Bound of Radiation under the Coalesces of Kerr-(anti-)de Sitter Black Holes

Based on B. Gwak(Sejong University) and D. Ro(APCTP), "Spin Interaction under the Collision of Two Kerr-(anti-)de Sitter Black Holes," arXiv:1610.04847.

Bogeun Gwak(Department of Physics and Astronomy, Sejong University)

Motivation

- Spin-spin interaction in the collision of BHs with positive cosmological constant (especially, particle case).
- Using thermodynamics and MPD equation, relation between the potential of interaction and radiation of the BH collision.
- In BH-particle system, the all of potential energy released in the collision.
- Approximately, radiation may depend on the instability of the black hole.

K(A)dS black hole

- 4-dimensional BH with a positive(negative) cosmological constant.
- Rotating BH with angular momentum *J*.

$$ds^{2} = -\frac{\Delta_{r}}{\rho^{2}} \left(dt - \frac{a \sin^{2} \theta}{\Xi} d\phi \right)^{2} + \frac{\rho^{2}}{\Delta_{r}} dr^{2} + \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} + \frac{\Delta_{\theta} \sin^{2} \theta}{\rho^{2}} \left(a \, dt - \frac{r^{2} + a^{2}}{\Xi} d\phi \right)^{2},$$

$$\rho^{2} = r^{2} + a^{2} \cos^{2} \theta, \ \Delta_{r} = (r^{2} + a^{2})(1 - \frac{1}{3}\Lambda r^{2}) - 2mr, \ \Delta_{\theta} = 1 + \frac{1}{3}\Lambda a^{2} \cos^{2} \theta, \ \Xi = 1 + \frac{1}{3}\Lambda a^{2},$$

• Mass:
$$M_B = rac{m}{\Xi^2}$$
 angular momentum: $J_B = rac{ma}{\Xi^2}$

• Temperature: $T_H =$

$$T_{H} = \frac{r_{h} \left(1 - \frac{\Lambda a^{2}}{3} - \frac{a^{2}}{r_{h}^{2}} - \Lambda r_{h}^{2}\right)}{4\pi (r_{h}^{2} + a^{2})}$$

Bekenstein-Hawking Entropy:

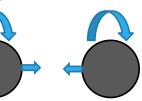
$$S_{BH} = \frac{\pi (r_h^2 + a^2)}{\Xi}$$

• Angular velocity at the outer horizon:

$$\Omega = \Omega_h - \Omega_\infty = \frac{a\Xi}{r_h^2 + a^2} - \frac{\Lambda a}{3} = \frac{a\left(1 - \frac{\Lambda}{3}r_h^2\right)}{r_h^2 + a^2}$$

The collision of two K(A)dS BHs in thermodynamics

- Consider two BHs(M_1 , J_1 and M_2 , J_2) and $M_2 \ll M_1$, $J_2 \ll M_1^2$.
- In this particle limit, the interaction is negligible in the initial state.
- Their rotation axes aligned parallel or anti-parallel to their direction of approach
- Low-energy collision.

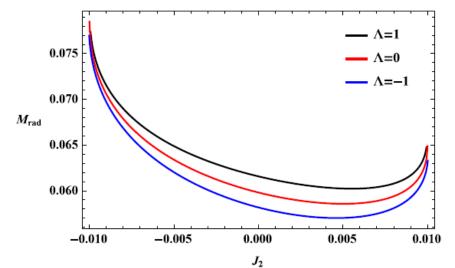


• If two black holes coalesce to form a final one, the final black hole is the same $K(A)dS M_f, J_f$.

- The final state is related to the initial state by the inequality (the increase of the area): $S_{BH}(M_1, J_1) + S_{BH}(M_2, J_2) \leq S_{BH}(M_f, J_f)$.
- Maximum radiation is at the equality.
- Angular momentum conservation: $J_f = J_1 + J_2$.
- The energy of the radiation is obtained from the energy conservation: $M_{rad} = (M_1 + M_2) - M_f.$

Radiation in the collision

- The upper bound with respect to J_2 : $\frac{\partial M_{rad}}{\partial J_2} = -\frac{2m_1a_1r_1}{(r_1^2 + a_1^2)^2} + O(J_2).$
- The alignment of rotating axes:



 Integrate out: This is the energy released by the radiation (it will be approximately spin-interaction potential).

