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Motivation

The spatial topology of the Universe is an unresolved problem.
Observational Data:
Qr = 0.0001+0.005 (95%, Planck TT+lowP+lensing+BAO)
It is never manifest if the Universe is flat, closed, or open.
There are trials for inflation models in closed/open universe
:- predict some peculiar feature distinguishable from FLAT models

:- but, still beyond the current observational resolution

We may consider an object such as a black hole in different spatial topologies.

Curiosity: blackhole in closed spacetime



Geometry?




Metric

Introduction (S3 and H3)
. 4
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(t,r, 0, @) coordinate system,
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ds? = =dt* +

(t,x.0,d) coordinate system

r = Rpsin X s ('7‘ < RO)*

ds? = —dt* + R2dx* + R sin? xdQ3.

(Rp < 7r < 00),
ds* = +dt* — R3dx* + R cosh? xdQ3.

r = Ry cosh y,

r = Rpsinh y, (0 <r <o),
ds* = —dt* + R3dx* + R} sinh? xdQ3.

Spatial Embedding, +: S3, -: H3

k=+1:S3, k=-1: H3

Closed static S3

Closed time-dependent S3

Hyperbolic spacetime



Effective Energy-Momentum Tensor

= l . ey 4 4 - o) L
G, = ?ﬁdlélg(& LL1.1) =38717| :constant, -: S3 (r>0), +: H3 (r<0)
0

1
» p = —gp = const. . Eq_ of State

R3: Schwarzschild BH if M=0, Minkowski Space: spatially flat

.) ¢ .)‘ _1 ¢ ¢ ¢
ds® = — (1 - ﬂ) dt* + (1 ~ ﬂ) dr?® 4 r2dQ3

Can we have such a black hole parameterized by MASS in S3/H3?

. L : :
T} = o7 diag(3,1,1,1) with effective EM tensor
4 0

ds® = —f(r)dt* + g(r)dr* +r*dQ%. search BH solution

» NO such a solution exists



Metric ansatz and Anisotropic fluid:

Metric ansatz: Spherically symmetric solution,
ds® = —f(r)dt* + g(r)dr?® + r?d#? + r? sin” 0 do*.

Spherical

Stress energy tensor symmetry

T# — dlag(_pa P1, p21p2)'

P1 = w1p
P2 = Wap,

The radial pressure may not be the same as the angular one.



Einstein equation:
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Bianchi identity

]_ / 2 —_ 14w _ 2(wy—w2) M,
§f7(p+p1)+p’1+ (plr )0 5 pmpuf R < @

Solution to Eq.@ g(r) = - 2A14(T)/7_; M(r) = 47r/ 2 p(r’)dr,

Eq‘ determine relation bet. fand gbyw,.
w1 — 2M) ¥ r 1
f(r) = (ggu 31 ex p[l—{— )/ ] (r - ) exp [(1+w1)/ r—2M(r)dT]'
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For w,=w, =-1/3, solutions in S3 and H3.

For w,=w, = w>0, there are many works for perfect fluid stars.
(Usually, the solutions are solved numerically.
The star fails to form a blackhole.
An outer boundary is need to form a stable system.)
example: a photon star w=1/3. Sorkin, Wald, Zhang, 1981. etc.

For w,= -1 another class of exact solutions.

In general, one may solve the equation at least numerically.



Black Holes in S3/H3 with Static Perfect Fluid with w=-1/3
B

Introduce “Static Perfect Fluid” satisfying S3/H3 Equation of State

(t,r,0,®) coordinate system,

metric ansatz

ds® = —f(r)dt* + g(r)dr® + r2dQ3.

EM tensor

T} = diag[ — p(r), p(r), p(r), p(r)],

p(r) = —30(1)

Einstein Eqs

0
G = —3+ 13, — g = —STA(T)
11 f
1
= —— _— = 8
G 3T Ty = S()

Require S3/H3 Eq. of State

Solutions

) =g {17

STy

20| B2 + a)] 1/2} |
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f =22 ) = -T2 4wt

C

: 2-parameter solutions




Define new parameters :

3-space curvature scale

T

RO Lol (K)= 2R3|51>.

