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Quantum Gravity

4D Einstein-Hilbert action

e perturbation without matter field
with matter field
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Quantum Field Theory in Curved Spacetime
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Quantum Field Theory in Curved Spacetime

quantum classical
(particle) (background geometry)
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Quantum Field Theory in Curved Spacetime

quantum classical
(particle) (background geometry)
Mmatter < 1TeV Mpy ~ 10°TeV
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Quantum Field Theory in Curved Spacetime

Hawking radiation
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Quantum Field Theory in Curved Spacetime

Hawking radiation

4

black hole thermodynamics
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Quantum Field Theory in Curved Spacetime

Hawking radiation

¥

black hole thermodynamics
I

A
S=3
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(Hi)story of Area Law

m classical

¢ (Einstein) equation = Gibbons-Hawking
e Nother charge
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(Hi)story of Area Law

m classical

¢ (Einstein) equation = Gibbons-Hawking
e Nother charge

m semiclassical
(free) particles in BH background

e brick-wall

e entanglement approach
e thermal atmosphere

e induced gravity

Yoonbai Kim Entropy of Composite of Black Hole and Topological Soliton in Arbitrary Dimen



(Hi)story of Area Law

m classical

¢ (Einstein) equation = Gibbons-Hawking
e Nother charge

m semiclassical
(free) particles in BH background

e brick-wall

e entanglement approach
e thermal atmosphere

e induced gravity

E quantum geometry
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(Hi)story of Area Law

B string theory

counting of microstates
e N

S= 2 local physics near a black hole
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Information Paradox?

unitary black hole
guantum mechanical thermodynamics
processes processes
pure — pure VS. pure — mixed
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Introduction

Q. Static vacuum solution of the Einstein’s equation with rotational symmetry?
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Introduction

Q. Static vacuum solution of the Einstein’s equation with rotational symmetry?

Schwarzschild solution

: characterized by the radius of horizon
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Introduction

Q. Static vacuum solution of the Einstein’s equation with rotational symmetry?

Schwarzschild solution

: characterized by the radius of horizon

| size of an object > radius of horizon
— Precession of the Mercury
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Introduction

Q. Static vacuum solution of the Einstein’s equation with rotational symmetry?

Schwarzschild solution

: characterized by the radius of horizon

m size of an object > radius of horizon
— Precession of the Mercury

| size of an object < radius of horizon
— Black hole
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Introduction

Q. Resemblance between black hole mechanics & thermodynamics?

m Black hole entropy

SH
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Introduction

m In 1972, Bekenstein,

Spn=(3 In2/4m)kc* R~ G'A

=(1.46 X 10* erg ’K™'em™)A | (17)
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Black Holes and Entropy *

Jacob D. Bekensteint
Joseph Henry L i University, Pri , New Jersey 08540
and Center for Relativity Theary, The University of Texas at Austin, Austin, Texas 78712%
(Received 2 November 1972)

There are a number of similarities between black-hole physics and thermodynamics.
Most striking is the similarity in the behaviors of black-hole area and of entropy: Both
quantities tend to increase irreversibly. In this paper we make this similarity the basis of
a ic approach to black-hole physics. After a brief review of the elements of
the theory of information, we discuss black-hole physics from the point of view of informa-~
tion theory. We show that it is natural to the concept of black-hole entropy as the
measure of information about a black-hole Interior which is inaccessible to an exterior
observer. Considerations of simplicity and consi , and dimensi indi-
cate that the black-hole entropy is equal to the ratio of the black-hole area o the square of
the Planck length times a dimensionless constant of order unity. A different approach
making use of the specific properties of Kerr black holes and of concepts from information
theory leads to the same conclusion, and suggests a definite value for the constant. The
physical content of the concept of black-hole entropy derives from the following generalized
version of the second law: When common entropy goes down a black hole, the common
entropy in the black-hole exterior plus the black-hole entropy never The validity
of this version of the second law is supported by an argument from information theory as
well as by several examples.
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Introduction

m In 1973, Bardeen, Carter, and Hawking,

“The Four Laws of Black Hole Mechanics”

0Oth : Constant  on the horizon < (Constant T)

1st: dM = &dA—i- Onddy = (dE=TdS — T? S? Classically T = 0
uUs

H 2nd:dA>0 < (dS> 0)

3rd : k<0 by a finite sequence of operations.

* surface gravity : for time-like Killing vector K#

K= —%(VMKD)(V“K”),
= lim Va (red-shifted four-acceleration)

“In the case of a static black hole, Vais the force that must be exerted
at infinity to hold a unit test mass in place.” [Wald,1985]
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Introduction

Q. Resemblance between black hole mechanics & thermodynamics?

m Black hole entropy

Ser o< An
B Temperature? — ldea of quantum theory

dM = :(;:? Qndd
= grg O T
7
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Introduction
m In 1973, Hawking fixed the proportionality between T and «
m Hartle-Hawking’s semi-classical approach (1976) :
Prok(emission of particle by pair creations in a mode with energy E)

= e*BEProt(absorption in the same mode)

—
analytic continuation in the Euclidean path integral
2r

= B=—

K

“In equilbirum, the rate of emission particles by the black hole must
exactly equal the rate of absorption.”

