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How to define a Global charge of a curved spacetime?

∇aTab = 0 (1)

• In SR
◦ Tab, is associated with a classical field.
◦ Eq. (1) guarantees that total energy is conserved and is defiened as

E =
∫

Σ
Tabnatb

where na is the unit normal to Σ and ta a time-like Killing field.
• In GR

Rµν − 1
2

Rgµν = Tµν

◦ the energy properties of matter are represented by Tµν . The local
energy density of matter as measured by a given observer remain well
defined.

◦ A gravitational field energy should make a contribution to total energy,
but is not included in Tµν . However, there is no known meaningful
notion of the energy density of gravitational field in GR.
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How to define a Global charge

• ADM Method in 1959

• Komar Method in 1963

• AD(T) Method in 1982, (2002)

• BY Method in 1993

• Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

• ADM Method in 1959

H = − 1
8π

∮
st

[
N(k − k0) − Na(Kab − Khab)rb

]√
σd2θ, (2)

(N = 1, Na = 0) M = − 1
8π

lim
st→∞

∮
st
(k − k0)

√
σd2θ, (3)

(N = 0, Na = ϕa) J = − 1
8π

lim
st→∞

∮
st
(Kab − Khab)ϕarb

√
σd2θ (4)

• Komar Method in 1963
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• Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

• ADM Method in 1959

• Komar Method in 1963

• AD(T) Method in 1982, (2002)

gµν = ḡµν + hµν , Rµν
L − 1

2
ḡµνRL − Λhµν = −

√
−ḡ

−1/2
T µν

(−ḡ)1/2Tµν = D̄αD̄βKµανβ + Xµν ,

Kµανβ = 1
2

[ḡµβHνα + ḡναHµβ − ḡµνHαβ − ḡαβHµν ],

Hµν = hµν − 1
2

ḡµνha
a, Xµν = 1

2
R̄ν

λαβKµλαβ ,

D̄µT µν = 0 ⇒ D̄µ(T µν ξ̄ν) = ∂µ(T µν ξ̄ν) = 0 ⇒ E(ξ̄) = 1
8π

∫
d3xT 0ν ξ̄ν ,

• BY Method in 1993

• Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

• ADM Method in 1959

• Komar Method in 1963

• AD(T) Method in 1982, (2002)

• BY Method in 1993

τ ij = 2√
−γ

δS

δγij
= 2√

−γ
(πij − πij

0 ), (2)

Qξ(B) =
∫
B

d2x
√

σ(uiτ
ijξj) (3)

• Wald’s Method (Noether Formula) in 1993
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How to define a Global charge

• ADM Method in 1959

• Komar Method in 1963

• AD(T) Method in 1982, (2002)

• BY Method in 1993

• Wald’s Method (Noether Formula) in 1993

LξL(ϕ) = ∂L

∂ϕ
Lξϕ

ω(ϕ, δϕ, ξϕ) = δJ − d(ξ · Θ), Ω(ϕ, δ1ϕ, δ2ϕ) =
∫

C

ω(ϕ, δ1ϕ, δ2ϕ)

δH = Ω(ϕ, δϕ, Lξϕ) = δ

∫
C

J −
∫

C

d(ξ · Θ) = δ

∫
C

J −
∫

∞
ξ · Θ

H =
∫

C

J −
∫

∞
ξ · Θ =

∫
∞

(Q − ξ · B) where δ

∫
∞

ξ · B =
∫

∞
ξ · Θ
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Black Hole Thermodynamics
In 1972, Hawking proved that the area of black hole horizon can never
decreas
In 1973, this work resulted in “four laws of black hole mechanics” by
Bardeen, Carter, and Hawking
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Black Hole Thermodynamics : Temperature

• Euclideanized Black Hole Spacetime : t → iτ
Expand the metric at near Horiozn by changing variable x

ds2
E ≈ (κx)2dτ2 + dx2 = dx2 + x2d(κτ)2,

To be plane polar coordinates, τ ∼ τ + 2π

κ

(2)

• Thermodynamic canonical ensemble : Z = Tre−βH (β = (kBT )−1)

Gβ(x, 0; x′, t) = Tr

(
e−βHφ(x, 0)φ(x′, t)

)
= Tr

(
e−βHφ(x, 0)e−itHφ(x′, 0)eitH

)
= Tr

(
φ(x, 0)e−βHe−i(t+iβ)Hφ(x′, 0)ei(t+iβ)H

)
= Tr

(
φ(x, 0)e−βHφ(x′, t + iβ)

