A Pedagogical Review on Various Inflationary Models

Bumseok KYAE (Pusan Nat'l Univ.)

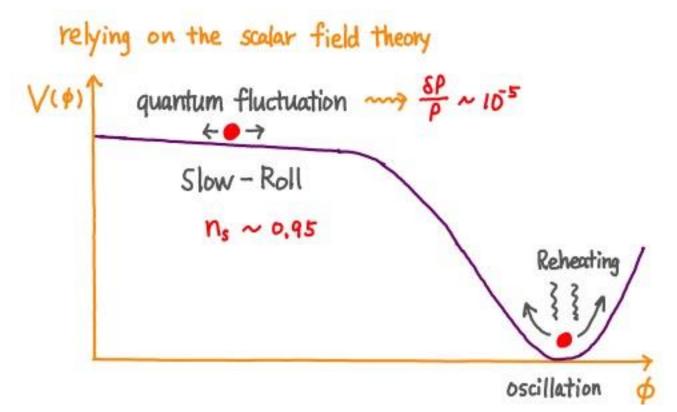
> Nov. 19 in 2016 @ SKKU

Inflation (paradigm)

 resolves the Horizon problem and the Flatness problem.

 $[d_{H}^{H} = (e^{Ht} - 1)/H]$ $[\Omega - 1 = k / H^{2}e^{2Ht}]$

- provides seeds for galaxy formation.
- dilutes unacceptable topological defects.



Slow Roll conditions:

$$\epsilon_{\phi} \equiv M_{pl}^{2} (V'/V)^{2} \ll 1$$

 $\eta_{\phi} \equiv M_{pl}^{2} |V''/V| \ll 1$

which implies $|m_{\phi}^2| \ll 3H^2$.

Employing the scalar field theory with a small mass

→ **SUSY** is helpful, but NOT enough !!

A Light enough Scalar Field (= inflaton) with a proper potential is necessary for successful inflation !!

How to get a Light Scalar?

- by breaking a continuous (approx.) global symmetry
 - → (psuedo-) Goldstone boson

• by introducing Supersymmetry: Light fermions by the chiral sym. guarantee Light scalars.

- by introducing a strong interaction
 - → composite scalar

"η Problem" in SUGRA

 $V_{F} = \sum_{i} \left| \frac{\partial W}{\partial \phi^{i}} \right|^{2} \equiv \left| \frac{\partial W}{\partial x} \right|^{2}$ $\int_{V_{F}} \left| \log_{i} SUSY \right|^{2} = \left| \frac{\partial W}{\partial \phi^{i}} \right|^{2} = \left| \frac{\partial W}{\partial \phi^{i}} \right|^{2}$ $\int_{V_{F}} \left| \log_{i} SUSY \right|^{2} = \left| \frac{\partial W}{\partial \phi^{i}} \right|^{2} = \left| \frac{\partial W}{\partial \phi^{i}} \right|^{2}$ $V_F = e^{K_{M_m}} \left[D_z W (K^{-1})^{z \overline{z}} \overline{D_z W} - \frac{3}{M_m} |W|^2 \right]$ = e^{K/Mm} A > O For $K = |\phi|^2 + ...,$ $V_{\rm F} \approx \Lambda + (\Lambda / M_{\rm pl}^2) \|\phi\|^2 + \dots$ → **η** = 1 !!

"Chaotic Inflation"

 $V(\phi) = \lambda \phi^{p} \qquad (p > 0)$

$$\begin{split} \epsilon &= (M_{P}^{2}/2) \ p^{2} \ \phi^{-2} \ , \ \eta = M_{P}^{2} \ p(p-2) \ \phi^{-2} \\ n-1 &= -M_{P}^{2} \ p(p+2) \ \phi^{-2} \quad (\text{with } \phi \text{ to be evaluated at } t = t_{*}) \\ \phi^{2}(t_{*}) - \phi_{e}^{-2} &= 2 \ N_{e} \ (\phi(t_{*})) \ p \ M_{P}^{2} \quad (\phi^{2}(t_{*}) >> \phi_{e}^{2}) \\ \text{So} \quad n-1 \approx - \ (p+2) \ / \ (2 \ N_{e}) \approx - \ (p+2) \ / \ 100 \ \text{ for } N_{e} \approx 50. \\ p=2 \ \text{fits } n \approx 0.96, \ \text{but } \ \phi(t_{*}) \approx 14 \ x \ M_{P} \ ?? \\ P_{R} \approx V \ / \ (24\pi^{2} \ M_{P}^{4} \ \epsilon) \approx 2.4 \ x \ 10^{-9} \ \text{requires } m \approx 10^{13} \ \text{GeV} \ ! \end{split}$$