Mass Parameter

(t,x.0, ) coordinate system

Class p(x) () 9(x)
Sl = (1= K cot\) 2 (pe > 0) 0
S-I1 2= (15 K tanh y) 2 (pe < 0) ~ 500
Hs —ﬁ (1F K coth x) pf,f), (pe < 0) —8W§(X)




- r=Rosiny (0<x<m). a<0,8<0,and 1 —4a?p° >0

—L(I—Kcot ) dt? + it
87 R3pe X 1 — K coty

=F

ds® =

dy? + Rg sin? de%.

(1) Black Hole Solution  If K=0, it is S3



F o p

As K — o0, xp — /2

10- horizon
1 [xn =cot™ (1/K)

Singularity -

—@ Singularity

w
A

at north pole | 22X 2 2% I IX T atsouth pole
_I X : naked
_10]
2 3 2 R(Q) 2 2 .2 2
ds® = (1 — K cotx)dt® + dx* + R§sin® xdS2s.

- 87 R2p. 1 — K coty



Curvature

Kretschmann
1001
' Ricci
30+
Singularity - — ———
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Conformal diagram for S3-I black hole. There are two singularities at y = 0 (north pole:
center of the black hole) and at y = 7 (south pole: naked). The solid diagonal lines represent
the horizon at y;, = cot™!(1/K’). The dashed lines are the y-constant lines. The t-constant
lines are straight lines passing the center of the diagram (not shown). Outside the horizon,
except the outgoing null rays, none of the geodesics can reach the naked singularity at the

south pole.



Geodesics

ds® = — F(v)dt? Ndx? + R2b%(v)d0?
S STR, (x)dt= + g(x)dx~ + Rgb~(x)d2%

1 d dt
t-eq. : Fo) N [F(x)a] =0, . it
pea s L[] ()7y =
b grgan | Wan

const. = F,

b%x)% = const. = L.

On the § = /2 plane, the x-equation becomes

dx* dxv B
Jww™ax ax o

¢ = 1,0 for timelike and null geodesics,

L2

Vo) = 3F00 |

s]-

2x) R

Effective Potential



- F(x)=1-K coty, b(x) = siny,

V(6) = ~(1 — K cot )( L' = )
= =(l - A coty .
' 2 Y Gin? x Rj
Timelike Null
10 10
3
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As L increases, : ol As K decreases, :
_10 - L]
stable orbit appears. : stable orbit appears. |
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(a) Ss timelike geodesics for Ry = 1 and K £ 0.4 (b) S3 null geodesics for Ro = 1 and liIJ =1
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NO geodesic can reach the singularity at south pole!!!



Positive energy condition

pr) =~ {1 = 2200 (502 4 ) } 1
el ‘pm - —gpm‘
=22, (1) = =222 + @)p(r)

\rho is proportional to f(r).

To have positive definite energy density,
\rho should change sign at the horizon.

- The energy density never be absorbed into the horizon.

- The horizon size may not change.



Solution 2: anisotropic fluid

The case: w,= -1.

© 2 M _, L ypolrrM wd
' M 2 log 5f; + M wy = 3
Density and radial pressure:
(1—2202)1\ 1
—_ — 8mrriwz+2 w2 # 2
8mwr3 w2 = 2
2M A
ds? = — f(r)dt* + i + r2df? + r? sin® 6dg*; Jr)= S w2 7
(7") (1—|—2M10g %}) Wo =

| =



Singularities:

If A = 0, the metric is nothing but vacuum Schwarzschild spacetime.
Therefore, we restrict’ A # 0.

Scalar curvature and Krestchmann invariant:

2A (wy — 1)(2wy — 1)

R = 2(w2+1)

Singular at the origin unless wy < —1 or wy = 1/2, 1.