Hawking Temperature : | Tey = %
I
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Introduction

Q. Resemblance between black hole mechanics & thermodynamics?

m Black hole entropy
Ser o< An

m Temperature? — ldea of quantum theory
=dSx 4G

dM = " TdA +QndJ
= grg N TN
~—~—~—

=T/4G

m Area Law :
3

_ Chn

SH = 2Gn
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Area Law

m d-dimensional curved spacetime (d > 3)

2
e 2 dr 2402
ds = - A(r)dt® + AT) +r2d0g_,

: static + rotational symmetry
m Vacuum: TH, =0

16rGM 1
(d—2)Qq_prd-3
167GM |3
(d— Z)Qd_2:|
— Area of the horizon : Ap = rf?Qq_»

m Temperature at the horizon : Tp = o _ d-3 {

m Solution: U(r) =0, A(r) =1—

m Radius of horizon : rp = {

2r 41
B Thermodynamics law : dM = TdS — Area law

_
T a6

(d—2)Qq_2] 73
167GM

S
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Area Law

m The entropy accounts for the hidden information behind the horizon.

‘Yoonbai Kim

[m]

=

E DA
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Issue

Among various issues,

Universality?

m Dirts: T#, ##£ 0 — spin, charge, - - -
m Classical vs. quantum
m Methods
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Dirt

Matter distribution :
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Dirt

Matter distribution :

m Energy :

R R
E(R) ~ / drr=2(=T') ~ / drrd-2 L 928 g R o

r2
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Dirt

Matter distribution :

d-2v

t r
—T=-T = .

m Energy :
R o 2, Rood21 d>3 g3 Rooo
E(R)N/ drr (—Tt)w/ drr=? 5 % R "2 o
® nonBPS
p_@d-2d-3)4
167G r2
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Geometry

m Solution of the Einstein’s equation :

Cc 16rGM
= — _— < = ——
Al =1-9 rd-3’ <O so<tc (d— Z)Qd72>

: constant shift
m Geometry — deficit solid angle

d—2

Ad_2 = Q4_2 — Qéj—z =| Qd_> [1 — (1 — 5)7]

m Black hole horizon :
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Thermodynamics

All thermodynamic quantities are changed :
m Temperature :

Kh d—2

Th = Z = (l— 5)?Tb
H Pressure :
. (d=2d=-3 4
P=T:= 167G r2

® Thermodynamic law :
ThdS, = dE, + PrdVh
— Change of energy & work

h _ Aod—2 4§
o d—2, +t b
Eh—Qdfz/O drr ( Tt)—frb 71 671_5
Apd—2 §d§

Pthh = *Hilsﬂ_G (1_ 5)2
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Area Law
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Area Law

® Thermodynamic law — area law

An

SSBH:E

: exact
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Area Law with Deficit Solid Angle
m The entropy accounts for the hidden information behind the horizon

KpH
Tonz= 52

'//'ﬂ

T=Tn

‘Yoonbai Kim

=] F = = =
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Source

m Global topological soliton of hedgehog ansatz :

| =ro) |

Model :

5 = /ddxm %%am@mi - V(czﬁ)}

B> 1/Vv| with § = %ﬂf‘g

Einstein equation :

d-2dv do\ 2 gav

rodr =8&r (dr) ; 0
1 dg — ~v 81GV
73[11 3(1_A)] = 8rG {7¢2+A(¢) +2V(4) j;rh =
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Source
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Hair

winding

m Goldstone degree " — "~ long topological hair

R Ruvpr = (d — 2)(d - 3) [<d ~0@-2) () 2(92]

m Higgs degree — short scalar hair
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De Sitter Entropy

m In 1976, Gibbons and Hawking extended the area law to the
cosmological horizon (the event horizon in the de Sitter spacetime).

& r=co A
I~

Yoonbai Kim
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De Sitter Entropy

B The entropy accounts for the hidden information behind the horizon.

‘Yoonbai Kim

=] F = = =
Entropy of Composite of Black Hole and Topological Soliton in Arbitrary Dimen

DA



De Sitter Entropy

m The black hole is the simplest matter source which is parameterized with
only global hairs (M,J,Q). Complicating information is hidden behind the
horizon.

m There is no fixed temperature. It depends on the normalisation.
(Standard normalisation, Bousso-Hawking normalisation...)

