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How to define a Global charge of a curved spacetime?

V% =0 (n

¢ In SR
o Typ, is associated with a classical field.
o Eq. (I) guarantees that total energy is conserved and is defiened as

E= / Ton®t’
P

where n® is the unit normal to ¥ and t* a time-like Killing field.
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How to define a Global charge of a curved spacetime?
VT, =0 (1)

¢ In SR
o Typ, is associated with a classical field.
o Eq. (I) guarantees that total energy is conserved and is defiened as

E= / Ton®t’
P

where n® is the unit normal to ¥ and t* a time-like Killing field.

e In GR

1
R,uz/ - iRguu = T,uu
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How to define a Global charge of a curved spacetime?
VT, =0 (1)

¢ InSR
o Ty, is associated with a classical field.
o Eq. (I) guarantees that total energy is conserved and is defiened as

E= / Ton®t’
P

where n® is the unit normal to ¥ and t* a time-like Killing field.

e In GR T
R,uzz - iRguu = T,uu

o the energy properties of matter are represented by 7},,,. The local
energy density of matter as measured by a given observer remain well
defined.

o A gravitational field energy should make a contribution to total energy,

but is not included in T},,. However, there is no known meaningful

notion of the energy density of gravitational field in GR.
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How to define a Global charge

ADM Method in 1959

e Komar Method in 1963

AD(T) Method in 1982, (2002)

BY Method in 1993

Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

e ADM Method in 1959

H = _Si% [N(k — ko) — N, (K — Kh“b)rb] Vaod?0, )
T Jst
— 1 : 2
(N=1, N,=0) M= _875}520 (k — ko)Vod?0, @)
(N=0, N, =¢%) J= —g lim % ab — Khap) o\ /ad*0  (4)

® Komar Method in 1963

AD(T) Method in 1982, (2002)

BY Method in 1993

Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

o ADM Method in 1959
e [Komar Method in 1963

a a
\Y va,gb — _Rabg

e AD(T) Method in 1982, (2002)
e BY Method in 1993
¢ Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

ADM Method in 1959
e [Komar Method in 1963

Jb = V“Va&fb == _Rabga

AD(T) Method in 1982, (2002)
BY Method in 1993
Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

ADM Method in 1959
e [Komar Method in 1963

Jp = VoVe& = —Rapé® — V°J, =0 by V,T% =0

AD(T) Method in 1982, (2002)
BY Method in 1993
Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

o ADM Method in 1959
e [Komar Method in 1963

= VValp = —Rapf® — V'Jy =0 by V, T =0

877 st— 00

1
M= lim fv €0y dSap _2/ (Tap — iTgaB)naé“(Bt)\/ﬁcﬁy’

I N 1 .
J=—lim ¢ V §(¢)d5a5 = —/V(Taﬂ — 5Tgas)n §f¢)\/ﬁd3y

167 st—oo -

e AD(T) Method in 1982, (2002)
® BY Method in 1993
® Wald’s Method (Noether Formula) in 1993

/3
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How to define a Global charge

o ADM Method in 1959
e Komar Method in 1963
e AD(T) Method in 1982, (2002)

= v 1_ v v ——1/2 v
Juv = Guv + h#y, RZ — Egﬂ Ry — AR = —\/—g T+

(=9)"*Tu = DaDgEH"? + X1,

1
KravB — E[g*‘BH”“ + gvaHuB _ guVHocﬂ _ Qo‘ﬂH’“’],

1 1
HW = W — 2g*he,, XM = SR g K,

D,T* =0 = D,(T"E,)=0,(T"E)=0 = E§)= % / d32T¢,

® BY Method in 1993
® Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

ADM Method in 1959

e Komar Method in 1963
AD(T) Method in 1982, (2002)
BY Method in 1993

L S S
Q(B) = [ davatur) 3)

ij

Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

ADM Method in 1959

e Komar Method in 1963

AD(T) Method in 1982, (2002)

BY Method in 1993

Wald’s Method (Noether Formula) in 1993

oL
9¢

Lel(9) = 5 Leo

w((bv 5¢a €¢) =46J — d(f : @)7 Q((zb, 51¢7 52¢) = ~/CW(¢, 51¢7 52¢)

6H=Q(¢,5¢,L‘5¢):6/J—/d(§~®):5/J—/5 &)
H/ /§®/Q§B)where6/§B/§@

/3
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Black Hole Thermodynamics

In 1972, Hawking proved that the area of black hole horizon can never
decreas
In 1973, this work resulted in “four laws of black hole mechanics” by

Bardeen, Carter, and Hawking
0. The surface gravity x is constant over the event horizon.

1. For two stationary black holes differing only by small variations in
the parameters M, J, and Q,

K
oM = %&%or +QpéJ + eHdQ, (2.1)

where Qg is the angular velocity and ®g is the electric potential
at the horizon.

