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Goal

We want to examine the area law
for the general-dimensional de Sitter space time
deformed by a nontrivial matter source ,
and estimate the change of the entropy.

What kind of matter source?

How?
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How

like this....
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Why Area Law?

Area Law :

S=
kBc3

~
A

4G

quantum gravitational equation

quantum gravitational states?

area dependence→ holographic principle

problem of universality :
different approaches to QG (string theory, LQG, induced gravity, · · ·
different microstates
→ but same area law : why this result is universal?

(check with nontrivial matter source?)

information loss paradox : thermal radiation, evolution to mixed states.
violates unitarity of evolution, forbidden in ordinary QM.
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Black Hole Thermodynamics - Historical Review

In 1972, Bekenstein proposed that the black hole area is proportional to
the black hole entropy.

SBH =
ln 2
2

ABH

4G
In 1973, Bardeen, Carter, and Hawking suggested four laws of black
hole thermodynamics.

1 0th : Constant κ (Constant T)

2 1st : dM =
κ

8πG
dA + ΩhdJh (dE = TdS) → T? S? Classically T = 0

3 2nd : dA≥ 0 (dS≥ 0)
4 3rd : κ��ZZ→0 by a finite sequence of operations.

In 1973, Hawking fixed the proportionality between T and κ

TBH =
κ|r=rh

2π
(2)

Area law (Bekenstein-Hawking Entropy) :

SBH =
ABH

4G
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Black Hole Thermodynamics Extension (Schwarzschild BH)

Hawking’s semi-classical approach

TBH =
κBH

2π

SBH =
ABH

4G

The entropy accounts for the hidden information behind the horizon.
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Black Hole Thermodynamics Extension (de Sitter spacetime)

In 1976, Gibbons and Hawking extended the area law was extended to
the cosmological horizon (the event horizon in the de Sitter spacetime).

d(−E) =
κdS

8πG
dAdS

TdS =
κdS

2π
→ SdS =

AdS

4G

The entropy accounts for the hidden information behind the horizon.
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Black Hole Thermodynamics Extension (SdS spacetime)

The black hole is the simplest matter source which is parameterized with
only global hairs (M,J,Q). Complicating information is hidden behind the
horizon.

There is no fixed temperature. It depends on the normalisation.
(Standard normalisation, Bousso-Hawking normalisation...)
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Black Hole Thermodynamics Extension (SdS spacetime)

Then, how about controlling more complicating matter source which is
not hidden behind the black hole horizon? Can we see how the entropy
behaves?

If it deforms the geometry from the SdS or dS, the area law still holds?
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Ex. Matter Distribution Without Horizon (SdS 3)

An interesting and easy case : SdS3, 3 dimensional Schwarzschild de
Sitter spacetime.

In 3 dimensional de Sitter space time, the degrees of freedom in the
gravity side is same with that in the matter side.

Localized matter at r=0 behaves like a point-like source rather than black
hole with a horizon.

Then the matter affects on the area law as a global effect, such as, a
deficit angle. The geometry changes with the deficit angle.

In this case, the area law could be derived easily, as Spradlin(2001)
showed.
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Ex. Matter Distribution Without Horizon (SdS 3)

The temperature and the area law in SdS3 are given by

TSdS3 =

√
1− 8GE

2π
, SSdS3 =

AH
SdS3

4G
=

π

2G

√
1− 8GE, (l ≡ 1)

The result is obtained by taking the integration from the boundary where
the spacetime is closed up with the 2π deficit angle.

Note that this integration could be taken easily because in this model
there is only the trivial mass parameter, E.

This indicates that
‘If any matter leads to the global effect on the horizon, we might

calculate its entropy even in the spacetime with dimensions higher
than three. ”
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Our Model

First, we will consider a matter which energy density goes as 1/r2 which
is the maximum order we can consider as a field theory model.
Even though the field energy is divergent when the radius goes to
infinity, it will not change the background’s vacuum dominant behavior.

Energy density behavior : {Λ,−Tt
t}

r→rH�1
−−−−−→ {Λ� (d− 2)

v2

2r2
}

For this consideration, let’s choose a proper field configuration.
Let’s consider the field which has the same O(N− 1) rotation symmetry
with the space. For example, we will consider a hedge hog shape.

φi = r̂ iφ(r), (i = 1, · · · , d− 2)

→ This leads to same energy behavior.
→ This scalar field will have divergent energy when r goes to infinity.
Since this is not the finite energy case, there exists a topological soliton
solution even in the higher dimension (Derrick-Hobart theorem).
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Our Model

Then how about the entropy changes from this deformation by the
topological soliton?
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Assumptions in our Model

Now, let’s see if the effect of matter appears on the horizon as a global effect,
such as, a deficit angle, and see it is possible to derive the area law in this
case. For this work, we will assume the following to derive the area law with
the scalar field we prepared in the previous slide.

