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Introduction

- Multidimensional theory
1 Why are the physically observed dimensions of our Universe

= 3 + 1 (space + time)?

2 If the real dimensions are still more than four, why are extra
dimensions not observable, and what about any consequences
of multidimensionality for a four-dimensional observer?

3 Many problems of elementary particles physics could be solved
by introducing strings and supersymmetry, and by increasing
the number of spacetime dimensions.

4 In increasing the number of dimensions, a legitimate question
arises: ”Why are the extra dimensions unobservable in our
world?”

5 Two solutions to this question were suggested, namely a
mechanism of spontaneous compactification and brane world
models.



Introduction

- Spontaneous compactification
1 compactified extra dimensions, it is supposed that these

dimensions are rather small and unobservable.

2 There are various mechanisms of spontaneous
compactification:

Freund-Rubin compactification :
→ special ansatz for antisymmetric tensors

Englert compactification :
→ setting a gauge field in an internal space equal to the spin
connection, suitable embedding in a gauge group

monopole or instanton mechanism compactification :
→ using scalar chiral fields

compactification using radiative corrections



Introduction

- Brane world scenario
1 This approach is quite different from the traditional

compactification approach and allows even non-compact
extra dimensions.

2 It is supposed that our Universe is such a brane-like object.

3 particles corresponding to electromagnetic, weak and
strong interactions are confined on some hypersurface (called
a brane) which, in turn, is embedded in some
multidimensional space (called a bulk).

4 Only gravitation and some exotic matter (e.g. the dilaton
field) could propagate in the bulk.



Introduction

- Brane world scenario
1 The idea about non-compactified extra dimensions was

suggested.

Akama K 1983 Pregeometry ed K Kikkawa et
al(arXiv:hep-th/0001113) :
→ our four-dimensional world is the interior of a vortex

Rubakov V A and Shaposhnikov M E 1983 Phys. Lett. B 125
136–8 :
→ our four-dimensional world is a domain wall

2 In many works, it was assumed that the brane is infinitely
thin.



Introduction

- Thick Brane
1 It is widely considered that the most fundamental theory

would have a minimal length scale.

2 From a realistic point of view, a brane should have a
thickness.

3 The inclusion of brane thickness gives us new possibilities and
new problems.

4 Definition: for 5D

ds2 = a2(y)gµνdx
µdxν + dy2

where a(y) is warp function which is regular, has a peak at
the brane and falls off rapidly away from the brane.



Introduction

1 The normalizability of the graviton zero mode gives the
condition that ∫ ∞

−∞
a(y)4dy = finite .

2 There is some arbitrariness in the definition of what the
effective 4D quantities should be.

3 How to identify as a four-dimensional observable quantity?

4 The simplest prescription one can envisage is to define the 4D
effective quantity associated to a 5D quantity as its spatial
average over the brane thickness.
- P. Mounaix and D. Langlois, Phys. Rev. D 65, 103523 (2002)



Review : Thin Brane Model

1 The simplest action of the thin brane model is

S =

∫
d5x
√
−g5

(
1

2
R− Λ5

)
− σ

∫
d4x
√
−g

where σ denotes the tension of the brane.

ds2 = a2(y)gµνdx
µdxν + dy2

2 Solving the Einstein equations, we find

a(y) = e−|y| , (gµν = ηµν)



Review : Thick Brane Model

1 The simplest action of the thick brane model is

S =

∫
d5x
√
−g5

(
1

2
R− 1

2
(∂ϕ)2 − V (ϕ)

)
where ϕ is the five-dimensional scalar field, ϕ = ϕ(z).

ds2 = a2(y)gµνdx
µdxν + dy2

2 gµν denotes the metric of the maximally symmetric
four-dimensional spacetimes

R(4)
µν = 3Kgµν , R(4) = 12K ,

3 From the equations of motion, we get the following equations:

(ϕ′)2 = −3H′ + 3H2 − 3K ,

V (ϕ) = − 1

2a2

(
3H′ + 9H2 − 9K

)
,

we can construct a thick brane model starting from a given
warp factor.



Review : Thick Brane Model

1 Soluions : Minkowski case (gµν = ηµν)

a2 =

(
1

e2ny + e−2ny

)1/n

,

and

ϕ = ±
√

6

n
tan−1(e2ny) , V = −6 + 3(n+ 2) sin2

(√
6n

3
ϕ

)

When we take the limit n→∞, this warp factor approaches
e−2|y| which is the warp factor in the thin brane model.

2 The parameter n controls the ‘thickness’ of the brane.



Review : Thick Brane Model

1 Warp Factor : Thin and Thick

Figure: S. Kobayashi, K. Koyama and J. Soda, Phys. Rev. D 65, 064014 (2002)



The Model

1 The thick branes are described by the following 5D action:

S =

∫
d5x
√
−g
[
M3

5

2
R+

1

2
ξϕ2R− 1

2
ω(ϕ)∇Mϕ∇Mϕ− V (ϕ)

]
,

where M5 is the 5D Planck mass.

2 Einstein equations

(
M

3
5 + ξϕ

2
)
GMN + 2ξgMNϕ�ϕ− 2ξϕ∇M∇Nϕ + gMN

(
ω

2
+ 2ξ

)
∇Aϕ∇

A
ϕ

− (ω + 2ξ)∇Mϕ∇Nϕ + gMNV = 0 .

3 Scalar equation

ω�ϕ+
1

2
ωϕ∇Aϕ∇Aϕ+ ξϕR− Vϕ = 0 ,



The Model

1 To start with, let us to assume a regular 5D background
metric

ds2 = a2(z)ĝµνdx
µdxν + dz2 .