2. The area of the event horizon of a black hole never decreases,

§Apor > 0. (2.2)

3. It is impossible by any procedure to reduce the surface gravity x to
zero in a finite number of steps.
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Black Hole Thermodynamics : Temperature

® Euclideanized Black Hole Spacetime : ¢ — i1
Expand the metric at near Horiozn by changing variable x

dsy ~ (kx)?dr?® + dz® = da® + 2°d(k7)?,

@
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Black Hole Thermodynamics : Temperature

® Euclideanized Black Hole Spacetime : ¢ — i1
Expand the metric at near Horiozn by changing variable x

dsy ~ (kx)?dr?® + dz® = da® + 2°d(k7)?,

To be plane polar coordinates, (2)
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Black Hole Thermodynamics : Temperature

® Euclideanized Black Hole Spacetime : ¢ — i1
Expand the metric at near Horiozn by changing variable x

dsy ~ (kx)?dr?® + dz® = da® + 2°d(k7)?,

2
To be plane polar coordinates, 7 ~ 7+ il (2)
K
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Black Hole Thermodynamics : Temperature

® Euclideanized Black Hole Spacetime : ¢ — i1
Expand the metric at near Horiozn by changing variable x

dsy ~ (kx)?dr?® + dz® = da® + 2°d(k7)?,

2
To be plane polar coordinates, 7 ~ 7+ il (2)
K

® Thermodynamic canonical ensemble : Z = Tre ™ ? (3 = (kpT)™')
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Black Hole Thermodynamics : Temperature

® Euclideanized Black Hole Spacetime : ¢ — i1
Expand the metric at near Horiozn by changing variable x

dsy ~ (kx)?dr?® + dz® = da® + 2°d(k7)?,

2
To be plane polar coordinates, 7 ~ 7+ il (2)
K

® Thermodynamic canonical ensemble : Z = Tre ™ ? (3 = (kpT)™')
Gp(w, 030", t) =Tr (e"%(x, 0)p (e, t)) =Tr (e"%(m, 0)e ™ ip(a’, 0)6“H>

=Tr <<p(m,O)e_ﬁHe_i(tHﬁ)H(p(x/,O)ei(t+iﬁ)H>

= Tr(sa(x,O)e‘BHw(a:’, t+ zﬂ)) = Gp(a',t +1iB;z,0) 3)
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Black Hole Thermodynamics : Temperature

® Euclideanized Black Hole Spacetime : ¢ — i1
Expand the metric at near Horiozn by changing variable x

dsy ~ (kx)?dr?® + dz® = da® + 2°d(k7)?,

2
To be plane polar coordinates, 7 ~ 7+ il (2)
K

® Thermodynamic canonical ensemble : Z = Tre ™ ? (3 = (kpT)™')
Gp(w, 030", t) =Tr (e"%(x, 0)p(', t)) =Tr (e"%(m, 0)e ™ ip(a’, 0)6“H>
=Tr <<p(m,O)e_ﬁHe_i(tHﬁ)H(p(x/,O)ei(t+iﬁ)H>

= Tr(sa(x,O)e‘BHw(a:’, t+ zﬂ)) = Gp(a',t +1iB;z,0) 3)

® Hawking Temperature : i = 27 /K
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Black Hole Thermodynamics : Temperature

® Euclideanized Black Hole Spacetime : ¢ — i1
Expand the metric at near Horiozn by changing variable x

dsy ~ (kx)?dr?® + dz® = da® + 2°d(k7)?,

2
To be plane polar coordinates, 7 ~ 7+ il (2)
K

® Thermodynamic canonical ensemble : Z = Tre ™ ? (3 = (kpT)™')
Gp(w, 030", t) =Tr (e"%(x, 0)p (e, t)) =Tr (e"%(m, 0)e ™ ip(a’, 0)6“H>

=Tr <<p(m,O)e_ﬁHe_i(tHﬁ)H(p(x/,O)ei(t+iﬁ)H>

= Tr(sa(x,O)e‘BHw(a:’, t+ zﬂ)) =Gs(et +if;z,0) @)
® Hawking Temperature : A3 = 27/k = T = 5= %
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Black Hole Thermodynamics : Entropy
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Black Hole Thermodynamics : Entropy

® Bekenstein-Hawking Entropy in 1972, 1973

A
=i )
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Black Hole Thermodynamics : Entropy

® Bekenstein-Hawking Entropy in 1972, 1973

A
S=— 4
e *)
® Entropy from Noether theorem in 1993
s =2 [ Qe ©)
=
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Komar Formula for Asymptotically Flat : Smarr Relaltion

1 K A
M=—— dS,,DrEY, T = —, =—,
8 v SM 2w s 4G
1
b= Ailra), Q= [+F ©
The first law of thermodynamics of Black Holes is satisfied
dM =TdS + ®rdQ 7)
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Komar Formula for Asymptotically Flat : Smarr Relaltion

1 K A
M=—— dS,,DrEY, T = —, =—,
8 v SM 2w s 4G
1
b= Ailra), Q= [+F ©
The first law of thermodynamics of Black Holes is satisfied
dM =TdS + ®rdQ 7)

Expanding Komar formula

Miok Park Thermodynamic Mass and Volume in Lifshitz Spacetimes



Komar Formula for Asymptotically Flat : Smarr Relaltion

1 K A
M=—-— dS,,D'g", T=—, S=—,
8 v " 2w 4G
1
b= Ailra), Q= [+F ©
The first law of thermodynamics of Black Holes is satisfied
dM =TdS + ®rdQ @)
Expanding Komar formula
M = _ 1 dsS,,DHE" = ! dS Rk &Y
8 Jey T 8nG
1
s ds,Th & — — d L DHEY
2 [ a5, The - s § dS,u D
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Komar Formula for Asymptotically Flat : Smarr Relaltion