1 Dimension : d > 3
2 Gravity theory : minimal, Einstein-Hilbert action with a positive

cosmological constant

SEH =

∫
ddx
√
−g(R− 2Λ)

3 Matter source : spherically symmetric static scalar field

φi ≡ φ̂iφ, φ̂i φ̂i = 1, O(d− 1)⇒ φi = r̂ iφ(r), (i = 1, · · · , d− 1)

4 Field potential : Higgs potential which is chosen in a minimal shape for
supporting static global topological defect

V(φ) =
λ

4
(φ2 − v2)2
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Our Model (Action and Metric Ansatz)

Action

S=

∫
ddx
√
−g

[
1

16πG
(R− 2Λ)−

(
gµν

2
∂µφ

i∂νφ
i + V(φ)

)]

V(φ) =
λ

4
(φ2 − v2)2

Metric in the static coordinate

ds2 = −e2Ω(r)A(r)dt2 +
dr2

A(r)
+ r2dΩ2

d−2

where

dΩ2
d−2 = dθ2

1 + sin2 θ1dθ
2
2 + · · ·+ sin2 θ1 · · · sin2 θd−3dθ

2
d−2

A(r) ≡ 1−∆dS−
( r

l

)2
= 1−

2(#)GM(r)
rd−3

−
( r

l

)2

∆dS =
16πGM(r)

(d− 2)Ωd−2rd−3
, (#) =

8π
(d− 2)Ωd−2

(background geometry)
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Equations of Motion and our Strategy

The equations of motion is given by

Aφ′′ + Aφ′
[
ln(rd−2AeΩ)

]′
−

d−2
r2

φ =
dV
dφ

= λφ(φ2 − v2)

d−2
rd−2

[
rd−3(1− A)

]′
− 2Λ = 8πG

[
d−2
r2

φ2 + A(φ′)2 + 2V

]

d−2
r

Ω′ = 8πG(φ′)2

By using the asymptotic solution and the first law of thermodynamics, we will
derive the entropy of the deformed system.

d(−EδdS) + PδdSd(−VδdS) = TδdSdSδdS → SδdS =
AH
δdS

4Gd

Note that since the system has the pressure, we should consider PdV term.
[Padmanabhan, 2002].
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

1 φ(r → 0) =0

2 φ(r → rH) = v

3 M(r → 0) = 0

4 Ω(r → rH) = 0

(1) to have a well-defined field
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

1 φ(r → 0) =0

2 φ(r → rH) = v

3 M(r → 0) = 0

4 Ω(r → rH) = 0

(2) When the size of the horizon (rH ∼ l)�

the core of a topological defect (rcore∼ 1/
√
λv),

φ has the value of the vacuum.

→ E|topological
∫

dd−1x

(

Ttt =
d−2
r2

φ2 + A(φ′)2 + 2V

)

r→rH−−−→

{
|φ| → v

|φ′| → 0
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

1 φ(r → 0) =0

2 φ(r → rH) = v

3 M(r → 0) = 0

4 Ω(r → rH) = 0

(3) No singularity, No black hole horizon
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

1 φ(r → 0) =0

2 φ(r → rH) = v

3 M(r → 0) = 0

4 Ω(r → rH) = 0

(4) for the correct calculation of temperature

at the de Sitter horizon. This boundary condition

can differently be chosen since the above one

will be achieved by a rescaling of the time variable

from the new one.
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Asymptotic Solutions - Near the Origin

By considering b.c., when r → 0, the solutions for φ(r), A(r), Ω(r) are given by

φ(r)
v
≈ φ0r + · · · ,

A(r) ≈ 1−

[
1

λv2l2
+ δ

d− 3
d− 2

(
1
λv2

φ2
0 +

1
2(d− 1)

)]

(
√
λvr)2 + · · · ,

Ω(r) ≈ Ω0 +
δ

2
d− 3
d− 2

φ2
0

(
√
λv)2

(
√
λvr)2 + · · · ,

where we defined δ = 8πGv2/(d− 3), which will be used for deficit angles
later. From this, we know that

The geometry near the origin is Minkowski space time
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Asymptotic Solutions - Near the Origin

By considering b.c., when r → 0, the solutions for φ(r), A(r), Ω(r) are given by

φ(r)
v
≈ φ0r + · · · ,

A(r) ≈ 1−

[
1

λv2l2
+ δ

d− 3
d− 2

(
1
λv2

φ2
0 +

1
2(d− 1)

)]

