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Quantum Gravity

4D Einstein-Hilbert action

• perturbation without matter field
with matter field
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Quantum Field Theory in Curved Spacetime

matter

quantum
(particle)

Mmatter≤ 1TeV

gravity

classical
(background geometry)

MPl ∼ 1015TeV
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Quantum Field Theory in Curved Spacetime

Hawking radiation
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Quantum Field Theory in Curved Spacetime

Hawking radiation

⇓

black hole thermodynamics
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Quantum Field Theory in Curved Spacetime

Hawking radiation

⇓

black hole thermodynamics

⇓

S=
A
4
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(Hi)story of Area Law

classical

• (Einstein) equation ⇒ Gibbons-Hawking
• Nöther charge

semiclassical
(free) particles in BH background

• brick-wall
• entanglement approach
• thermal atmosphere
• induced gravity

quantum geometry

Yoonbai Kim Entropy of Composite of Black Hole and Topological Soliton in Arbitrary Dimensions



(Hi)story of Area Law

classical

• (Einstein) equation ⇒ Gibbons-Hawking
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(Hi)story of Area Law

string theory

counting of microstates

↙ ! ↘?

S=
A
4

local physics near a black hole
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Information Paradox?




unitary

quantum mechanical
processes








black hole

thermodynamics
processes





pure→ pure vs. pure→ mixed
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Introduction

Q. Static vacuum solution of the Einstein’s equation with rotational symmetry?
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Introduction

Q. Static vacuum solution of the Einstein’s equation with rotational symmetry?

Schwarzschild solution

: characterized by the radius of horizon

size of an object > radius of horizon

→ Precession of the Mercury

size of an object < radius of horizon

→ Black hole
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Introduction

Q. Resemblance between black hole mechanics & thermodynamics?

...

Black hole entropy

SBH ∝ Ah
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Introduction

In 1972, Bekenstein,
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Introduction

In 1973, Bardeen, Carter, and Hawking,

“The Four Laws of Black Hole Mechanics”

1 0th : Constant κ on the horizon⇔ (Constant T)

2 1st : dM =
κ

8πG
dA + ΩhdJh ⇔ (dE = TdS) → T? S? Classically T = 0

3 2nd : dA≥ 0 ⇔ (dS≥ 0)
4 3rd : κ��ZZ→0 by a finite sequence of operations.

* surface gravity : for time-like Killing vector Kµ

κ ≡ −
1
2

(∇µKν)(∇µKν),

= lim Va (red-shifted four-acceleration)

“In the case of a static black hole, Va is the force that must be exerted
at infinity to hold a unit test mass in place.” [Wald,1985]
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Introduction

Q. Resemblance between black hole mechanics & thermodynamics?

...

Black hole entropy

SBH ∝ Ah

Temperature?→ Idea of quantum theory

dM =
κ

8πG︸ ︷︷ ︸
=T?

=dS?︷︸︸︷
dA +ΩhdJ
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Introduction

In 1973, Hawking fixed the proportionality between T and κ
Hartle-Hawking’s semi-classical approach (1976) :

Prob(emission of particle by pair creations in a mode with energy E)

= e−βEProb(absorption in the same mode)

−→
analytic continuation in the Euclidean path integral

=⇒ β =
2π
κ

“In equilbirum, the rate of emission particles by the black hole must
exactly equal the rate of absorption.”

Hawking Temperature : TBH =
κ|r=rh

2π

Yoonbai Kim Entropy of Composite of Black Hole and Topological Soliton in Arbitrary Dimensions



Introduction

Q. Resemblance between black hole mechanics & thermodynamics?

...

Black hole entropy

SBH ∝ Ah

Temperature?→ Idea of quantum theory

dM =
κ

8πG︸ ︷︷ ︸
=T/4G

=dS×4G︷︸︸︷
dA +ΩhdJ

Area Law :

SBH =
c3Ah

4G~
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Area Law

d-dimensional curved spacetime (d > 3)

ds2 = −e2Ψ(r)A(r)dt2 +
dr2

A(r)
+ r2dΩ2

d−2

: static + rotational symmetry

Vacuum : Tµν = 0

Solution : Ψ(r) = 0, A(r) = 1−
16πGM

(d− 2)Ωd−2

1
rd−3

Radius of horizon : rb =

[
16πGM

(d− 2)Ωd−2

] 1
d−3

→ Area of the horizon : Ab = rd−2
b Ωd−2

Temperature at the horizon : Tb =
κb

2π
=

d− 3
4π

[
(d− 2)Ωd−2

16πGM

] 1
d−3

Thermodynamics law : dM = TdS → Area law

S=
Ab

4G
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Area Law

The entropy accounts for the hidden information behind the horizon.
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Issue

Among various issues,

Universality?