M = —% ) S DK, T = % S = %,
1

b= Ailra), Q= [+F ©

The first law of thermodynamics of Black Holes is satisfied
dM =TdS + ®rdQ 7)
Expanding Komar formula
M = _ 1 dS,, D'k" = ! dS Rk &Y
81 Jav - 8rG
= / as, ", — ﬁ dS,,DHeY =oyQ +21°S

Miok Park Thermodynamic Mass and Volume in Lifshitz Spacetimes



Komar Formula for Asymptotically Flat : Smarr Relaltion

M = —% ) S DK, T = % S = %,
1

b= Ailra), Q= [+F ©

The first law of thermodynamics of Black Holes is satisfied
dM =TdS + ®rdQ 7)
Expanding Komar formula
M = _ 1 dS,, D'k" = ! dS Rk &Y
81 Jav - 8rG
= / as, ", — ﬁ dS,,DHEY = oyQ +217°S  (Smarr Relation)
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Thermodynamic Mass

e [f the physical quantities (A, T, .S, ®, ()) are satisfied with

dM = TdS + ¢ zdQ. (8)
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Thermodynamic Mass

e [f the physical quantities (A, T, .S, ®, ()) are satisfied with

dM = TdS + ®5dQ. ®)

e This first law implies

oM s oM
— =72, Z==9 9
o arn’ 0Q a ®)
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Thermodynamic Mass

e [f the physical quantities (A, T, .S, ®, ()) are satisfied with

dM = TdS + ®5dQ. ®)

e This first law implies

oM, 9S OM

- _ 22 —— —® 9
o arn’ 0Q a ®)

and so the thermodynamic mass can be independently calculated by

M= /drha—M = drhTﬁ (10)
87‘h

87“h
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Generalised Komar Formula for AAdS

Ru =0

® Anne Magnon in 1985

e David Kastor and et al. in 2009
D -2

dSa, (V9€P) =0

87TG £
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Generalised Komar Formula for AAdS

® Anne Magnon in 1985

e David Kastor and et al. in 2009
D -2

dSa (V") =0

87TG )

Miok Park Thermodynamic Mass and Volume in Lifshitz Spacetimes



Generalised Komar Formula for AAdS

® Anne Magnon in 1985
e David Kastor and et al. in 2009

D -2 2
d . a¢b A\;;J“]' _
SWG/(gz;Sb(Vg-i-D 2 > 0
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Generalised Komar Formula for AAdS

® Anne Magnon in 1985
e David Kastor and et al. in 2009

D -2 2
dSa ve b A\W‘ub =0
87G /8E b < St o3 >

o For Sch-AdS Black hole in D-dimensions,

K ©
(D—3)M = (D -2 z-=A—2—=A
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Generalised Komar Formula for AAdS

® Anne Magnon in 1985
e David Kastor and et al. in 2009

D -2
da a¢b
s Lt (Ve

o For Sch-AdS Black hole in D-dimensions,

W ">0

)
(D—3)M = (D — 2)%14 25 A

o By varying the cosmological constant, the first law is given as

()
oM = ﬁéA + G(SA
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Generalised Komar Formula for AAdS

® Anne Magnon in 1985
e David Kastor and et al. in 2009

D -2 2
d . a¢b A\v;,'”]’ _
SWG/g,ESb<V£+D 2 > 0

o For Sch-AdS Black hole in D-dimensions,

K ©
(D—3)M = (D -2 z-=A—2—=A

o By varying the cosmological constant, the first law is given as

K C)
oM = —87TG5A + A87TG5A

o The cosmological constant can be thought of as a perfect fluid
pressure P = —A/87G.
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Generalised Komar Formula for AAdS

® Anne Magnon in 1985
e David Kastor and et al. in 2009

D -2 2
d . a¢b A\v;,'”]’ _
SWG/g,ESb<V£+D 2 > 0

o For Sch-AdS Black hole in D-dimensions,

K ©
(D—3)M = (D -2 z-=A—2—=A

o By varying the cosmological constant, the first law is given as

K C]
oM = %&4—1— %61& —OM =T6S + VP

o The cosmological constant can be thought of as a perfect fluid
pressure P = —A/87G.
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Pressure and Thermodynamic Volume

® Assume that the fluctuation of A is allowed and correspond it to a pressure

I
/321
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Pressure and Thermodynamic Volume

® Assume that the fluctuation of A is allowed and correspond it to a pressure

A3
87G  8xl2

P=

I
/321
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Pressure and Thermodynamic Volume

e Assume that the fluctuation of A is allowed and correspond it to a pressure

A 3

[) = —_—— = —
drG  8rwi?

® The first law of thermodynamic extends and the thermodynamic volume is

oM oP oM OP

where V is effective volume inside the horizon.

I
/321
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Pressure and Thermodynamic Volume

e Assume that the fluctuation of A is allowed and correspond it to a pressure
A 3

P=—_"_=_2_
drG  8rwi?

® The first law of thermodynamic extends and the thermodynamic volume is

8M oP OM oP

where V is effective volume inside the horizon.