"Natural Inflation"

$$V(a) = \Lambda^4 [1 - \cos(a/f)]$$

[e.g. by instnaton effect , $\Lambda^4 \approx f_{\pi}^2 m_{\pi}^2$ in QCD]

 $\mathbf{f} > \mathbf{3} \, \mathbf{M}_{\mathbf{pl}} \qquad \text{for } \eta \ll \mathbf{1} \, ,$

where **f** is the $U(1)_{PQ}$ breaking scale.

 $U(1)_{PO}$ above the quantum gravity scale ?

"Natural Inflation"

Can be improved with **2** axionic inflatons !!

$$V(a_1,a_2) = \Lambda_1^4 [1 - \cos(\alpha a_1/f_1 + \beta a_2/f_2)] + \Lambda_2^4 [1 - \cos(\gamma a_1/f_1 + \delta a_2/f_2)]$$

[Kim - Nilles - Peloso]

 $f_1, f_2 \sim O(M_{GUT})$ for a proper alignment

Non-SUSY Hybrid Inflation

 $V(\sigma,\phi) = (M^2 - \lambda\sigma^2)^2 / 4\lambda + (m^2/2)\phi^2 + (g^2/2)\phi^2\sigma^2$

For $\phi > M/g$, $\sigma = 0$, but

n = 1 + (λ m² M_P² / π M⁴) > 1

SUSY Hybrid Inflation

Introduce U(1)_R sym.

[Copeland etal. '94]

$$W \rightarrow e^{2i\gamma} W$$
; $\phi \rightarrow e^{2i\gamma} \phi$

$$K = |\phi|^2$$
; $W = \phi m^2$

("K" is the minimal Kahler pot., and "W" is of the "Polonyi" type.)
"φ²", "φ³", etc. don't appear in W !!

SUSY Hybrid Inflation

$$K = \phi \phi^{*} (1 + (0, 1 - 0, p)) \frac{\phi \phi^{*}}{M_{p}^{*}} + \cdots) \qquad W = \phi m^{2}$$

$$D_{\phi} W = \frac{\partial W}{\partial \phi} + \frac{\partial K}{\partial \phi} \frac{W}{M_{p}^{*}} = m^{2} + \phi^{*} \frac{\phi m^{2}}{M_{p}^{*}}$$

$$= m^{2} (1 + \frac{1}{M_{p}^{*}})$$

$$K_{pp*} = 1$$

$$V_{F} = e^{1 \frac{|\phi|^{2}}{M_{p}^{*}}} \left[m^{4} (1 + \frac{1}{M_{p}^{*}})^{2} - 3 \frac{|\phi|^{2} m^{4}}{M_{p}^{*}} \right]$$

$$\approx (1 + \frac{|\phi|^{2}}{M_{p}^{*}} + \frac{1}{2} \frac{|\phi|^{4}}{M_{p}^{*}} + \cdots) m^{4} \left[1 - \frac{|\phi|^{2}}{M_{p}^{*}} + \frac{1}{M_{p}^{*}} \right]$$

$$= m^{4} (1 + 0 + \frac{1}{2} \frac{|\phi|^{4}}{M_{p}^{*}} + \cdots)$$

The Hubble scale mass term is accidentally cancelled!

Let us introduce also the waterfall fields Ψ , Ψ^c .

$$W = \phi(m^{2} - \psi\psi^{c});$$

$$V = |m^{2} - \psi\psi^{c}|^{2} + |\phi|^{2}(|\psi|^{2} + |\psi^{c}|^{2})$$

At SUSY minimum, $\boldsymbol{\Phi} = \mathbf{0}$, $\boldsymbol{\psi}\boldsymbol{\psi}^{c} = \mathbf{m}^{2}$

But if $\Phi \gg m$, then $\Psi = \Psi^c = 0$ and

 $W_{eff} = \phi m^2 \rightarrow V = m^4$: semi-stable false vacuum

By including the quantum correction,

[Dvali, Shafi, Schaefer, '94]

$$V_{inf} = m^4 [1 + (1/8\pi^2) Log (S/\Lambda)]$$

In this model,

$$\delta T / T \sim 10^{-5} \sim (m / M_{pl})^2$$

So
 $m \sim 10^{16} \text{ GeV !!}$

Inflation can be associated with GUT breaking mech.!!

