) when K = 0 and slow-roll solution
(dashed) obtained Eq. (60). We set parameters as; c1 = 1, c2 = 0, 2 = 1, ↵ = 10�4, � = 2,
q = 16, �0 = 13.28, C = 8.4⇥ 103 and �̇0 = 0.

4 The blue-tilt of the tensor modes in � = 0 model with p = 2

According to Ref. [11], an interesting feature of our model is that the spectrum of the pri-
mordial tensor fluctuations can be blue-tilted if the potential and the Gauss-Bonnet coupling
functions take a form given in Eqs. (56)–(57) where � = 2, respectively. The blue-tilt of the
tensor fluctuations is impossible to be achieved for conventional inflation models, those consid-
ered in Ref. [2, 3]. The Hubble rate H monotonically decreases during slow-roll inflation for
these conventional models of inflation, (Ḣ < 0), and it is implied that ✏ > 0. Therefore, one can
conclude that the spectral index of the primordial tensor fluctuations for conventional inflation
models is always negative, nt < 0, hence spectrum is red-tilted [14].

The situation is violated such that the spectrum is blue-tilted if the scalar field climbs up the
potential slope, see Fig. 4, in its early evolution before it rolls down in its late time evolution [11].

(a) (b)

Figure 4: Marginalized part of the potential (left) and the Gauss-Bonnet coupling (right) shown
in Figs. 2(a) and 2(b) where we set ↵ = 10�4. Vertical line corresponds to the field value, �⇤,
at which the potential takes its maximum value. At early stage, the e↵ective potential ⇠ makes
� climb up the potential slope. At late stage, � rolls down as usual.

We can see from Fig. 4 that if the initial value of the scalar field, �0, is larger than the field
value at which the potential takes its maximum, �⇤, such that �0 > �⇤, the scalar field needs
to climb up the potential slope otherwise it simple rolls down the hill. Therefore, we argue
that the blue-tilt of the spectrum for tensor modes would be realized when the scalar field is
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Reheating?!

FIG. 1. � (left panel) and ✏
0

(right panel) for three di↵erent values of ↵, in the model with n = m = 2,

with V
0

= m2

� = (5.34 ⇥ 10�6)2 and time shown in units of m�/2⇡. In the first case, represented by the solid

green line, ↵ = 0 and we have standard inflation, in which the field slow-rolls down to its minimum, oscillates

around it, and inflation ends (✏
0

> 1), allowing reheating to proceed and the standard late-time cosmology to

be recovered. However, for the second case, represented by a dashed blue line, ↵ = 0.5 and as discussed in

the main text, ✏
0

approaches a constant value, and � asymptotically approaches 0. � is not allowed to decay

significantly, and the continuously accelerating expansion of spacetime dilutes any matter that is produced to

negligible levels. Inflation continues forever and we cannot make contact with standard late-time cosmology

and recover the successes of the hot big bang model. Lastly, we also show the case of ↵ = 1. This is the dotted

red line on the plots above, in which � is constant and ✏
0

remains 0 forever; a perfect de-Sitter expansion.

reheating could be made to proceed via a second field without changing the late-time behaviour of �, we

could have a realisation of so-called quintessential inflation [28, 29] in which the Gauss-Bonnet-coupled

field serves as dark energy in the present epoch.

III. INSTANT PREHEATING AND GRAVITATIONAL PARTICLE PRODUCTION

A mechanism that has been used to produce particles in non-oscillating theories is instant preheating

[30, 31]. Typically this occurs when after inflation, instead of oscillating around a local minimum, the

field � continues to grow in magnitude. This would happen, for example, when the potential is flat or

steeply decreasing after inflation. Then, through a coupling to matter fields of the form, L = �1

2

g2�2�2

8

Accounting for decays, covariant conservation of stress-energy (rµT
µ⌫
� = �rµT

µ⌫
m ) implies that the

radiation fluid’s energy density then evolves according to,

⇢̇� + 4H⇢� = ��̇2 . (6)