® We can also naively calculate a geometrical volume

/ dr/de ”V (12)

over interior of the black hole, where the radial coordinate ranges from the
singularity at » = rg to the outer horizon at 7 = r,, and A is the area of
the outer horizon.
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Pressure and Thermodynamic Volume

e Assume that the fluctuation of A is allowed and correspond it to a pressure
A 3

P=—_"_=_2_
drG  8rwi?

® The first law of thermodynamic extends and the thermodynamic volume is

8M oP 8M oP

where V is effective volume inside the horizon.

® We can also naively calculate a geometrical volume

/ dr/de ”V (12)

over interior of the black hole, where the radial coordinate ranges from the
singularity at » = rg to the outer horizon at 7 = r,, and A is the area of
the outer horizon.

e 1/ coincide with V' for simple cases such as Sch-AdS and RN-AdS black hole
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Generating Smarr Relation with Eulerian Scaling
Euler theorem states that if a function f(x,y, z) obeys the scaling relation

then it satisfies

Tf(fv,y,Z)—p(gi) +q<g£> +k(g£) : (14)

In a black hole spacetime with a charge and a cosmological constant, physical
variables scale as

MxIP3, AxIP2 Axi72 QuxlIP73, (15)

then the Euler’s theorem yields

(D—3)M = (D —2) (%‘Z)A 2(%%>A+(D~3)(3Z>Q (16)

2

2D. Kastor, S. Ray and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes,”
Class. Quant. Grav. 26, 195011 (2009)
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Generating Smarr Relation with Eulerian Scaling
Euler theorem states that if a function f(z,y, z) obeys the scaling relation
faPa,aty,abz) = a” f(z,y, 2), (13)

then it satisfies

rf(x,y,z)zp(g)x+q<g‘£>y+k(gi) z. (14)

In a black hole spacetime with a charge and a cosmological constant, physical
variables scale as

MxIP3, AxIP7?2 Axi1™2 QxlIP73, (15)
then the Euler’s theorem yields

(D —3)M = (D —2)TS — 2PV + (D — 3)9Q. (16)

2D. Kastor, S. Ray and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes,”
Class. Quant. Grav. 26, 195011 (2009)
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Smarr Relation for RN-AdS in 4D

2 2 7.2 2 2 272
9o T o 1% dr 2 12 B = 2ml* q°l
ds ——jinr)dt-+;§3?;j+4’d(2, f(r)y =14k R S g
(17)
m 1 k 3rp q2 Wk 2Ty
M = — T — - = )
Az k2 4w(rh 12 rh)’ s 4 7
q Wk,2 Wk,2Th
by =— = =
H= g 9 4 82’ 3
e The first law of thermodynamics :
dM =TdS + ®ydQ + VdP (18)
e Smarr relation :
M =2TS+®yQ — 2PV (19)

13
/32‘
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Smarr Relation for RN-AdS in 4D

2 2 7.2 2 2 272
9o T o 1% dr 2 12 B = 2ml* q°l
ds ——jinr)dt-+;§3?;j+4’d(2, f(r)y =14k R S g
(17)
m 1k  3r, ¢ Wi 2T,
M=-" T=_—(Z42h 1 7
4 W2, 4w(rh 2 rh)’ S 4 7’
q Wk,2 Wk,2Th
by =— = =
H= g 9 4 82’ 3
e The first law of thermodynamics : Yes
dM =TdS + ®ydQ + VdP (18)
e Smarr relation :
M =2TS+®yQ — 2PV (19)

13
/32‘
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Smarr Relation for RN-AdS in 4D

2 12 dr? 2 2ml® ?1?
ds? = = f(r)dP+— —— +r2d02 Y L.
s l2f() + f()+ ;o f(r) + 2 3 +r4 ’
(17)
M=y 7o LB 3 g wromh
T Cdncr, o 120 4
3
q w Wk 2Ty,
(b = — = = — =
= rg’ @ i 8mi2’ 3
e The first law of thermodynamics : Yes
dM =TdS + ®gdQ + VdP (18)
e Smarr relation : Yes
M =2TS+ ®5Q — 2PV (19)
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Spacetime with a negative cosmological constant
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Spacetime with a negative cosmological constant

® (Asymptotically) AdS Spacetime
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Spacetime with a negative cosmological constant

® (Asymptotically) AdS Spacetime

® (Asymptotically) Lifshitz Spacetime
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Spacetime with a negative cosmological constant

® (Asymptotically) AdS Spacetime

® (Asymptotically) Lifshitz Spacetime
Time scale is not equal to space

t— Nt = AT

where 2 is called dynamical critical exponent.
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Spacetime with a negative cosmological constant

® (Asymptotically) AdS Spacetime

® (Asymptotically) Lifshitz Spacetime
Time scale is not equal to space

t— Nt = AT

where 2 is called dynamical critical exponent.
This anisotropic symmetry can be geometrically configured by

d32=12(— thj df+dx%+2d”’§)
T T T

where z % 1. When z = 1 it restores the AdS spacetime.
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Lifshitz Spacetime Actions |

® A massive vector field with a negative cosmological constant

S = /d”“xf( [R+2A]—1{H2 732D

n+1 9v
where ;
B=2" 9y H=dB
Kn41 17

I. Miranda C.N. Cheng, Sean A. Hartnoll, Cynthia A. “Deformations of Lifshitz
holography”, JHEP 1003 (2010) 062

2. Miok Park, Robert B. Mann, “Deformations of Lifshitz Holography in (n+1)
-dimensions”, JHEP 1207 (2012) 173

3. M.H. Dehghani, Robert B. Mann, “Lovelock-Lifshitz Black Holes”, JHEP 1007 (2010)
019
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Lifshitz Spacetime Actions |l

