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1. Motivations

(1) Black hole no hair theorem :

Stationary black holes are characterized by 3 quantities.
(M, Q, J) mass, charge, and angular momentum

Hairy black hole solution is possible in the dilatonic Einstein-
Gauss-Bonnnet theory of gravitation.

(2) Black hole stability

perturbative way or non-perturbative way
Thermal stability(instability)

Specific heat (heat capacity): local stability
Free energy : global stability



(3) How can we distinguish the difference between Einstein
theory and the Einstein-Gauss-Bonnet theory of gravitation
(EGB theory) in four dimensions?

(4) The contribution coming from the topological term

The Gauss-Bonnet (GB) term in four dimensions causes the
additional constant entropy. This quantity is related to the
information on the topology of the spacetime manifold, which
means that there exists a discontinuous jump when the
topology of the manifold is changed or the black hole mass
vanishes away, unlike the limiting case in Einstein theory.

We think that the topological information of the spacetime
manifold could be additionally stored in the thermodynamic
quantities for a black hole.



2. Black Hole in Einstein and EGB theory

2.1 Schwarzschild BH in Einstein theory

We consider the action
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2.2 Schwarzschild BH in EGB theory

We consider the action
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2.3 AdS BH in Einstein theory

Euclidean action
]E :/ \/gE([4;l’E
J M

= / \/‘(]E(lél;l‘E
M

>

— (R +2A g 1
( o )] _|_j{ \/hEd“)’IEf—\_ + et
| 2k M '

(A s K
—] +f \/ hE(ISIE—\ _l_]ct
| K OM K

AdS BH In Einstein and EGB theory

2G A ! ir? 0, 1o -
ds® = —(1 — ! + %l‘z)dtQ + 1 26{‘\]1 Y ) + 73(df* + sin? 8do?), for k=1

T . - = -+ 37

2GM A dr? ,,

ds* = —(— . + 57‘2)111‘.2 + (20 | K3 + 7% (dx? + dy?), for k=0
\ r 3
2GM A 1r? 9 .
ds? = —(—1— . + 37'2)(112 + - ,_,(C;\_! n %7‘2) + 2 (d® + sinh® 0de?), for k= —1



" A AS n _ A4mry
/M Voedire H =5 () =73) b= mag
K 3
jg V h.Ed?’I.E—X = ———(2r — 3GM + Ar?)
OM K 2G

4‘.’ l\ 3 . [\' . _1\13"3 - j\x3’3 B .'"_))I’ 31'31".[
/M Vopd rEp !:] + ]gM \/ hgpd 1_;3? = 3G7 GG”L e + 5



The counterterm for AdS, Balasubramanian and Kraus, CMP 208, 413 (1999)
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2.4 AdS BH in EGB theory

Euclidean action
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Euclidean action
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Figure 5: (color online). The entropy as a function of the horizon radius 7, in EGB theory with A = 1/2, and
k= 1. a = 0 for the dashed line in Einstein theory. a = 0.040 for the orange line, a = 0.083 for the cyan line,
a = 0.400 for the red line, and @ = —0.021 for the magenta line in EGB theory.
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3. Phase transition

We investigate black hole thermodynamics and HP phase
transition in both EGB and DEGB theories. The study of black
hole thermodynamics becomes interesting subject after
discovering the natural temperature and the intrinsic entropy of a
black hole, in which the temperature is proportional to black
hole’s surface gravity and the entropy to one quarter of the area
of its event horizon in Planck units. We explore how higher-order
curvature terms can affect black hole thermodynamics and the
phase transition The Euclidean path integral approach could be
one of important tools to explore in this arena.
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3.1 Thermodynamics of AdS black holes

The partition function of this system is defined by a functional
integral over all metrics and matter fields on the AdS background

Z = /D:.(/}D[@] exp(—Iglg. D)) . (15)

where [[g.®] is the Euclidean action of gravitational fields and
matter fields. It can be evaluatedby Ih”7 = —1I;.