Note that this equation is often seen instead in the form, ⇢̇� + 4H⇢� � �⇢� = 0, which implies ⇢̇� +

3H (⇢� + p�) + �⇢� = 0 but this is inconsistent with eq. (4) as can be seen by using the definition of

⇢� and p� from the Friedman equations. While the interaction term �⇢� is usable in standard chaotic

inflation where ⇢� = �̇2/2 + V and the inflaton oscillating about its minimum satisfies V ⇡ �̇2/2 such

that ⇢� ⇡ �̇2, these approximations do not generally hold when a Gauss-Bonnet coupling is present.

We proceed to recursively define the usual slow-roll parameters ✏n,

✏
0

= � Ḣ

H2

, ✏n =
✏̇n�1

H✏n�1

, (7)

as well as the Gauss-Bonnet flow functions (described in e.g. [5, 26]), �n,

�
0

= 4ĠH , �n =
�̇n�1

H�n�1

. (8)

At early times, as is usually the case with inflation, these parameters are small and obey ✏n , �n ⌧ 1,

and it is in this regime that observable modes in the primordial power spectrum leave the horizon. An

analysis based on these slow-roll parameters can hence be used to determine quantities of interest such as

the tensor to scalar ratio, r, given some specific forms for the potential and coupling function. Following

on from previous work, we are interested in the class of models where the potential is a positive power

law and the coupling function is a negative power law, that is,

V (�) = V
0

�n , G(�) = G
0

��m , (9)

and in particular, we will mostly discuss the case n = m for simplicity, though many of the points

discussed will hold for other choices, at least qualitatively. It is helpful to define the combination,

↵ =
4V

0

G
0

3
, (10)

as an alternative parametrisation of the strength of Gauss-Bonnet coupling, as it is this combination

which appears in many of the results. In particular a leading order slow-roll analysis shows that r /
(1 � ↵) [5]. That is, increasing ↵ reduces the tensor to scalar ratio, and the inclusion of a Gauss-

Bonnet coupling can hence bring models with overly large tensor amplitudes back into agreement with

experiment with a large enough ↵. Using ↵ is also convenient from the perspective that we can impose

5

Carsten, et al PRD 94, 023506 (2016)



FIG. 1. � (left panel) and ✏
0

(right panel) for three di↵erent values of ↵, in the model with n = m = 2,

with V
0

= m2

� = (5.34 ⇥ 10�6)2 and time shown in units of m�/2⇡. In the first case, represented by the solid

green line, ↵ = 0 and we have standard inflation, in which the field slow-rolls down to its minimum, oscillates

around it, and inflation ends (✏
0

> 1), allowing reheating to proceed and the standard late-time cosmology to

be recovered. However, for the second case, represented by a dashed blue line, ↵ = 0.5 and as discussed in

the main text, ✏
0

approaches a constant value, and � asymptotically approaches 0. � is not allowed to decay

significantly, and the continuously accelerating expansion of spacetime dilutes any matter that is produced to

negligible levels. Inflation continues forever and we cannot make contact with standard late-time cosmology

and recover the successes of the hot big bang model. Lastly, we also show the case of ↵ = 1. This is the dotted

red line on the plots above, in which � is constant and ✏
0

remains 0 forever; a perfect de-Sitter expansion.

reheating could be made to proceed via a second field without changing the late-time behaviour of �, we

could have a realisation of so-called quintessential inflation [28, 29] in which the Gauss-Bonnet-coupled

field serves as dark energy in the present epoch.