® higher curvature terms with a negative cosmological constant

L Py f(R)])

2K 1

S = /d"+1x\/jg(
where f(R) is some function of the Ricci curvature
Lop = R?* — AR, R"™ + Ryyap R "

I. Rong-Gen Cai, Yan Liu, Ya-Wen Sun, “A Lifshitz Black Hole in Four Dimensional
R**2 Gravity”, JHEP 0910 (2009) 080

2. Yun Soo Myung, Taeyoon, “Quasinormal frequencies and thermodynamic quantities
for the Lifshitz black holes”, Phys.Rev. D86 (2012) 024006
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Lifshitz Spacetime Actions |l

® Abelian gauges fields with a negative cosmological constant

1
—H,, H"™ —
12°°# V=g

) \
S = / d*z\/—g (R + 20 = S P P — P B, Fug

where F,,, = 0, A, and H,,,r = 0, B, 7] are Abelian gauge fields that are
topologically coupled with coupling constant C.

I. UIf H. Danielsson, Larus Thorlacius, “Black holes in asymptotically Lifshitz
spacetime”, JHEP 0903 (2009) 070

2. Robert B. Mann, “Lifshitz Topological Black Holes”, JHEP 0906 (2009) 075
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Lifshitz Spacetime Actions IV

e Einstein-Maxwell-dilaton with a negative cosmological constant

S = /d4z\/—g <R + 2A — %8ﬂ¢8“¢ — ie*‘i’FuuF””)

I. Chanyong Park, “Notes on the holographic Lifshitz theory”, arXiv:1305.6690

2. Javier Tarrio, Stefan Vandoren, “Black holes and black branes in Lifshitz spacetimes”,
JHEP 1109 (2011) 017
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Smarr Relation formulated by T.V.A.

Let us consider Sch-AdS black hole spacetime

12 ml?
f(r)zg(r):1+kﬁ—2w7_1

This yields

1 Th 1

= —1)2 A Al
T=—|(D-1)7+(D S)krh} (20)
M = (D —2)“2=2" _ (p _9)¥D=2 W + kwp_orP—3 Q1)

167 167 12 D=2"h ’
D—2
rk A (D-1)(D-2

e pP—_ — 22
§ =Wk p-2= 81G 16712 22)

and geometric arguments imply that the thermodynamic volume coincides with
the geometric volume
D-1
_h
(D-1)
where wy, p_s is the surface area of the space orthogonal to fixed (t,7)

surfaces.
Miok Park

V =wip_2
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Smarr Relation formulated by T.V.A.

Let us assume a generalized Smarr Relation for a uncharged case

M =aTS+bPV (23)
where a, b are undetermined coefficients. Plugging all variables, we then have
FD-1 5
[(D—2)—a(D—1)—bD —2)| th +k[(D—-2)—a(D-3)]ry =0

(24)
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Smarr Relation formulated by T.V.A.

Let us assume a generalized Smarr Relation for a uncharged case

M =alS+bPV (23)
where a, b are undetermined coefficients. Plugging all variables, we then have
FD-1
[(D—=2)—a(D—1)=b(D - 2)] 2=+ k[(D-2) —a(D - 3)]r) > =0

l2
(24)

® regardless a value of k

_(D72) b— 2
“T -3y T (-3

= (D-3)M = (D—-2)TS — 2PV
(25)
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Smarr Relation formulated by T.V.A.

Let us assume a generalized Smarr Relation for a uncharged case

M =aTS+bPV (23)
where a, b are undetermined coefficients. Plugging all variables, we then have
FD-1 5
[(D—2)—a(D—1)—bD —2)| th +k[(D—-2)—a(D-3)]ry =0

(24)

® regardless a value of k

_(D—2) b— 2
RO R N (VR )

= (D-3)M = (D—-2)TS — 2PV
(25)

This is consistent with Smarr Relation from Euler theorem
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Smarr Relation formulated by T.V.A.

Let us assume a generalized Smarr Relation for a uncharged case

M =alS+bPV (23)
where a, b are undetermined coefficients. Plugging all variables, we then have
D-1
(D ~2) —a(D~1) ~ b(D — 2)) " + k[(D—2) —a(D - 3)]rP~* = 0

l2
(24)

® regardless a value of k

(D—-2) 2
— = — D—-3M=(D-2)TS —2P

a (D=3) b (D=3 = 3) ( )T'S \%
(25)

This is consistent with Smarr Relation from Euler theorem

o k=0
(D-2) ¢ ¢

= b= 26
““o-yto-n -2 L)
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Smarr Relation formulated by T.V.A.