R R0 _ 48 M2 L 16AM(wp +1)(2wy +1) 4A? (4wj + 4wj + 5w + 1) |

.r6 ,,.2'w2+5 T4w2+4
is nonsingular at the origin if (M = 0 and w, < —1).

If wy < —1, r — o0 is singular.

Only if (M = 0 and w2 = —1). the solution is nonsingular both for
the origin and asymptotic region.

—> This is nothing but the vacuum (anti)-de Sitter solution.



Classification of solutions:

Type |: Schwarzschild-like

Type ll: de Sitter-like

Type lll: Schwarzschild-de Sitter-like

" Type__III : 2-horizon blackhole
N \ Type V: Static Naked solution
[ Type VI ype 11
2L 1

[, .. . , , e N L : Time-dependent Singular
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 1: Typical form of (f(r) for type I to VL

One of the two quantities p and p; must be negative (w; < 0).
Therefore, the sign of energy density changes when one crosses an event horizon
because t and r exchange their roles as a time and space coordinates.

In the presence of a horizon, no metric has a positive definite energy density!




Type having both the static and time-dependent geometries :

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
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: Static geometry
of ]
L ""‘H
-1 i
Time¢-dep geometry
21
010‘ - ‘015‘ - ‘110‘ - ‘1f5‘ - ‘210‘ - ‘215‘ - ‘310

e Type I, Modified Schwarzschild geometry.

— Time-dependent geometry

(wg >1/2,A > 0), (we =1/2, A<0), (we <0,M >0,A <0)
— Static geometry

0<wy<1/2,M >0), (we=0,M >0,A <1).



Type having only the static geometries:

Static geometry The region with positive f(r) is
physical.

v

11
A + : Blackhole horizon

7z : Cosmological horizon

- inner horizon

e Type II, Modified de-Sitter geometry.
(we =0,A>1,M < 0)s, (w2 <0,A>0,M > 0)s.

e Type III, Modified Schwarzschild-de Sitter geometry.
(wy < 0,A >0, M > [z A~Y/12w2]y

|1_2w2|1/[2w2|—1

e Type IV, Blackhole geometry having two horizons.
(wg > 1/2,A <0, M > wy/(2wy — 1)171/2w2 5 |A|1/2w2), (wy = 1/2,M > A/2 > 0), , (w2 =1/2,M =
1—-2wo
AJ2,A > ), (0 <wy < 1/2,A >0, —wo (1 — 2wy) 2wz AV (w2) < M < 0),.
e Type V, Static solutions with naked singularities.
(we >1/2,A < 0,M < 2 IA|1/2w2), (wp =1/2, M < A/2)s, (wa =1/2,M = A/2,0 < A < e)s,

(2w2_1)1—1/2'w2

(0 < wy < 1/2,A > 0, —wy(1 — 2wy) s~ AV (@w2) < M < 0),, (wy = 0, M < 0,A < 1),, (wy < 0, M <
0,A < 0),.




Type having only time-dependent geometries:

The region with negative f(r) is
physical.

Time-dependent geometry

e Type VI, Time dependent solution having initial or future singularity without horizon.
(we =0,A>1,M >0), (wa <0,A>0,0<M< [02] A1/ 12w2]y,

|1_2w2|1/|2w2|—1

Of all, only Type |, lll, IV include blackhole solutions.



Static geometry
Type | O<we<1/2,M >0), (we=0,M>0,A<1).

r~ 0 is governed by (-2M/r) term. (singular)
Asymptotically flat: f(r) 2> 1.

The energy density for r > rg is positive definite only if 0 < wy < 1/2

Surface gravity: <« = f'(rg)/2.