The dominant contribution to the path integral comes from
classical solutions to the equations of motion, in the
semiclassical approximation.

freeenergy: F = M — TyS internal energy : E = M x redshift factor
F=2i  p/T=M /T T = Ty x redshift factor

BH .
specific heat: (' = 2

entropy : S = M3y — Ig Ty
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The specific heat determines the thermodynamic stability. If a
black hole has a negative specific heat, the black hole is
thermodynamically unstable. This property can be expected
from the behavior with a monotonically decreasing
temperature. In the asymptotically AdS spacetime, a black hole
has both a positive and negative specific heats depending on
the size or the mass of a black hole.

The entropy formula should be modified to have the
contribution from the GB term. From the first law of black hole
thermodynamics, the entropy can have a constant after the
integration. The constant can be determined in EGB theory.
When the analytic form of the solution is known, we can obtain
straightforwardly all thermodynamic quantities analytically
after evaluating the Euclidean action. In EGB theory, we
evaluate all thermodynamic quantities analytically. When the
numerical solution is only possible, we numerically compute
all thermodynamic quantities using thermodynamic relations.
In DEGB theory, we employ numerical computation.
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We begin by computing the Hawking temperature.
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In Einstein and EGB theory
For a black hole with k=1

. 2GM A . dr? . . . 5.
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We consider only the positive mass, because there is a naked
singularity for the negative mass black hole.
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For a black hole with k=-1
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There is the limitation for the horizon radius m > +/3/A  for the
positive mass case.

There is the limitation for the horizon radius . < \/3/A. for the
negative mass case. There are two horizons. When 1/A = 9G?M\12,
two horizons are coincide as ,, — 1/\/A. This is the extremal case
with the zero temperature.
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Specific heat

T
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3.2 Hawking-Page phase transition

We consider the Hawking-Page phase transition between a black
hole in AdS space and the thermal AdS space.

In Einstein theory

Total action of a black hole
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The difference of the free energy between a black hole in AdS
and the thermal AdS
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24



In EGB theory

For the thermal AdS, the action of the Gauss-Bonnet term
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However, the additional contribution of the free energy goes to
zero for the extremal BH.
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The free energy
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Figure 7: (color online). Free energy difference in Einstein gravity and EGB theory both for & = 1 and for
k=—1with A =1/2, and kK = 1. a = 0 for the dashed line in Einstein theory. a = 0.040 for the orange line,
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4. Hairy black holes in DEGB theory

4.1 Action and black hole solutions
We consider the action with the Gauss-Bonnet term
AD - .
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where the GB term contribute to the energy-momentum tensor
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and 0 =v, v~is the d’Alembertian.
We consider the metric
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Then the dilaton field equation turns out to be
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And there are three Einstein equations after some rearrangement
as follows:
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In the present work, we choose three Egs. (7) - (9) as dynamical
equations and the remaining one Eq. (6) as the constraint
equation.

We impose the boundary condition at the event horizon to
examine the existence of a black hole. ,(,,) = 0 or g, (r,) =

At the horizon, B(n) =0, d(r,) and ®&(r) are finite.

From Eq. (7) we obtain the value of B'(r) at the horizon

VPr (A2’ 4 k)
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B,("h) —

(10)
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By plugging Eq. (10) into (9), we obtain a quadratic equation with

respect to O (1)
B (1) —D ++/D? — 4AC (11)
@D (r = y
h 21
r 2 27D ¢ 2 2 2 oD ‘ 2 D(~ | D (2~
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D = —1rpe®® + 960y kkArpe® 0™ 4 320242k A2y e PO
+8aYAAT PN _ \pD 37N /L
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C = )— [24(1 vrk + 16a f,.I{;‘\I"i(f')‘(I) - 2;\1‘2‘ (—4(’1 ~vAeP? + /\(,f‘(b(»“’“‘)) /.»"'/c] .
ZR '

The term inside square root of ¢’(y, )ould be positive, thus only
certain region of a<I>;:, cerp,make ®’(r;,) The cases for k
= *1 have allowed and forbidden regions which suggest that
there are lower or upper bound of the black hole size. We choose
the - sign in Eq. (11).
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We now impose appropriate boundary conditions for the
behavior at the asymptotic region. We expect the metric function
and the field to be

2GM  Ae?? o 5 @, |
B(r)~k — + (, r?, 0~ 04 + (—lg and &~ o, + —. (14)

r 3 1A re

where M is the black hole mass, Q the scalar charge, /., and
o, the asymptotic values of the lapse function and the scalar
field, respectively.