Let us assume a generalized Smarr Relation for a uncharged case

M =aTS+bPV (23)
where a, b are undetermined coefficients. Plugging all variables, we then have
D-1
(D ~2) —a(D~1) ~ b(D — 2)) " + k[(D—2) —a(D - 3)]rP~* = 0

l2
(24)

® regardless a value of k

(D—-2) 2
— = — D—-3M=(D-2)TS —2P

a (D=3) b (D=3 = 3) ( )T'S \%
(25)

This is consistent with Smarr Relation from Euler theorem

o k=0
(D-2) ¢ ¢

= b= ——— 26
““o-yto-n -2 L)

When ¢ = 0, we could have Smarr Relation without PV even if presence of
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Smarr Formulas for & = O case

e From Eulerian Scaling
(D—-3)M = (D—-2)TS—-2PV (28)

e From thermodynamic Ansatz

(D—1)M = (D —2)TS 29)

Miok Park Thermodynamic Mass and Volume in Lifshitz Spacetimes



Smarr Relation for £ = 0 case
Let us consider the following metric which is Lifshitz for z # 1 and AdS for

z=1
r\ 2z 12 dr?
as? = — (%) d? + 55 4 r2d03 30
S 1 f(?") +ng(r)+r k ( )
Employing the ansatz M = ]\Jorfl” where M is dimensionless and
a+p=D-3,
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Smarr Relation for £ = 0 case
Let us consider the following metric which is Lifshitz for z # 1 and AdS for

z=1
r\ 2z 12 dr?
as? = — (%) d? + 55 4 r2d03 30
S 1 f(?") +T29(7“)+r k ( )

Employing the ansatz M = ]\Jorfl” where M is dimensionless and
a+pB=D-3,
® Thermodynamic mass relation

oM oS |4 opP

=T = My=————5—++ 31
(’,)I'/, (’,)I‘/, 0 ala_l . 7‘5 8l ( )
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Smarr Relation for £ = 0 case
Let us consider the following metric which is Lifshitz for z # 1 and AdS for

z=1
r\ 2z 12 dr?
as? = — (%) d? + =2 42402 30
S 1 f(?") +T29(T)+r k ( )
Employing the ansatz M = ]\Jorfl” where M is dimensionless and
a+pB=D-3,
® Thermodynamic mass relation
oM oS v oprP
=T My= ——F>— 31
()I'/, (’,)I‘/, = 0 ala_l . 7‘5 8l ( )
® Thermodynamic volume relation
oM or o, _Teaomy 98 (0PN a(D-2)TS
a ol Bl or \ Ol » 2P
(32
where it is used that Since A l/l2 and S 7’,?—2,
oS opP 2P
22 _(D—-2)8 Lol AL 33
Th o ( ) ) ol 1’ (33)
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Smarr Relation for k& = 0 case

The Smarr Relation from Eulerian scaling becomes

D -2 2 D
M:D73TS_D73PV D3TS[

(67

B

D-2
] =5 TS (4

From temperature

r\#+t1 1
= (3) VPO . (35)
T=Th

we read off

[T =i/, (M) =[TI[S] = ri P72 /1540 = P72 /1540 (36)
Since M = Morflo‘, itturnsout =D + 2z — 2.
Thus the Smarr Relation without PV yields

D -2
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Smarr Relation without PV for charged case
Employing a mass ansatz M = Mor? 1* + ¢oQ2r71%,

oM 95  OM 9P oM

el s S VT 38
orn or,’ ol ol aQ H (38)
oM
L ot =, (9)
oM 5—1 2 =115 B-1 Q oy S
— a — M. a T A =T =
orn MOﬁrh I+ qoQ Ty l Oﬁrh ™+ 2 Y 87"}17
M [ oP
O Moo= + o @001 = Moo+ 2285 v 2P (4g)

By rearranging the last two equations, they are expressed as

M, :1<T85 _Q(I)H7> :;<V?£_Q(I)H5>’ (41

ﬂrﬁilla a?"h 2 ry arflﬂéfl ol 2 1
(D—-2)« 1 «
= — - — = 42
PV 5 ﬂTS 1Q%H 57 +6 (42)
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Smarr Relation without PV for charged case

By putting PV term, we arrive

(D-2) 2
M = (D= 3)TS+<I)HQ (D—3)PV

_(D=2)(a+p 1 (a+5)

o= )TS +(z-apgp)oe @

_(D=-2)
Again, using 8 = D + z — 2, Smarr Relation without PV for charged case is
obtained as

. (D-2) (D+2z—-2-—7)

M= (D+2z-2) 2(D+2-2) PrQ- (“45)

where @, again is the Maxwell charge participating in the first thermodynamic
law

dM = TdS + ®xdQ. (46)
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El: Lifshitz Blackhole with higher curvature term

Hereis z = 2and D = 5 case 3

S = /dD:v\/jg (% [R—2A] + aR? + bR" Ry + ¢ [Ryuwpo R*7 — 4R, R + RQ])

Clert 1584 221107

7257 137757 ¢ 11020

3Y. Gim, W. Kim and S. H. Yi, “The first law of thermodynamics in Lifshitz black
holes revisited,” JHEP 1407, 002 (2014)
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El: Lifshitz Blackhole with higher curvature term

Hereis z = 2and D = 5 case 3

S = /deFg (% [R—2A] + aR? + bR" Ry + ¢ [Ryuwpo R*7 — 4R, R + RQ])

_ler* o 1ss4lr 221107
7257 ©C 137757 ¢ 11020
2z 27,2 5/2
2 _ C 2 I“dr 2 o o _ ml o —2197
ds® = (l) f(r)dt +g(r)r2 +dz°, f(r)y=g(r)= (1 A ), A= E1