)
= Gβ(x′, t + iβ; x, 0) (3)

• Hawking Temperature : ℏβ = 2π/κ ⇒ TH = κ
2π

ℏ
kB
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Black Hole Thermodynamics : Entropy

• Bekenstein-Hawking Entropy in 1972, 1973

S = A

4G
(4)

• Entropy from Noether theorem in 1993

S = 2π

∫
Σ

Qcdϵcd (5)
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Komar Formula for Asymptotically Flat : Smarr Relaltion

M = − 1
8π

∮
∂V

dSµνDµkν , T = κ

2π
, S = A

4G
,

ΦH = At(rH), Q = 1
4π

∫
∗F (6)

The first law of thermodynamics of Black Holes is satisfied

dM = TdS + ΦHdQ (7)

Expanding Komar formula

M = − 1
8π

∮
∂V

dSµνDµkν = − 1
8πG

∫
V

dSµRµ
νξν

= −2
∫

Σ
dSµT µ

νξν − 1
8πG

∮
H

dSµνDµξν = ΦHQ + 2T S (Smarr Relation)
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Thermodynamic Mass

• If the physical quantities (M, T, S, Φ, Q) are satisfied with

dM = TdS + ΦHdQ. (8)

• This first law implies

∂M

∂rh
= T

∂S

∂rh
,

∂M

∂Q
= ΦH (9)

and so the thermodynamic mass can be independently calculated by

M =
∫

drh
∂M

∂rh
=
∫

drhT
∂S

∂rh
(10)
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Generalised Komar Formula for AAdS

Rab = 0

• Anne Magnon in 1985

• David Kastor and et al. in 2009
D − 2
8πG

∫
∂Σ

dSab

(
∇aξb

)
= 0

◦ For Sch-AdS Black hole in D-dimensions,

(D − 3)M = (D − 2) κ

8πG
A − 2 Θ

8πG
Λ

◦ By varying the cosmological constant, the first law is given as

δM = κ

8πG
δA + Θ

8πG
δΛ

◦ The cosmological constant can be thought of as a perfect fluid
stress-energy with pressure P = −Λ/8πG.
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8πG
A − 2 Θ

8πG
Λ

◦ By varying the cosmological constant, the first law is given as

δM = κ

8πG
δA + Θ

8πG
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◦ The cosmological constant can be thought of as a perfect fluid
stress-energy with pressure P = −Λ/8πG.
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Pressure and Thermodynamic Volume
• Assume that the fluctuation of Λ is allowed and correspond it to a pressure

P = − Λ
8πG

= 3
8πl2

• The first law of thermodynamic extends and the thermodynamic volume is

dM = TdS + ΦHdQ + V dP ⇒ ∂M

∂l
= V

∂P

∂l
⇒ V = ∂M

∂l
/

∂P

∂l
(11)

where V is effective volume inside the horizon.

• We can also naively calculate a geometrical volume

V ′ =
∫ r+

r0

dr

∫
dΩ

√
−g = r+V

D − 1
(12)

over interior of the black hole, where the radial coordinate ranges from the
singularity at r = r0 to the outer horizon at r = r+, and A is the area of
the outer horizon.

• V coincide with V ′ for simple cases such as Sch-AdS and RN-AdS black hole
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Generating Smarr Relation with Eulerian Scaling
Euler theorem states that if a function f(x, y, z) obeys the scaling relation

f(αpx, αqy, αkz) = αrf(x, y, z), (13)

then it satisfies

rf(x, y, z) = p

(
∂f

∂x

)
x + q

(
∂f

∂y

)
y + k

(
∂f

∂z

)
z. (14)

In a black hole spacetime with a charge and a cosmological constant, physical
variables scale as

M ∝ lD−3, A ∝ lD−2, Λ ∝ l−2, Q ∝ lD−3, (15)

then the Euler’s theorem yields

(D − 3)M = (D − 2)
(

∂M

∂A

)
A − 2

(
∂M

∂Λ

)
Λ + (D − 3)

(
∂M

∂Q

)
Q. (16)

2
2D. Kastor, S. Ray and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes,”

Class. Quant. Grav. 26, 195011 (2009)
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(
∂f
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x + q

(
∂f

∂y

)
y + k

(
∂f
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)
z. (14)