‘Yoonbai Kim

=] F = = =
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De Sitter Entropy

behaves?

m Then, how about controlling more complicating matter source which is
not hidden behind the black hole horizon? Can we see how the entropy

m If it deforms the geometry from the SdS or dS, the area law still holds?

‘Yoonbai Kim

=] F = = =
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Source

m First, we will consider a matter which energy density goes as 1/r? which
is the maximum order we can consider as a field theory model.

m Even though the field energy is divergent when the radius goes to
infinity, it will not change the background’s vacuum dominant behavior.

Energy density behavior : {A, —T%} "= (A > (d — 2)%}

m Let's consider the field which has the same O(N — 1) rotation symmetry
with the space. For example, we will consider a hedge hog shape.

¢ =tor), (i=1---,d—2)

— This leads to same energy behavior.

— This scalar field will have divergent energy when r goes to infinity.
Since this is not the finite energy case, there exists a topological soliton
solution even in the higher dimension (Derrick-Hobart theorem).
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Source

m Then how about the entropy changes from this deformation by the
topological soliton?

‘Yoonbai Kim

[m]

=

E DA
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Source

Now, let's see if the effect of matter appears on the horizon as a global effect,
such as, a deficit angle, and see it is possible to derive the area law in this
case. For this work, we will assume the following to derive the area law with
the scalar field we prepared in the previous slide.

Dimension: d > 3

Gravity theory : minimal, Einstein-Hilbert action with a positive
cosmological constant

Sn = /ddx\/—g (R—2A)
Matter source : spherically symmetric static scalar field

¢ =d¢ ¢ =10d-1)= ¢ =), (=1 ,d-1)

Field potential : Higgs potential which is chosen in a minimal shape for
supporting static global topological defect

V(9) = 5(6 )
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Source

m Action

S= /ddx\/jg {ﬁ(R—ZA) - (%yamiauaﬁi +V(¢>))}
V(9) = (6% — )

m Metric in the static coordinate

d$ = —e® AN df + (—) +r7dQj_,

where
d03_, = do? + sinf 61d6% + - - - + sinf s - - - Sinf fg_3d63_,
ry?2 2 GM(r ry?2

Ar)=1— Ags— (7) _ 1 2#CMIn) (7)

| rd-3 |
167GM(r) 8r

Ads = (d— 2)Qq_ord—3’ (#) = (d—2)Q—2
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Equations of Motion and our Strategy

The equations of motion is given by

A" + Ad’ [ln(rd—erﬂ)]' = ¢ = @ = Ap(¢* — V)
‘rjd;_f - A)] — 27 = 8rG [%qf +A@)?+2v
?Q’ = 8rG(¢')?

By using the asymptotic solution and the first law of thermodynamics, we will
derive the entropy of the deformed system.

A&dS

d(—Esds) + Psasd(—Vsas) = TsasdSsas — Ssds = 4G,

Note that since the system has the pressure, we should consider PdV term.
[Padmanabhan, 2002].
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

¢(r — 0) =0

(1) to have a well-defined field
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

(2) When the size of the horizon (rq ~ 1) >

the core of a topological defect (reore ~ 1/v/AV),
o(r — 0) =0 ¢ has the value of the vacuum.

¢(r — rH) =V - E|t0pological

/ d*'x <Tn = %qﬁz +A@) + 2v)

- J ¢l =V
e
[¢'| — 0
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

¢(r — 0) =0
H(r—ry)=v ‘ (3) No singularity, No black hole horizon
M(r —0) =0
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Boundary Conditions and Analysis

To solve the equations, we need to consider boundary conditions.

(r — 0) =0 (4) for the correct calculation of temperature

S(f — 1) = v at the de Sitter horizon. This boundary condition

M(r —0) =0 can differently be chosen since the above one

Qf — 1) =0 will be achieved by a rescaling of the time variable
from the new one.
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Asymptotic Solutions - Near the Origin

By considering b.c., when r — 0, the solutions for ¢(r), A(r), €2(r) are given by

@y\gd}or.’_...’
N 1 d-3/1 ,. 1 )
AN ~1- {W*‘Sdfz(W"b"*z(dfl))](ﬁ‘”) to
5d—3 ¢
BT (\j';]v)z(ﬁw)2+ s

where we defined § = 87GV?/(d — 3), which will be used for deficit angles
later. From this, we know that

B The geometry near the origin is Minkowski space time
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Asymptotic Solutions - Near the Origin

By considering b.c., when r — 0, the solutions for ¢(r), A(r), (r) are given by

@z(bor_f_...’