3Y. Gim, W. Kim and S. H. Yi, “The first law of thermodynamics in Lifshitz black
holes revisited,” JHEP 1407, 002 (2014)
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El: Lifshitz Blackhole with higher curvature term

Hereis z = 2and D = 5 case 3

S = /deFg (% [R—2A] + aR? + bR" Ry + ¢ [Ryuwpo R*7 — 4R, R + RQ])

_ler® 158417 e 22117
7257 7 137757 7 11020
2z 27,2 5/2
2 T 2 I“dr 2 o o _ ml o —2197
ds® = (l) f(r)dt +g(r)r2+dm , fr)y=g(r)= (1 A ), A= E1
_ 297 rhwos S_ 3967 Two,3 _ 57;
T 1102 BT 551 7~ 8wi3

3Y. Gim, W. Kim and S. H. Yi, “The first law of thermodynamics in Lifshitz black
holes revisited,” JHEP 1407, 002 (2014)
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El: Lifshitz Blackhole with higher curvature term

Hereis z = 2and D = 5 case 3

S = /deFg (% [R—2A] + aR? + bR" Ry + ¢ [Ryuwpo R*7 — 4R, R + RQ])

_ler® 158417 e 22117
7257 7 137757 7 11020
2z 27,2 5/2
2 T 2 I“dr 2 o o _ ml o —2197
ds® = (l) f(r)dt +g(r)r2 +dz°, f(r)y=g(r)= (1 A ), A= E1
_ 297 rhwos S_ 3967 Two,3 _ 57; o35
T 1102 BT 551 7~ 8wi3 5

3Y. Gim, W. Kim and S. H. Yi, “The first law of thermodynamics in Lifshitz black
holes revisited,” JHEP 1407, 002 (2014)
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El: Lifshitz Blackhole with higher curvature term

Hereis z = 2and D = 5 case 3

S = /deFg (% [R—2A] + aR? + bR" Ry + ¢ [Ryuwpo R*7 — 4R, R + RQ])

_ler® 158417 e 22117
7257 7 137757 7 11020
2z 27,2 5/2
2 T 2 I“dr 2 o o _ ml o —2197
dS - (l) f(’l")dt +g(7’)7'2 +d.’E k) f(’f‘) - g(?") - (1 7"5/2 ) k) A - 55112
_ 297 miwos o _ 396rhmwos o B 4. 3o
T 1102 BT 551 7 8xl3 5
2197
=" _ 9M=3TS-2P
4408712’ TS v

3Y. Gim, W. Kim and S. H. Yi, “The first law of thermodynamics in Lifshitz black
holes revisited,” JHEP 1407, 002 (2014)
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El: Lifshitz Blackhole with higher curvature term

Hereis z = 2and D = 5 case 3

S = /deFg (% [R—2A] + aR? + bR" Ry + ¢ [Ryuwpo R*7 — 4R, R + RQ])

_ler® 158417 e 22117
7257 7 137757 7 11020
2z 12dr? mi®/? —2197
d2:_(f) dt2 dﬂQ = =(1— ——— A=
s I f(r) +g(r)r2+ z, f(r)=g(r) /2 | 55112
_ 297 rhwos g— 39675 Two,3 _ 57; o35
T 1102 BT 551 7 8xl3 5
2197 1782 ri7mwo 3
=-"-""_  9M =3TS-2P = /] _h
440872 SIS =2PV. = V=97 =

3Y. Gim, W. Kim and S. H. Yi, “The first law of thermodynamics in Lifshitz black
holes revisited,” JHEP 1407, 002 (2014)
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E2: Einstein-Dilaton-Maxwell(NU (1))

N
1 1 _
L /d%\ﬁ—g [R —2A — 5(a¢)2 -3 § eWFE}

~ 167Gp -

) 22 s 21 o 5o (D+2z—-2)(D+z-3)
ds” = — (7) frdt” + ﬁf(r)dr +7r7dQ% p_o, A=-— e
[2(2—1)
D—3 2 l2 oD (D-2) l2z —2(D42-3)
f(r):k(7D+zf4) — +1—mr —1—22 D+zf4)r ,

A;,1 = l*z\/Q(D +z—-2)(z— 1)#\/%71D+z737

- D—2) 3—-D—
A;,n = qnlu/ ( ) r z>

Ay =17 \/Qk(D —2)(D-3)(z— 1)’“2(;\/%)3()271)TD+2—57
’ vVD+z—4
e® — HT\/Z(D72)(z71)

4

4]. Tarrio and S. Vandoren, “Black holes and black branes in Lifshitz spacetimes,
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e k=0
- At least one (V= 1) UU(1) gauge field is required. As the gauge and the
dilaton fields diverge in order to support the Lifshitz asymptotics when
T — 00, the metric does not possesses a charge and yields uncharged
Lifshitz black holesolutions.
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° k=0
- At least one (V= 1) UU(1) gauge field is required. As the gauge and the
dilaton fields diverge in order to support the Lifshitz asymptotics when
T — 00, the metric does not possesses a charge and yields uncharged
Lifshitz black holesolutions.
- For N > 2, the extra gauge field converges as 7 — co and in this case the
extra U(1) charges appear in the metric. This corresponds to a charged
Lifshitz black hole solution.