In a black hole spacetime with a charge and a cosmological constant, physical
variables scale as

M ∝ lD−3, A ∝ lD−2, Λ ∝ l−2, Q ∝ lD−3, (15)

then the Euler’s theorem yields

(D − 3)M = (D − 2)TS − 2PV + (D − 3)ΦQ. (16)

2

2D. Kastor, S. Ray and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes,”
Class. Quant. Grav. 26, 195011 (2009)
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Smarr Relation for RN-AdS in 4D

ds2 = −r2

l2
f(r)dt2+ l2

r2
dr2

f(r)
+r2dΩ2

k, f(r) = 1+k
l2

r2 −2ml2

r3 +q2l2

r4 ,

(17)

M = m

4π
ωk,2, T = 1

4π
( k

rh
+ 3rh

l2
− q2

rh
), S = ωk,2r2

h

4
,

ΦH = q

rH
, Q = ωk,2

4π
q, P = 3

8πl2
, V = ωk,2r3

h

3

• The first law of thermodynamics :

dM = TdS + ΦHdQ + V dP (18)

• Smarr relation :
M = 2TS + ΦHQ − 2PV (19)
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Spacetime with a negative cosmological constant

• (Asymptotically) AdS Spacetime

• (Asymptotically) Lifshitz Spacetime
Time scale is not equal to space

t → λz t, x⃗ → λ x⃗

where z is called dynamical critical exponent.
This anisotropic symmetry can be geometrically configured by

ds2 = l2
(

− dt2

r2z
+ dr2

r2 + dx2
1 + dx2

2
r2

)
where z ̸= 1. When z = 1 it restores the AdS spacetime.
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Lifshitz Spacetime Actions I

• A massive vector field with a negative cosmological constant

S =
∫

dn+1x
√

−g

(
1

2κ2
n+1

[R + 2Λ] − 1
gv

2

[
1
4

H2 + γ

2
B2
])

where

B = gvl

κn+1

q

rz
dt, H = dB

1. Miranda C.N. Cheng, Sean A. Hartnoll, Cynthia A. “Deformations of Lifshitz
holography”, JHEP 1003 (2010) 062

2. Miok Park, Robert B. Mann, “Deformations of Lifshitz Holography in (n+1)
-dimensions”, JHEP 1207 (2012) 173

3. M.H. Dehghani, Robert B. Mann, “Lovelock-Lifshitz Black Holes”, JHEP 1007 (2010)
019
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Lifshitz Spacetime Actions II

• higher curvature terms with a negative cosmological constant

S =
∫

dn+1x
√

−g

(
1

2κ2
n+1

[R + 2Λ + f(R)]
)

where f(R) is some function of the Ricci curvature

LGB = R2 − 4RµνRµν + RµναβRµναβ

1. Rong-Gen Cai, Yan Liu, Ya-Wen Sun, “A Lifshitz Black Hole in Four Dimensional
R**2 Gravity”, JHEP 0910 (2009) 080

2. Yun Soo Myung, Taeyoon , “Quasinormal frequencies and thermodynamic quantities
for the Lifshitz black holes”, Phys.Rev. D86 (2012) 024006

3. Eloy Ayon-Beato, Alan Garbarz, Gaston Giribet, Mokhtar Hassaine, “Analytic Lifshitz
black holes in higher dimensions”, JHEP 1004 (2010) 030

Miok Park Thermodynamic Mass and Volume in Lifshitz Spacetimes 16/32
16/32



Lifshitz Spacetime Actions III

• Abelian gauges fields with a negative cosmological constant

S =
∫

d4x
√

−g

(
R + 2Λ − 1

4
FµνF µν − 1

12
Hµντ Hµντ − C√

−g
ϵµναβBµνFαβ

)
where Fµν = ∂[µAν] and Hµντ = ∂[µBντ ] are Abelian gauge fields that are
topologically coupled with coupling constant C .