• $U_s = \frac{\left(1 - \frac{1}{3}\Lambda r_1^2\right)^2 \Xi_1^2}{2m_1^2 r_1} J_1 J_2$ (>o, parallel rotation, repulsion) or (<o, anti-parallel rotation, attraction).

Spin interaction from Mathisson-Papapetrou-Dixon (MPD) equation

- Spinning particle in the K(A)dS BH (M_1, J_1) .
- MPD eqs: $\frac{Dp^{\mu}}{Ds} = -\frac{1}{2}R^{\mu}_{\nu\rho\sigma}u^{\nu}S^{\rho\sigma}$, $\frac{DS^{\mu\nu}}{Ds} = p^{\mu}u^{\nu} p^{\nu}u^{\mu}$ $p_{\mu}S^{\mu\nu} = 0$.

• Particle:
$$S^2 = \frac{1}{2} S_{\mu\nu} S^{\mu\nu}$$
, $\mu^2 = -p_{\mu} p^{\mu}$.

• Pole to Pole: $v^{\mu} = \left(\frac{1}{\sqrt{-g_{tt}}}, v^r, 0, 0\right)$, and $S^{\mu} = \left(0, \frac{1}{\sqrt{g_{rr}}}S, 0, 0\right)$,

- The conserved quantities: $C_{\xi} = p_{\mu}\xi^{\mu} + \frac{1}{2}S^{\mu\nu}\nabla_{\mu}\xi_{\nu}$
- Energy from ξ_t^{μ} : $E = -p_t \frac{1}{2}S^{\mu\nu}\nabla_{\mu}g_{\nu t}$
- The energy of the particle: $E_s = \frac{2m_1a_1r_1}{(r_1^2 + a_1^2)^2}S + \frac{a\Lambda}{3}S$
- The second term is from the rotating boundary of the spacetime:

$$E_{0} = \frac{a\Lambda}{3}L \qquad E = E_{h} - E_{0} = \frac{a\left(1 - \frac{\Lambda}{3}r_{h}^{2}\right)}{r_{h}^{2} + a^{2}}L + \frac{r_{h}Q}{r_{h}^{2} + a^{2}}e + \frac{\rho_{h}^{2}}{r_{h}^{2} + a^{2}}|p^{r}|$$
$$\delta M_{B} = T_{H}\delta S_{BH} + (\Omega_{h} - \Omega_{0})\delta J_{B} + \Phi_{H}\delta Q_{B}$$

Then, the potential of the spin-spin interaction is

$$U_s = \frac{\left(1 - \frac{1}{3}\Lambda r_1^2\right)^2 \Xi_1^2}{2m_1^2 r_1} J_1 S$$

- The potential is released by the radiation.
- The potential U_s (>o, parallel rotation, repulsion) or (<o, anti-parallel rotation, attraction).

Upper bounds of radiation in the collision of two black holes

- As extrapolation, we just investigate the radiation by the same method.
- In dimensionless coordinates and parameters:

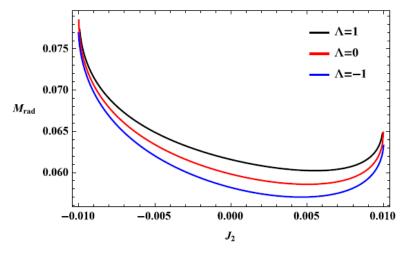
$$\tilde{s} = \frac{s}{\sqrt{\lambda/\Lambda}}, \quad \tilde{t} = \frac{t}{\sqrt{\lambda/\Lambda}}, \quad \tilde{r} = \frac{r}{\sqrt{\lambda/\Lambda}}, \quad \tilde{M} = \frac{M}{\sqrt{\lambda/\Lambda}}, \quad \tilde{a} = \frac{a}{\sqrt{\lambda/\Lambda}},$$
$$\tilde{\rho}^2 = \tilde{r}^2 + \tilde{a}^2 \cos^2\theta, \quad \tilde{\Delta}_{\tilde{r}} = (\tilde{r}^2 + \tilde{a}^2)(1 - \frac{1}{3}\lambda\tilde{r}^2) - 2\tilde{m}\tilde{r}, \quad \tilde{\Delta}_{\theta} = 1 + \frac{1}{3}\lambda\tilde{a}^2 \cos^2\theta, \quad \tilde{\Xi} = 1 + \frac{1}{3}\lambda\tilde{a}^2,$$

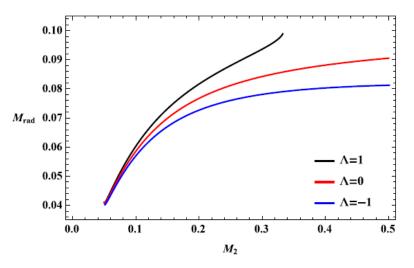
Many limits such as boundary, reflection, and probability.