If wy = 0,the metric becomes,

2M’ dy?
2 _ 2 a2 i a2 2
ds ——(1— - )d’]‘ —}—1 > ,/y+(ay) (dB* + sin” 6do~),

M' = M/a3. y=r/a o=+1-A,



Stability _

Stress energy tensor:

ut = [e7V/2/1+v2,e M 2,0,0], z¥ = [e /%, e"M2\/1 4 02,0,0].

radial unit normal vector

Gauge degree of freedom:
Linearized transform: t =t + §t(t,7),  r =7+ dr(t,7),
ds? = —e) (14 6v)dt2 + e (1 + 6X)dr? + e (1 + 5p)dQ?
= —e" M1 4 6v 4 V)61 + 1ot + 20t]dE? + 2[e*0dr — e06t'|didF
+eM M1 4 6N + Moo + Aodt + 267]1di? + eHo ™) [1 4 S + phdr + fiodt] dQ?

Gauge choice: §y, =0 = edr = e”08t/, 0fi = Op + pgdr = 0.

Omitting ~in 7 and ¢, this lead to the metric ansatz:
ds? = —e”0(1 4 6v)dt® + e (1 + 6))dr? + et d?




First order Einstein equation:

1+ 3w,

oV = widN + (

oA = f(r {w SN + (2w (1

1 3 it
[‘5‘7*@*

Put uo(r) = 2logr,
Let us set 6\ = e~ g (7).

—w?g1(r) = f2(r) { wigy (r) +

1o
2w OA.
5 + 1,u0 )Mo
wg)uod)\'
U”I 4,LL”2 4:“*0 ]
wy — w
K Ty Ko ) : ( pg ) :
2(w1 — wo) 2wy
—2g1(r) - S5 (r)

\ Negative sign and negative w, implies that the system is
unconditionally unstable.
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positive eigenvalue : —87R}|p.|w? > 0
- w: imaginary

- UNSTABLE!!



yaz— g HVE B(2) 4 —210(2) =[-87RI|p|w?(2),| | eigenvalue

v

since this is negative, there exists always unstable modes
for any type of V

Fate of Black Holes

1) BH may collapse: may leave some cosmological remnants

2) BH may remain while BACKGROUND expands
:- since the b.g. matter is perfect fluid,
the instability may imply the Friedmann expansion
:- BH may sustain its nature in expanding b.g. Universe



'*2(1%) = 1+ €a(t)| :scale factor

S
ds? = —fo[\.]dz‘ LS >{JO[ ](1\2+Rgb2 A2 |

K — K +¢€r(t)| : horizon location

4

Solutions: a(t) = ait + aop, k(t) = k1t + Ko.

:- Both are linear in “t”
:- Their evolutions are independent
:- Depending on |.C., the Direction of Evolution is determined
e.g.) impose r,=0 at the horizon (S3-I black hole)
- means NO energy-flow through the horizon: v=0
- preserves “positivity of energy” density in both regions

- Coordinate of horizon decreases
- BUT, “physical size of horizon” is UNCHANGED !!!



f background expands

physical size of horizon may
“.grow, decrease, remain

~,




General analysis:
Ar2w M’ [M” 14+ wq

2 __
0=0Gz = oM | T —om

1 ) 1 4+ wy + 4wo

M 4+ —
( +2w1 2w

Introducing new variables:
u=2M(r)/r and x = log(r/r+),
= MT) _ grr2p(r) = (u+u')/2

du 2w1(1 —u)(2v — u)
dv  v[2wi(wi +1)(—v+ (—2w1)" 1) + (14w 4w2)(1 —u)]|’

0.8
Integral curves

0.6 || represents solutions.
0.4 9 ]

0.2

0.0

02l e Yo



Summary :

. We have found spherically symmetric blackhole solutions
with anisotropic fluids with w =-1/3 and w,= -1, w, .

. All of the solutions appears to be unconditionally unstable.

. The (unconditional) instability is due to the negativity of w,.

. Can we find more general anisotropic blackhole solutions?
- Yes. At least numerically (the previous slide).

. Can we find a stable generalization?
- We should try.