e k=1
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° k=0
- At least one (V= 1) UU(1) gauge field is required. As the gauge and the
dilaton fields diverge in order to support the Lifshitz asymptotics when
T — 00, the metric does not possesses a charge and yields uncharged
Lifshitz black holesolutions.
- For N > 2, the extra gauge field converges as 7 — co and in this case the
extra U(1) charges appear in the metric. This corresponds to a charged
Lifshitz black hole solution.

e k=1

-At least two (/N = 2) (1) gauge fields are necessarily required: one to
support the Lifshitz asymptotics with the dilaton field and the other to
sustain the SP~3 topology, namely the near-horizon geometry given by
AdSy x SP~2, It yields uncharged Lifshitz black hole solution.
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° k=0
- At least one (V= 1) UU(1) gauge field is required. As the gauge and the
dilaton fields diverge in order to support the Lifshitz asymptotics when
T — 00, the metric does not possesses a charge and yields uncharged
Lifshitz black holesolutions.
- For N > 2, the extra gauge field converges as 7 — co and in this case the
extra U(1) charges appear in the metric. This corresponds to a charged
Lifshitz black hole solution.

e k=1
-At least two (/N = 2) (1) gauge fields are necessarily required: one to
support the Lifshitz asymptotics with the dilaton field and the other to
sustain the SP~3 topology, namely the near-horizon geometry given by
AdSy x SP~2, It yields uncharged Lifshitz black hole solution.
- For N = 3, the extra gauge charge appears in the metric and this leads to
the charged Lifshitz black hole solution.

[ ] k:—]_
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° k=0
- At least one (V= 1) UU(1) gauge field is required. As the gauge and the
dilaton fields diverge in order to support the Lifshitz asymptotics when
T — 00, the metric does not possesses a charge and yields uncharged
Lifshitz black holesolutions.
- For N > 2, the extra gauge field converges as 7 — co and in this case the
extra U(1) charges appear in the metric. This corresponds to a charged
Lifshitz black hole solution.

e k=1
-At least two (/N = 2) (1) gauge fields are necessarily required: one to
support the Lifshitz asymptotics with the dilaton field and the other to
sustain the SP~3 topology, namely the near-horizon geometry given by
AdSy x SP~2, It yields uncharged Lifshitz black hole solution.
- For N = 3, the extra gauge charge appears in the metric and this leads to
the charged Lifshitz black hole solution.

[ ] k = —]_
there is an imaginary charge density for z # 1 and so the hyperbolic case is
only admitted for z = 1.
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® Thermodynamic variable can be directly red off

[2(z—1)
N—
r? ZQ(D 3 2 (D—2) l22 _a(Diz_3)
=——F—7-(D -2+ kr—— nkt *
4=+t <( tz-2)+ r2(D+z— z_: T 2(D—2) 'n
Wk,D—2 D-2 (D+=2— )(D+Z_ )
S=— P=
4GD "h ’ 167TGDZ2
_ 2(z—1)
(D—=2) z—1
gn M 4-D—2 1 Xio ink,D72l
o, =_dnbk = . Qi= ity = dRDZ2
(D+z—4) 'h @ = T6ran / e 167Gp
® The mass is obtained by the modified Korma formula
o _ 2(z—1
D—9 B D — 3)22 - 2 (D—2
M= ( )Wk, D2 14k ( 3)°1 ; (F~1pDras2 | Z Gn it
167G p (D + z —4)2r37 — 2(D-2)(D+ =
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® Thermodynamic variable can be directly red off

[2(z—1)
N—
r? ZQ(D 3 2 (D—2) l22 _a(Diz_3)
=——F—7-(D -2+ kr—— nkt *
4=+t (( tz-2)+ r2(D+z— z_: T 2(D—2) 'n
Wk,D—2 D-2 (D+=2— )(D+Z_ )
S=— P=
4GD "h ’ 167TGDZ2
_ 2(z—1)
(D—=2) z—1
qn K 4-D—z 1 Xid ink,D—Zl
o, =_dnbk = . Qi= ity = dRDZ2
(D+z—4) 'h @ = T6ran / e 167Gp
® The mass is obtained by the modified Korma formula
o _ 2(z—1
D—9 B D — 3)22 - 2 (D—2
M= ( )Wk, D2 14k ( 3)°1 ; (F~1pDras2 | Z Gn it
167G p (D + z —4)2r37 — 2(D-2)(D+ =

® Smarr Relation without PV for k = 0 is satisfied

M=— TS+ZD+Z B,Qn
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® Demanding Smarr Relation for £ = 1,0
(D—=3)M =(D—-2)TS—-2PV + (D -3)®nQ,
® Thermodynamic volume is

v (D=%ups )[(Hl D—3>2<z—1>z2>l1zrng

" (D+z-3)(D+z2-2 2(D+ z — 4)%r? h
2(2—1)
N—k z—lq,u (sz) +14D
n lZ
L e
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Summary

When existence of A < 0, it will be satisfied with

® General Smarr Relation in D dim. for £ = 1,0, and —1
(D—=3)M =(D—-2)TS —2PV + (D - 3)®0Q,

® General Smarr Relation without PV in D dim Especially, kK = 0

M = (D72) TS + MCDHQ

(D+2z-2) 2(D+2-2)

31
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