III. INSTANT PREHEATING AND GRAVITATIONAL PARTICLE PRODUCTION

A mechanism that has been used to produce particles in non-oscillating theories is instant preheating

[30, 31]. Typically this occurs when after inflation, instead of oscillating around a local minimum, the

field � continues to grow in magnitude. This would happen, for example, when the potential is flat or

steeply decreasing after inflation. Then, through a coupling to matter fields of the form, L = �1

2

g2�2�2

8

Accounting for decays, covariant conservation of stress-energy (rµT
µ⌫
� = �rµT

µ⌫
m ) implies that the

radiation fluid’s energy density then evolves according to,

⇢̇� + 4H⇢� = ��̇2 . (6)

Note that this equation is often seen instead in the form, ⇢̇� + 4H⇢� � �⇢� = 0, which implies ⇢̇� +

3H (⇢� + p�) + �⇢� = 0 but this is inconsistent with eq. (4) as can be seen by using the definition of

⇢� and p� from the Friedman equations. While the interaction term �⇢� is usable in standard chaotic

inflation where ⇢� = �̇2/2 + V and the inflaton oscillating about its minimum satisfies V ⇡ �̇2/2 such

that ⇢� ⇡ �̇2, these approximations do not generally hold when a Gauss-Bonnet coupling is present.

We proceed to recursively define the usual slow-roll parameters ✏n,

✏
0

= � Ḣ
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FIG. 3. Six late-time evolutions of � for the case & = 0.05 and ↵ between 10�1 and 10�6. As ↵ decreases (from

top left to bottom right, along the rows) the strength of the Gauss-Bonnet coupling is decreasing and hence the

damping e↵ect becomes less extreme, allowing more oscillations to occur for a longer time. Oscillations in each

case occur about the point ⇤ as defined by eq. (21). The oscillations are non-sinusoidal, with the deformation

in the waveform due to the varying strength of the Gauss-Bonnet coupling. In particular, as � approaches the

point & where the coupling is infinite, it experiences a larger force returning it to the equilibrium at ⇤ than

it experiences for � > ⇤ where the Gauss-Bonnet coupling is small. Time is shown in units of m�/2⇡, and

n = m = 2.

value. Since, however, ⇤ 6= &, and the Gauss-Bonnet coupling is still finite at this point, it is possible

that oscillations about this point could occur. Numerically we study this possibility for a range of ↵

values and find that for very small ↵, it is possible for very small, very short-lived and highly damped

non-sinusoidal oscillations to occur about the point ⇤. A series of plots of this are shown in figure 3.

Despite oscillatory late-time behaviour being possible in this regime, we find perturbative reheating

cannot proceed nevertheless. The oscillations are too brief and low-amplitude to kick-start a significant

enough amount of particle production to lead to radiation domination. Furthermore, as the field behaves

like a cosmological constant, the expansion of the universe settles into a de-Sitter phase with only small

deviations from exponential growth due to the minute oscillations, and any small amount of radiation

that manages to be produced is quickly diluted away.

To proceed further we must consider negative values of &. This is a more hopeful approach in the first

place, as the divergence in the Gauss-Bonnet coupling now occurs at negative field values and the field
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similar limitation to impede the progress of gravitational particle production, even in cases such as the

trajectories in figure 2 where the sharp changes in the expansion rate of the universe may give rise to

more e�cient than usual gravitational creation of particles.

IV. PERTURBATIVE REHEATING WITH GENERALISED COUPLINGS

One way of proceeding with this problem we found was to allow slightly more general couplings than

those in eq. (9). In particular, as there is no special reason to impose that the bare vacuum expectation

value of the inflaton potential coincides with the divergent point in the Gauss-Bonnet coupling, we

consider functions of the form,

V (�) = V
0

(� + &)n , G(�) = G
0

��n . (19)

With the inclusion of a non-zero minimum in the potential at � = &, we can potentially avoid the

problem of the late-time damping of the inflaton as now it is free to cross and oscillate about the point

& due to a weaker Gauss-Bonnet coupling at this point, for & su�ciently far from 0. For convenience,

we shall perform the field redefinition � ! � � &, and obtain,

V (�) = V
0

�n , G(�) = G
0

(� � &)�n , (20)

so that the new parameter & is considered a parameter of the interaction between the Gauss-Bonnet term

and the inflaton. This new model can also be seen as a prototype for other choices of the coupling which

become largest (but not necessarily infinite so as in the pure inverse-power-law case) as the inflaton

reaches its minimum, should some other theory or argument motivate such a choice of coupling.