Dirts : Tµν 6= 0 → spin, charge, · · ·

Classical vs. quantum

Methods

· · ·
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Dirt

Matter distribution :

−Tt
t = −Tr

r = · · · ∼
d− 2

2
v2

r2

Energy :

E(R) ∼
∫ R

drrd−2(−Tt
t) ∼

∫ R

drrd−2 1
r2

d>3
∼ Rd−3 R→∞

→ ∞

nonBPS

−Tt
t =

(d− 2)(d− 3)

16πG
δ

r2
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Geometry

Solution of the Einstein’s equation :

A(r) = 1− δ −
C

rd−3
,

(

0≤ δ < 1, C =
16πGM

(d− 2)Ωd−2

)

: constant shift

Geometry→ deficit solid angle

∆d−2 ≡ Ωd−2 − Ω′d−2 = Ωd−2

[
1− (1− δ)

d−2
2

]

Black hole horizon :

rh =

(
1

1− δ

) 1
d−3

rb

Ah =

(
1

1− δ

) d−2
d−3

Ab.
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Thermodynamics

All thermodynamic quantities are changed :

Temperature :

Th =
κh

2π
= (1− δ)

d−2
d−3 Tb

Pressure :

P = Tr
r = −

(d− 2)(d− 3)

16πG
δ

r2

Thermodynamic law :

ThdSh = dEh + PhdVh

→ Change of energy & work

Eh = Ωd−2

∫ rh

0
drrd−2(−Tt

t) =
Ab

rb

d− 2
16πG

δ

1− δ

PhdVh = −
Ab

rb

d− 2
16πG

δ dδ
(1− δ)2
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Area Law
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Area Law

Thermodynamic law→ area law

SδBH =
Ah

4G

: exact
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Area Law with Deficit Solid Angle

The entropy accounts for the hidden information behind the horizon.
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Source

Global topological soliton of hedgehog ansatz :

φi = r̂ iφ(r)

Model :

Sφ =

∫
ddx
√
−g

[

−
gµν

2
∂µφ

i∂νφ
i − V(φ)

]

rh � 1/
√
λv with δ =

8πGv2

d− 3

Einstein equation :

d−2
r

dΨ

dr
= 8πG

(dφ
dr

)2 φ≈v
→

r≥rh

0

1
rd−2

d
dr

[
rd−3(1− A)

]
= 8πG

[
d−2
r2

φ2 + A(φ′)2 + 2V(φ)

]
φ≈v
→

r≥rh

8πGv2

r2
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Source
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Hair

Goldstone degree
winding
→ long topological hair

RµνρσRµνρσ = (d− 2)(d− 3)

[

(d− 1)(d− 2)
( C

rd−1

)2
+ 4

C
rd−1

δ

r2
+ 2
( δ

r2

)2
]

Higgs degree → short scalar hair
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De Sitter Entropy

In 1976, Gibbons and Hawking extended the area law to the
cosmological horizon (the event horizon in the de Sitter spacetime).

d(−E) =
κdS

8πG
dAdS, TdS =

κdS

2π

SdS =
AdS

4G
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De Sitter Entropy

The entropy accounts for the hidden information behind the horizon.
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De Sitter Entropy

The black hole is the simplest matter source which is parameterized with
only global hairs (M,J,Q). Complicating information is hidden behind the
horizon.

There is no fixed temperature. It depends on the normalisation.
(Standard normalisation, Bousso-Hawking normalisation...)
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De Sitter Entropy

Then, how about controlling more complicating matter source which is
not hidden behind the black hole horizon? Can we see how the entropy
behaves?

If it deforms the geometry from the SdS or dS, the area law still holds?
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Source

First, we will consider a matter which energy density goes as 1/r2 which
is the maximum order we can consider as a field theory model.

Even though the field energy is divergent when the radius goes to
infinity, it will not change the background’s vacuum dominant behavior.

Energy density behavior : {Λ,−Tt
t}

r→rH�1
−−−−−→ {Λ� (d− 2)

v2

2r2
}

Let’s consider the field which has the same O(N− 1) rotation symmetry
with the space. For example, we will consider a hedge hog shape.

φi = r̂ iφ(r), (i = 1, · · · , d− 2)

→ This leads to same energy behavior.
→ This scalar field will have divergent energy when r goes to infinity.
Since this is not the finite energy case, there exists a topological soliton
solution even in the higher dimension (Derrick-Hobart theorem).
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Source

Then how about the entropy changes from this deformation by the
topological soliton?
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Source

Now, let’s see if the effect of matter appears on the horizon as a global effect,
such as, a deficit angle, and see it is possible to derive the area law in this
case. For this work, we will assume the following to derive the area law with
the scalar field we prepared in the previous slide.