2 Now we can write down the Einstein tensor

(µ, ν) : Gµν = Ĝµν + a2(6H2 + 3H′)ĝµν ,

(z, z) : Gzz = 6H2 − 1

2a2
R̂ ,

where H ≡ a′(z)/a(z).
3 Here, we assume that 4D Einstein equations are as

Ĝµν = −Λ(4)ĝµν .

Here, Λ(4) = 0 : Minkowski
Λ(4) > 0 : de Sitter
Λ(4) = 0 : anti-de Sitter



Minkowski brane solutions (Λ(4) = 0 case)

1 In the simplest case, Λ(4) = 0, the solutions which are
obtained from the following potential

V (φ) = −6
ξα4

M5
5

ϕ4 +

(
−6α4

M2
5

+
17ξα2

2

)
ϕ2 +

3α2

2
M3

5 −M5
5 ξ ,

ω(ϕ) =
ξα2

M5
5

ϕ2 +
3α2

M2
5

− 2ξ ,

2 The solution is given by

ϕ(z) = M
5/2
5 z , a(z) = e−

1
2
α2z2 .

where H ≡ a′(z)/a(z).



Minkowski brane solutions (Λ(4) = 0 case)

1 Potential and Stable regions: ξ > 0
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Minkowski brane solutions (Λ(4) = 0 case)

1 Potential and Stable regions: ξ < 0
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Gravity fluctuations (Λ(4) = 0 case)

1 We are interested in study the stability of the gravity sector of
a braneworld scenario. Hence, we introduce the small
perturbation hµν(xµ, z) as

ds2 = a2(z)(ĝµν + hµν)dxµdxν + dz2 .

2 Imposing the transverse-traceless gauge, the graviton equation
of motion is

−1

2
h′′µν + (β − 2)Hh′µν −

1

2a2
�̂hµν = 0

where β ≡ ξM2
5 /α

2.

3 Assuming the Kaluza-Klein (KK) decomposition

hµν(xµ, z) =
∑
m

h(m)
µν (xµ)φm(z) , �̂h(m)

µν (xµ) = m2h(m)
µν (xµ)

where m is four-dimensional KK mass of the fluctuation.



Gravity fluctuations (Λ(4) = 0 case)

1 the gravitational KK modes in the extra dimension is
described by the following Sturm-Liouville equation

φ(z)′′ − 2(β − 2)Hφ(z)′ = −m
2

a2
φ(z)

2 To deal with a conformal metric, we change the coordinate to
dz2 = a2dy2. Further, defining φ = Ψ/a3/2−β, the
Sturm-Liouville equation reduces to a Schrödinger-like form[

−∂2
y + Ueff

]
Ψ(y) = m2Ψ(y) .

where

Ueff ≡
(3− 2β)2

4
H2 +

(3− 2β)

2

dH

dy
,

and

H ≡ da(y)/dy

a(y)
, a(y) = e

−erfi−1
(√

2
π
αy
)2
.



Gravity fluctuations (Λ(4) = 0 case)

1 Schrodinger-like potential Ueff
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Figure: • Left: (α, ξ) = (1, 0.01)-red solid, (1, 0.1)-blue dashed,
(1, 0.5)-green dotted.xxxxxxxx • Right: (1, 0.01)-red solid,
(2, 0.01)-blue dashed, (3, 0.01)-green dotted.



Gravity fluctuations (Λ(4) = 0 case)

1 The gravitational zero-mode (m = 0 normalizable state) is
trapped in the brane and is given by

Ψ0(y) ' a3/2−β(y)

2 Numerical procedure is needed to solve the equations of the
massive modes.



Gravity fluctuations (Λ(4) = 0 case)

1 We solved Schrodinger-like equation for mass eigenvalues
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Figure: Probability density profile for the gravitational states.

2 The massless graviton is localized on the brane.



Gravity fluctuations (Λ(4) = 0 case)

1 The equation is given by

−Ψ′′(y) +
A(A+ 1)

y2
Ψ(y) = m2Ψ(y)

where

A ' 3/2− β

The solution is as following

Ψm(y) = am
√
yYA+1/2(my) + bm

√
yJA+1/2(my)



Gravity fluctuations (Λ(4) = 0 case)

1 mz � 1

Ψm(y) ' am

√
2

πm
sin
(
mz − π

2
A− π

2

)
+ bm

√
2

πm
cos
(
mz − π

2
A− π

2

)
2 mz � 1

Ψm(y) '− amz
1/2Γ(A+ 1/2)

π

(
2

mz

)A+1/2 [
1 +

1

A− 1/2

(mz
2

)2]
bmz

1/2

Γ(A+ 3/2)

(mz
2

)A+1/2

Therefore,

am = mA+1/2 , bm = m−A+3/2

3 Overall factor mA−1

Ψm(0) ' mA−1



Corrections to the Newtonian Potential (Λ(4) = 0 case)

1 A solution of the Schrodinger-like equation, Ψm with mass m
contributes with a Yukawa-like correction to the Newton’s law.

2 Hence, the gravitational potential between two point-like
sources of mass M1 and M2 located at the origin (y = 0) in
the transverse space, will be exponentially suppressed as

Ucorr(r) = G
M1M2

r
+

∫ ∞
ε

dmM3
5

M1M2

r
e−mr |Ψm(0)|2

= G
M1M2

r

(
1 +

C

(Ar)2A−1

)



Corrections to the Newtonian Potential (Λ(4) = 0 case)

1 Newtonian potential with the correction
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Figure: Newton’s law(Red) and Newton’s law with KKcorrection(Blue).

2 The gravitational force is slightly increased at short
distances due to the massive modes



Conclusions

Thick Brane Model

We obtained stable thick brane solutions.

The study of the gravity fluctuations showed that the
zero-mode is trapped in the brane.

The gravitational force is slightly increased at short distances.

This work is still ongoing : analysis of non-zero Λ(4).