Ar) ~1— {)\\}ZIZ +5P <sz¢°+ (d1_1)>] (VAvr)? +

6d—3 ¢0
2d 2(fv)

Q(r) Qo+ = (\/er)2+... ,

where we defined § = 87GV?/(d — 3), which will be used for deficit angles
later. From this, we know that

m No deficit angle by the mild energy configuration
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Asymptotic Solutions - Near the Horizon

By considering b.c., when r — ry, the solutions for ¢(r), A(r), Q(r) are given

by
@%1— d_327d 1 +o,
v 2(1+ 37z) (Vavr)?
2
A(r)%f(H +1—-0+4--,
(d—2)(d —3) 1
Qr) ~ — NI
4(1+ f\,;z.dz)z (v/Avr)4
From this result, we find that
2 2
a2 = —|1-6— ()] ae+ —9" 1 r2doy
! —8- (1)

At =vV1i-6t,r'=r/V1-6

7

e

)

dt/Z +

Yoonbai Kim

dr’?

et r’?(1— 6)dQ3_,.
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Asymptotic Solutions - Near the Horizon

A% dr? 2
dé = {1 5 (I)}dtz—i—l_ - T)2+ro|Q@.,2
At =vV1-6t, ' =r/V1-
s L’ dr? + dr’? —5)d 2_2
{1 (I) t 71_(|)2+r (1 - 6)d03

By looking at this asymptotic metric form, we see
m Geometry near the horizon
— A deficit angle Agesicit appeared in the dS; (whole geometry:6dS),

d—2 d-2
(1-9)7) (%2

Adeficit = d—2 (1 - 5+ O(6%) for small § < 1)

— Since § = 87GV?/(d — 3), the positive deficit angle grows as V2.
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Asymptotic Solutions - Near the Horizon

dg = — {17 5 — Gﬂ dé + ;rzr)z 1%,

At =vV1-6t,r'=r/V1-46
o (5o

dt? + ——— +r?(1—6)dQ3_,
By looking at this asymptotic metric form, we see

1 (§)°

m Horizon radius, ry, is shifted by

M=l — rm=v1-9sl= 1-%’“?‘9
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Asymptotic Solutions - Near the Horizon

A tU=v1=str r/ﬁ |

e

dt? + ——— +r’%(1 - 6)dQj_»
By looking at this asymptotic metric form, we see

( )

m Horizon area, Afs

Alss =i Qa2 =1"7%(1 5)¥Qd72
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Temperature

Now let’s calculate the thermodynamic quantities of our spacetime. First, let’s
see the temperature.

d¢ = — {1—6— (%)2} d12+1_5dr_2(r)2+r2d9d2
At=V1-6t,t'=r/V1-9¢ |

r/ d/2 ,
_{1_(|) 21— 5)dd,

— dt’2+7
1_(|)

. . 1-
Local Rindler Temperature near the horizon, Tys = o 0

) ] ) 2r ~ 2nl
where the surface gravity, «, is obtained by
2 1 pery 9T (890 o (9gw)?
W= = (V) (VAR = oo = S A
r 1-9
= Al > =
Yoonbai Kim
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Entropy

Since we have T, dE, by using the thermodynamic law,

\ d(—E) + Pd(—V) = TdS \

we can obtain the entropy corresponding the hidden degrees of freedom
behind the horizon.

m Note that we should use the negative value of the energy which
corresponds to degrees in the opposite pole.

m Since the system has pressure on the horizon, we should consider the
PdV term in the first law. [Padmanabhan, 2002]

m Note that PdV has a minus sign here: The volume of the hidden area
decreases when the volume inside the horizon increases.

m And we can not integrate dSfrom S= 0 value, since the closed-up
spacetime breaks our approximation condition.
— We will integrate dSfrom the pure de Sitter entropy

where v = 0.
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Entropy

As in the previous points, we will calculate the entropy as,

Ssds = ASsds + Sus
where

Als _ 19%Q4
4G~ 4G

From d(—E) 4 Pd(—V) = TdS, we get ASss as,

Sis =

2V2 d 3 d-2 d—3 d—3
Esds ~ Qd— 2d 3% ry Qd_zlGﬂ'Gl 5(1—96)2
d—2Vv ' _
Psds = Trr ~ — 2 > P(;dsd(—v(;ds) = (d — Z)jﬂd,zrﬁ 2dl’h
r 2rg
Ags [ d—2
ASsas = -~ 1G <_T> (1- 6) 7 do
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Result : Area Law for the Distorted dS w/ Topological Defects

Then the entropy for the deformed system is given by

S(8)
Shas = Sus+ ASses — Sis+ / dSsas
S(5=0)
_ Als gy 5052
a9’

_Aes _ 1 o2
Sas= 75 =6t e2(1-9)

Therefore, the area law still holds in the deformed system. As we expected,
putting the non-trivial matter distribution leads the negative contribution to the

entropy and in the case of the topological soliton the entropy changes with a
factor of the solid deficit angle.
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Conclusion

‘ An evidence is added for universality of the area law ‘

‘ dS entropy with matter is calculated without temperature ambiguity. ‘
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