(
√
λvr)2 + · · · ,

Ω(r) ≈ Ω0 +
δ

2
d− 3
d− 2

φ2
0

(
√
λv)2

(
√
λvr)2 + · · · ,

where we defined δ = 8πGv2/(d− 3), which will be used for deficit angles
later. From this, we know that

No deficit angle by the mild energy configuration
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Asymptotic Solutions - Near the Horizon

By considering b.c., when r → rH, the solutions for φ(r), A(r), Ω(r) are given
by

φ(r)
v
≈ 1−

d− 2

2
(
1 + 3−d

λv2l2

)
1

(
√
λvr)2

+ · · · ,

A(r) ≈ −
( r

l

)2
+ 1− δ + · · · ,

Ω(r) ≈ −
(d− 2)(d− 3)

4
(
1 + 3−d

λv2l2

)2 δ
1

(
√
λvr)4

+ · · · .

From this result, we find that

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2.
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Asymptotic Solutions - Near the Horizon

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2

By looking at this asymptotic metric form, we see

Geometry near the horizon
→ A deficit angle ∆deficit appeared in the dSd (whole geometry:δdS),

∆deficit = Ωd−2

(
1− (1− δ)

d−2
2

)
(≈ Ωd−2

d− 2
2

δ +O(δ2) for small δ � 1)

→ Since δ = 8πGv2/(d− 3), the positive deficit angle grows as v2.
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Asymptotic Solutions - Near the Horizon

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2

By looking at this asymptotic metric form, we see

Horizon radius, rH, is shifted by

r ′H = l → rH =
√

1− δ l =

√

1−
8πGv2

d− 3
l (17)
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Asymptotic Solutions - Near the Horizon

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2

By looking at this asymptotic metric form, we see

Horizon area, AH
δdS

AH
δdS = rd−2

H Ωd−2 = ld−2(1− δ)
d−2

2 Ωd−2 (17)
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Temperature of the Horizon

Now let’s calculate the thermodynamic quantities of our spacetime. First, let’s
see the temperature.

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2

Local Rindler Temperature near the horizon, TdS =
κ

2π
=

√
1− δ
2πl

where the surface gravity, κ, is obtained by

κ2 = −
1
2

(∇µKν)(∇µKν) = · · · =
grr

4
(∂rgtt)

2

gtt

r→rH−−−→
(∂rgtt)

2

4

⇒ κ(κH) ≈
rH

l2
=

√
1− δ

l
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Entropy Calculation - Subtle Points

Since we have T, dE, by using the thermodynamic law,

d(−E) + Pd(−V) = TdS

we can obtain the entropy corresponding the hidden degrees of freedom
behind the horizon.

Note that we should use the negative value of the energy which
corresponds to degrees in the opposite pole.

Since the system has pressure on the horizon, we should consider the
PdV term in the first law. [Padmanabhan, 2002]

Note that PdV has a minus sign here: The volume of the hidden area
decreases when the volume inside the horizon increases.

And we can not integrate dSfrom S= 0 value, since the closed-up
spacetime breaks our approximation condition.
→We will integrate dSfrom the pure de Sitter entropy

where v = 0.
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Entropy Calculation with dS boundary condition

As in the previous points, we will calculate the entropy as,

SδdS = ∆SδdS + SdS

where

SdS =
AH

dS

4G
=

ld−2Ωd−2

4G

From d(−E) + Pd(−V) = TdS, we get ∆SδdS as,

EδdS≈ Ωd−2
d− 2
d− 3

v2

2
rd−3

H = Ωd−2
d− 2
16πG

ld−3δ(1− δ)
d−3

2

PδdS = Tr
r ≈ −

d− 2
2

v2

r2
, PδdSd(−VδdS) = (d− 2)

v2

2r2
h

Ωd−2r
d−2
h drh

∆SδdS =
AdS

4G

(

−
d− 2

2

)

(1− δ)
d−4

2 dδ
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Result : Area Law for the Distorted dS w/ Topological Defects

Then the entropy for the deformed system is given by

SδdS = SdS + ∆SδdS = SdS +

∫ S(δ)

S(δ=0)
dSδdS

=
Ah

dS

4G
(1− δ)

d−2
2 (21)

SδdS =
Ah
δdS

4G
=

1
4G

`d−2Ωd−2(1− δ)
d−2

2

Therefore, the area law still holds in the deformed system. As we expected,
putting the non-trivial matter distribution leads the negative contribution to the
entropy and in the case of the topological soliton the entropy changes with a
factor of the solid deficit angle.
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Conclusion

When Λ 6= 0, especially, when Λ > 0, in the general
dimensional spacetime, by adding a nontrivial matter
source, we examined the entropy change.

Since we have the non-trivial matter distribution example
which has the exact expression for the entropy behavior in
the classical(or semi-classical level), we could investigate
more about its quantum origin in the subsequent research.
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