Problems in SUSY Hybrid Infl.

Prediction: $n_{\zeta} \approx 1 + 2 \eta = 1 - 1/N_e = 0.98$ for $N_e = 55-60$,

while data of WMAP is $n_{\chi} \approx 0.96$.

($N_e = 25$ for $n_{\chi} \approx 0.96$ is not enough.)

Problems in SUSY Hybrid Infl.

 \rightarrow Need higher order terms in W, but the perturbativity?

• $K \supset |S|^4 / M_P^2$ gives rise to the η problem !!

D-term Inflation

[with a gauged U(1) sym.]

$$V_{\rm D} = (g^2/2) (|\phi_+|^2 - |\phi_-|^2 - \xi_{\rm Fl}^2)^2$$

With $W = \lambda \phi_0 \phi_+ \phi_-$,
 $V_{\rm F}/\lambda^2 = |\phi_+ \phi_-|^2 + |\phi_0|^2 (|\phi_+|^2 + |\phi_-|^2)$

For $\phi_0 >> \xi_{FI}$, $\phi_+ = \phi_- = 0$ and $m_+^2 = \lambda^2 |\phi_0|^2 \pm g^2 \xi_{FI}^2$

 $V_{inf} = (g^2/2) \xi_{FI}^4 [1 + (g^2/8\pi^2) \log(|\lambda \phi_0|/\Lambda)]$

Problems in D-term Infl.

No Hubble induced mass term for the inflaton !!

But

- n_ζ ≈ 0.98
- Cosmic Strings are induced after end of inflation.

Natural Inflation in SUGRA

Introduce a shift sym.

 $\phi \rightarrow \phi + 2\pi i f$ (i.e. $a \rightarrow a + 2\pi f$, axion)

 $K = K(\phi + \phi *)$ or $K = K(Re\phi)$ $W = w_0 + m^3 e^{-\phi/f}$

"a" doesn't appear in K !!

 $V_F \sim \Lambda^4 [1 \pm \cos(a/f)]$, $f > M_P$

Chaotic Inflation in SUGRA

Introduce a shift sym.

 $\phi \rightarrow \phi + 2\pi i f$ (i.e. $a \rightarrow a + 2\pi f$, axion)

softly breaking the shift sym. with a small m

 $V_{\rm F} = m^2 | \phi |^2 + \cdots$

Higgs Inflation (non-SUSY)

 $L/(-g)^{1/2} = (M_P^2/2) \Omega^2 R - (\partial h)^2/2 - V$ where $\Omega^2 = 1 + \xi h^2 / M_P^2$, $V = (\lambda/4)(h^2 - v_{EW}^2)^2$

$$g_{\mu
u}
ightarrow \Omega^2 \, g_{\mu
u}$$

 $L/(-g)^{1/2} = (M_P^2/2) R - [(1+6\xi^2h^2/\Omega^2M_P^2)/\Omega^2](\partial h)^2/2 - V/\Omega^4$

Higgs Inflation (non-SUSY)

 $h >> M_P / \xi$, $\phi \equiv (3/2)^{1/2} M_P \log \Omega^2$

 $L/(-g)^{1/2} = (M_P^2/2) R - (\partial \phi)^2/2$

- $(\lambda M_P^4/4 \xi^2) (1 - \exp[-(2/3)^{1/2} \phi/M_P])^2$

- $n_{\zeta} \approx 0.97$, $r \approx 0.003$ but
- λ / ξ²≈4x10⁻¹¹ for δT/T~10⁻⁵
- Vacuum stability, unitarity, perturbativity, etc. ??

Starobinski type Infl.

$$L/(-g)^{1/2} = (M_P^2/2) [R + (\xi^2/2\lambda) R^2/M_P^2]$$

$$g_{\mu\nu} \rightarrow \Omega^2 g_{\mu\nu}$$
,
 $\Omega^2 = \exp[(2/3)^{1/2} \phi/M_P]$

$$L/(-g)^{1/2} = (M_P^2/2) R - (\partial \phi)^2/2$$
$$- (\lambda M_P^4/4 \xi^2) (1 - \exp[-(2/3)^{1/2} \phi/M_P])^2$$

• the same as the Higgs infl. So still $\lambda / \xi^2 \approx 4 \times 10^{-11}$

Conclusion

Inflation is inevitable in cosmology,

but still hard to be realized in field theory.