Depending on the magnitude of & there are multiple regimes of distinct phenomenology. Firstly, for

positive &, the Gauss-Bonnet coupling diverges at positive values of �. Assuming that we consider model

of inflation where the field � begins at large positive values, this leads to a similar problem to the &

= 0 case in that the inflaton is impeded from rolling down its potential before even approaching the

minimum; instead of asymptotically approaching zero, the field will approach a di↵erent constant value

that we shall call ⇤, whose value we find (by solving the equation of motion for a constant field) to be,

⇤ =
&

1 � ↵
1

n+1

, (↵ 6= 0 , & > 0) . (21)

Indeed, even if we choose parameters such that the constant value � should approach is larger than

the initial condition for �, we have observed numerically that the field will increase to approach this
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Figure 1: Numerical plot of Eq. (50) and Eq. (51) with c1 = 1, c2 = 0, 2 = 1 and n = 2.

3.2.2 p = 2 case

From Eq. (45) with p = 2, we obtain

N =
p
↵ sinh

✓r
8

q
�

◆
, (55)

where ↵ > 0 and q > 0 are assumed. By substituting Eq. (55) into Eqs. (43)–(44), we obtain

V (�) =
q

8c1↵
sech2

✓r
8

q
�

◆
↵+

p
↵ sinh

✓r
8

q
�

◆��
, (56)

⇠(�) =
3

44

2

64
q
⇣
↵+

p
↵ sinh

⇣q
8
q�

⌘⌘
+ 8(1� �)↵ cosh2

⇣q
8
q�

⌘

q(1� �)
⇣
↵+

p
↵ sinh

⇣q
8
q�

⌘⌘�
c1 + c2

3

75 , (57)

where � 6= 1. In Fig. 2, we plot Eqs. (56)–(57) for � = 2. Previously for p = 1 case, we were able
to see that potential and Gauss-Bonnet coupling functions hold inverse relation to each other
when c2 = 0. Unfortunately, in p = 2 case such relation seems not to be hold even when c2 6= 0
as shown in Fig. 2(c).
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Figure 2: Numerical plots of Eqs. (56)–(57) with c1 = 1, c2 = 0, 2 = 1, � = 2 and q=16. The
bump shown in Fig. 2(a) increases as ↵ increases and vice versa.

In ↵ ! 0 limit, also as is seen in Fig. 2, Eqs. (56)–(57) reduce to

V (�) ⇠ tanh2
✓r

8

q
�

◆
, (58)

⇠(�) ⇠ � 3c1
4
p
↵4

csch

 s
82

q
�

!
. (59)

Fig. 2 shows the general shape of reconstructed potential is similar with that of a “T-model” [10]
with a small bump on the side which eventually disappears as ↵ goes zero and vice versa.
The existence of such bump in the potential plays an important role for possible blue-tilt of
the primordial tensor fluctuations as it is discussed in Ref. [11]. Before we go into details of
discussion of the blue spectrum of the tensor mode in the next section, let us obtain slow-roll
solution to the background equations of motion. Recalling approximate Eqs. (8)–(10) together
with Eq. (56) and Eq. (57) for � = 2, we obtain following slow-roll solution for scalar field in
terms of N ,

�(N) = �
r

q

82
arcsinh

 
Np
↵
�

s
82

q
C

!
. (60)

where C is the arbitrary constant. In Fig. 3, we compare numerically solution of Eqs. (3)–(5)
with slow-roll solution in Eq. (60). It has been shown in Fig. 3 that slow-roll solution fits well
with exact and numerical solution during inflation.
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