1 Dimension : d > 3

2 Gravity theory : minimal, Einstein-Hilbert action with a positive
cosmological constant

SEH =

∫
ddx
√
−g(R− 2Λ)

3 Matter source : spherically symmetric static scalar field

φi ≡ φ̂iφ, φ̂i φ̂i = 1, O(d− 1)⇒ φi = r̂ iφ(r), (i = 1, · · · , d− 1)

4 Field potential : Higgs potential which is chosen in a minimal shape for
supporting static global topological defect

V(φ) =
λ

4
(φ2 − v2)2
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Source

Action

S=

∫
ddx
√
−g

[
1

16πG
(R− 2Λ)−

(
gµν

2
∂µφ

i∂νφ
i + V(φ)

)]

V(φ) =
λ

4
(φ2 − v2)2

Metric in the static coordinate

ds2 = −e2Ω(r)A(r)dt2 +
dr2

A(r)
+ r2dΩ2

d−2

where

dΩ2
d−2 = dθ2

1 + sin2 θ1dθ
2
2 + · · ·+ sin2 θ1 · · · sin2 θd−3dθ

2
d−2

A(r) ≡ 1−∆dS−
( r

l

)2
= 1−

2(#)GM(r)
rd−3

−
( r

l

)2

∆dS =
16πGM(r)

(d− 2)Ωd−2rd−3
, (#) =

8π
(d− 2)Ωd−2
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Equations of Motion and our Strategy

The equations of motion is given by

Aφ′′ + Aφ′
[
ln(rd−2AeΩ)

]′
−

d−2
r2

φ =
dV
dφ

= λφ(φ2 − v2)

d−2
rd−2

[
rd−3(1− A)

]′
− 2Λ = 8πG

[
d−2
r2

φ2 + A(φ′)2 + 2V

]

d−2
r

Ω′ = 8πG(φ′)2

By using the asymptotic solution and the first law of thermodynamics, we will
derive the entropy of the deformed system.

d(−EδdS) + PδdSd(−VδdS) = TδdSdSδdS → SδdS =
AH
δdS

4Gd

Note that since the system has the pressure, we should consider PdV term.
[Padmanabhan, 2002].
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

1 φ(r → 0) =0

2 φ(r → rH) = v

3 M(r → 0) = 0

4 Ω(r → rH) = 0

(1) to have a well-defined field
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

1 φ(r → 0) =0

2 φ(r → rH) = v

3 M(r → 0) = 0

4 Ω(r → rH) = 0

(2) When the size of the horizon (rH ∼ l)�

the core of a topological defect (rcore∼ 1/
√
λv),

φ has the value of the vacuum.

→ E|topological
∫

dd−1x

(

Ttt =
d−2
r2

φ2 + A(φ′)2 + 2V

)

r→rH−−−→

{
|φ| → v

|φ′| → 0
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

1 φ(r → 0) =0

2 φ(r → rH) = v

3 M(r → 0) = 0

4 Ω(r → rH) = 0

(3) No singularity, No black hole horizon
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

1 φ(r → 0) =0

2 φ(r → rH) = v

3 M(r → 0) = 0

4 Ω(r → rH) = 0

(4) for the correct calculation of temperature

at the de Sitter horizon. This boundary condition

can differently be chosen since the above one

will be achieved by a rescaling of the time variable

from the new one.
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Asymptotic Solutions - Near the Origin

By considering b.c., when r → 0, the solutions for φ(r), A(r), Ω(r) are given by

φ(r)
v
≈ φ0r + · · · ,

A(r) ≈ 1−

[
1

λv2l2
+ δ

d− 3
d− 2

(
1
λv2

φ2
0 +

1
2(d− 1)

)]

(
√
λvr)2 + · · · ,

Ω(r) ≈ Ω0 +
δ

2
d− 3
d− 2

φ2
0

(
√
λv)2

(
√
λvr)2 + · · · ,

where we defined δ = 8πGv2/(d− 3), which will be used for deficit angles
later. From this, we know that

The geometry near the origin is Minkowski space time
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Asymptotic Solutions - Near the Origin

By considering b.c., when r → 0, the solutions for φ(r), A(r), Ω(r) are given by

φ(r)
v
≈ φ0r + · · · ,

A(r) ≈ 1−

[
1

λv2l2
+ δ

d− 3
d− 2

(
1
λv2

φ2
0 +

1
2(d− 1)

)]

(
√
λvr)2 + · · · ,

Ω(r) ≈ Ω0 +
δ

2
d− 3
d− 2

φ2
0

(
√
λv)2

(
√
λvr)2 + · · · ,

where we defined δ = 8πGv2/(d− 3), which will be used for deficit angles
later. From this, we know that

No deficit angle by the mild energy configuration
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Asymptotic Solutions - Near the Horizon

By considering b.c., when r → rH, the solutions for φ(r), A(r), Ω(r) are given
by

φ(r)
v
≈ 1−

d− 2

2
(
1 + 3−d

λv2l2

)
1

(
√
λvr)2

+ · · · ,

A(r) ≈ −
( r

l

)2
+ 1− δ + · · · ,

Ω(r) ≈ −
(d− 2)(d− 3)

4
(
1 + 3−d

λv2l2

)2 δ
1

(
√
λvr)4

+ · · · .