Examples

- The Schwarzchild BHs with $M_1 = M_2 : \frac{M_{rad}}{M_1 + M_2} = 29\%$.
- The actual radiation is much smaller than results.
- High-energy collision (different method): 19~35%
- LIGO data: GW150914, GW151226 ~ 5.0%

For different cosmological constant,

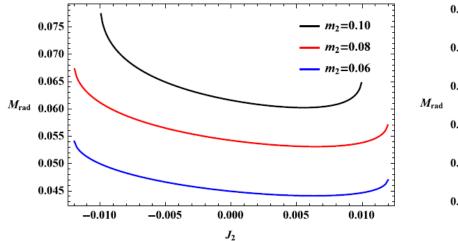


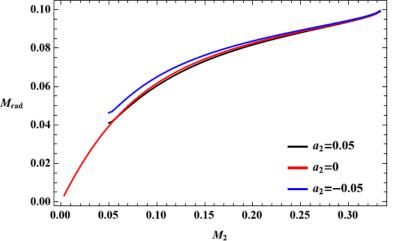


(a) The bounds on the radiation with respect to the angular momentum of the second black hole. The black holes are $m_1 = 0.1$, $a_1 = 0.05$, and $m_2 = 0.1$.

(b) The bounds on the radiation with respect to the mass of the second black hole. The black holes are $m_1 = 0.1, a_1 = 0.05$, and $a_2 = 0.05$.

For positive cosmological constant,



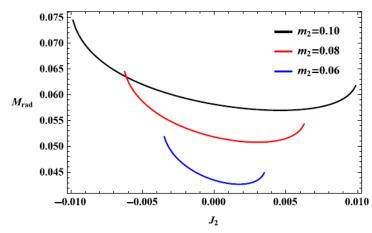


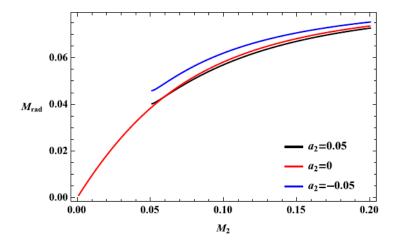
(a) The bounds on the radiation with respect to the angular momentum of the second black hole. The black holes are $m_1 = 0.1$ and $a_1 = 0.05$ with the positive cosmological constant.

(b) The bounds on the radiation with respect to the mass of the second black hole. The black holes are $m_1 = 0.1$ and $a_1 = 0.05$ with the positive cosmological constant.

Small AdS BHs

For negative cosmological constant,

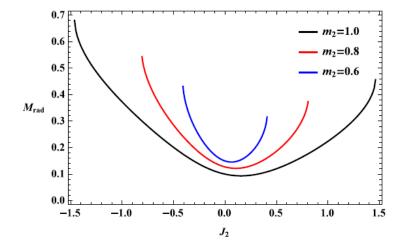


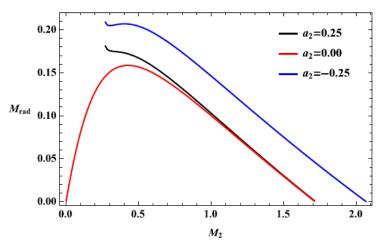


(a) The bounds on the radiation with respect to the angular momentum of the second black hole. The black holes are m1 = 0.1 and a1 = 0.05 with the negative cosmological constant.

(b) The bounds on the radiation with respect to the mass of the second black hole. The black holes are m1 = 0.1 and a1 = 0.05 with the negative cosmological constant.

Large AdS BHs





(a) The bounds on the radiation with respect to the angular momentum of the second black hole. The black holes are m1 = 1.0 and a1 = 0.25 with the negative cosmological constant.

(b) The bounds on the radiation with respect to the mass of the second black hole. The black holes are m1 = 1.0 and a1 = 0.25 with the negative cosmological constant.

$$M_{rad} = (M_1 + M_2) - M_f = (2 - 2\sqrt{2})m < 0.$$

Summary

- Thermodynamics and MDP equations
- The spin-spin interaction: attractive or repulsive with cosmological constant.
- The potential of the interaction can be radiated in the collision of the black holes
- The radiation can be related to the instability of the black holes.

THANK YOU!