The mass of a hairy black hole is represented as follows
A[(I) = A[(‘I’h) + Myair -

where M (r,) =3r, is the mass of a black hole subtracting the
contribution from the scalar hair. The second term in the right-
hand side represents the contribution from the scalar hair, so we
will use this term as a amount of hair. The M(r) increases up to
some constant as the distance from the horizon increases, if ®’
rapidly decreases to be zero.
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4.2 Numerical Black Hole solutions

We employ the rescaling. & = & — &, ;i — 0o,

Fo=rer®e/2 § = te1®Po/2 N[ = Me1Pe/2, Q = (Qe31P/2,

We follow the procedure according to Refs : Z. K. Guo, N. Ohta and
T. Torii, PTP 121, 253 (2009), N. Ohta and T. Torii, PTP, 121, 959 (2009).
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4.2.1 Spherically symmetric solutions with k =1
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Figure 1: (color online). Numerical solutions for k =1 witha=1,7y=1/2, A =1/2, A =1/2, and & = 1.
We choose four solutions with the initial r; as 4.09, 8.1, 12.2, and 15, respectively.
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4.2.2 Hyperbolic solutions with k = -1
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Figure 2: (color online). Numerical solutions for k = —1 witha=1,7y=1/2, A=1/2, A =1/2, and k = 1.
We choose four solutions with the initial r; as 1.83, 2.60, 5.00, and 10.00, respectively.
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In DEGB theory
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Figure 3: (color online). The Hawking temperature as a function of the horizon radius r, with v = 1/2,
A=1/2 and k = 1. a = 0 for the dashed line both in Einstein theory and EGB theory. a = 0.005 for the blue
line, a = 0.400 for the red line, o« = 0.800 for the green line, and o = 1.000 for the black line in DEGB theory.
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In DEGB theory
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Figure 4: (color online). The specific heat as a function of the horizon radius r, with v = 1/2, A = 1/2,
and x = 1. a = 0 for the dashed line both in Einstein theory and EGB theory. a = 0.005 for the blue line,
a = 0.400 for the red line, & = 0.800 for the green line, and o = 1.000 for the black line in DEGB theory.
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In DEGB theory

We now consider the black hole in AdS space in DEGB theory.
The solutions are obtained numerically. Thus we cannot evaluate
the Euclidean action and the counter term analytically.
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Figure 6: (color online). The entropy as a function of the horizon radius 7, with v = 1/2, A = 1/2, and
k=1. a=0.000 for the dashed line in Einstein theory. a = 0.005 for the blue line, a = 0.400 for the red line,
a = 0.800 for the green line, @ = 1.000 for the black line, and o = 2.000 for the purple line in DEGB theory.
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In DEGB theory
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Figure 8: (color online). The free energy difference both for k = 1 and k = —1 with v = 1/2, A = 1/2, and
k= 1. a = 0.000 for the dashed line in Einstein theory. a = 0.005 for the blue line, a = 0.400 for the red line,
a = 0.800 for the green line, a = 1.000 for the black line, and o = 2.000 for the purple line in DEGB theory.



5. Summary and Discussion

We study the black hole thermodynamics and the Hawking-Page
phase transition in asymptotically anti-de Sitter spacetime in
both Einstein-Gauss-Bonnet and the dilatonic Einstein-Gauss-
Bonnet theory.

We think that the topological information of the spacetime
manifold could be additionally stored in the thermodynamic
quantities for a black hole.

In four dimensions, the existence of the GB term does not
influence both the equations of motion and the solutions. The
observer cannot distinguish the difference between the Einstein

theory and EGB theory. However, the observer can distinguish
the differences of thermodynamic properties and phase
transition between two theories. For this reason, the observation
of the HP phase transition can determine which theory of
gravitation describes our universe.