From this result, we find that

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2.

Yoonbai Kim Entropy of Composite of Black Hole and Topological Soliton in Arbitrary Dimensions



Asymptotic Solutions - Near the Horizon

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2

By looking at this asymptotic metric form, we see

Geometry near the horizon
→ A deficit angle ∆deficit appeared in the dSd (whole geometry:δdS),

∆deficit = Ωd−2

(
1− (1− δ)

d−2
2

)
(≈ Ωd−2

d− 2
2

δ +O(δ2) for small δ � 1)

→ Since δ = 8πGv2/(d− 3), the positive deficit angle grows as v2.
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Asymptotic Solutions - Near the Horizon

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2

By looking at this asymptotic metric form, we see

Horizon radius, rH, is shifted by

r ′H = l → rH =
√

1− δ l =

√

1−
8πGv2

d− 3
l
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Asymptotic Solutions - Near the Horizon

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2

By looking at this asymptotic metric form, we see

Horizon area, AH
δdS

AH
δdS = rd−2

H Ωd−2 = ld−2(1− δ)
d−2

2 Ωd−2
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Temperature

Now let’s calculate the thermodynamic quantities of our spacetime. First, let’s
see the temperature.

ds2 = −

[

1− δ −
( r

l

)2
]

dt2 +
dr2

1− δ −
(

r
l

)2 + r2dΩd−2

x t′ =
√

1− δ t, r ′ = r/
√

1− δ

= −

[

1−

(
r ′

l

)2
]

dt′2 +
dr′2

1−
(

r′

l

)2 + r ′2(1− δ)dΩ2
d−2

Local Rindler Temperature near the horizon, TdS =
κ

2π
=

√
1− δ
2πl

where the surface gravity, κ, is obtained by

κ2 = −
1
2

(∇µKν)(∇µKν) = · · · =
grr

4
(∂rgtt)

2

gtt

r→rH−−−→
(∂rgtt)

2

4

⇒ κ(κH) ≈
rH

l2
=

√
1− δ

l
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Entropy

Since we have T, dE, by using the thermodynamic law,

d(−E) + Pd(−V) = TdS

we can obtain the entropy corresponding the hidden degrees of freedom
behind the horizon.

Note that we should use the negative value of the energy which
corresponds to degrees in the opposite pole.

Since the system has pressure on the horizon, we should consider the
PdV term in the first law. [Padmanabhan, 2002]

Note that PdV has a minus sign here: The volume of the hidden area
decreases when the volume inside the horizon increases.

And we can not integrate dSfrom S= 0 value, since the closed-up
spacetime breaks our approximation condition.
→We will integrate dSfrom the pure de Sitter entropy

where v = 0.
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Entropy

As in the previous points, we will calculate the entropy as,

SδdS = ∆SδdS + SdS

where

SdS =
AH

dS

4G
=

ld−2Ωd−2

4G

From d(−E) + Pd(−V) = TdS, we get ∆SδdS as,

EδdS≈ Ωd−2
d− 2
d− 3

v2

2
rd−3

H = Ωd−2
d− 2
16πG

ld−3δ(1− δ)
d−3

2

PδdS = Tr
r ≈ −

d− 2
2

v2

r2
, PδdSd(−VδdS) = (d− 2)

v2

2r2
h

Ωd−2r
d−2
h drh

∆SδdS =
AdS

4G

(

−
d− 2

2

)

(1− δ)
d−4

2 dδ
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Result : Area Law for the Distorted dS w/ Topological Defects

Then the entropy for the deformed system is given by

SδdS = SdS + ∆SδdS = SdS +

∫ S(δ)

S(δ=0)
dSδdS

=
Ah

dS

4G
(1− δ)

d−2
2

SδdS =
Ah
δdS

4G
=

1
4G

`d−2Ωd−2(1− δ)
d−2

2

Therefore, the area law still holds in the deformed system. As we expected,
putting the non-trivial matter distribution leads the negative contribution to the
entropy and in the case of the topological soliton the entropy changes with a
factor of the solid deficit angle.
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Conclusion

An evidence is added for universality of the area law

dS entropy with matter is calculated without temperature ambiguity.
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