1. Ulf H. Danielsson, Larus Thorlacius, “Black holes in asymptotically Lifshitz
spacetime”, JHEP 0903 (2009) 070

2. Robert B. Mann, “Lifshitz Topological Black Holes”, JHEP 0906 (2009) 075

3. M.H. Dehghani, R.B. Mann, R. Pourhasan, “Charged Lifshitz Black Holes”, Phys.Rev.
D84 (2011) 046002
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Lifshitz Spacetime Actions IV

• Einstein-Maxwell-dilaton with a negative cosmological constant

S =
∫

d4x
√

−g

(
R + 2Λ − 1

2
∂µϕ∂µϕ − 1

4
eλϕFµνF µν

)

1. Chanyong Park, “Notes on the holographic Lifshitz theory”, arXiv:1305.6690

2. Javier Tarrio, Stefan Vandoren, “Black holes and black branes in Lifshitz spacetimes”,
JHEP 1109 (2011) 017
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Smarr Relation formulated by T.V.A.
Let us consider Sch-AdS black hole spacetime

f(r) = g(r) = 1 + k
l2

r2 − 2 ml2

rD−1

This yields

T = 1
4π

[
(D − 1)rh

l2 + (D − 3)k 1
rh

]
, (20)

M = (D − 2)ωD−2m

16π
= (D − 2)ωD−2

16π

(
rD−1

h

l2 + kωD−2rD−3
h

)
, (21)

S = ωk,D−2
rD−2

h

4
, P = − Λ

8πG
= (D − 1)(D − 2)

16πl2 (22)

and geometric arguments imply that the thermodynamic volume coincides with
the geometric volume

V = ωk,D−2
rD−1

h

(D − 1)
where ωk,D−2 is the surface area of the space orthogonal to fixed (t, r)
surfaces.
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Smarr Relation formulated by T.V.A.
Let us assume a generalized Smarr Relation for a uncharged case

M = aTS + bPV (23)

where a, b are undetermined coefficients. Plugging all variables, we then have

[(D − 2) − a(D − 1) − b(D − 2)]
rD−1

h

l2 + k [(D − 2) − a(D − 3)] rD−3
h = 0

(24)

• regardless a value of k

a = (D − 2)
(D − 3)

, b = − 2
(D − 3)

⇒ (D − 3)M = (D − 2)TS − 2PV

(25)

This is consistent with Smarr Relation from Euler theorem

• k = 0

a = (D − 2)
(D − 1)

+ c

(D − 1)
, b = c

(D − 2)
(26)

When c = 0, we could have Smarr Relation without PV even if presence of
Λ

(D − 1)M = (D − 2)TS (27)
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Λ

(D − 1)M = (D − 2)TS (27)
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Smarr Formulas for k = 0 case

• From Eulerian Scaling

(D − 3)M = (D − 2)TS − 2PV (28)

• From thermodynamic Ansatz

(D − 1)M = (D − 2)TS (29)
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Smarr Relation for k = 0 case
Let us consider the following metric which is Lifshitz for z ̸= 1 and AdS for
z = 1

ds2 = −
(r

l

)2z

f(r)dt2 + l2

r2
dr2

g(r)
+ r2dΩ2

k (30)

Employing the ansatz M = M0rβ
h lα where M0 is dimensionless and

α + β = D − 3,

• Thermodynamic mass relation

∂M

∂rh
= T

∂S

∂rh
⇒ M0 = V

αlα−1 · rβ
h

∂P

∂l
(31)

• Thermodynamic volume relation

∂M

∂l
= V

∂P

∂l
⇒ V = T · α · rh

β · l
· ∂S

∂rh

(
∂P

∂l

)−1

= −α(D − 2)
β

TS

2P
(32)

where it is used that Since Λ ∝ 1/l2 and S ∝ rD−2
h ,

rh
∂S

∂rh
= (D − 2)S,

∂P

∂l
= −2P

l
, (33)
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Smarr Relation for k = 0 case
The Smarr Relation from Eulerian scaling becomes

M = D − 2
D − 3

TS − 2
D − 3

PV = D − 2
D − 3

TS

[
1 + α

β

]
= D − 2

β
TS. (34)

From temperature

T =
(r

l

)z+1 1
4π

√
f ′(r)g′(r)

∣∣∣∣
r=rh

, (35)

we read off

[T ] = rz
h/lz+1, [M ] = [T ][S] = rz+D−2

h /lz+1 = rz+D−2
h /lz+1 (36)

Since M = M0rβ
h lα, it turns out β = D + z − 2.

Thus the Smarr Relation without PV yields

M = D − 2
D + z − 2

TS (37)
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Smarr Relation without PV for charged case
Employing a mass ansatz M = M0rβ

h lα + q0Q2rγ
hlδ ,

∂M

∂rh
= T

∂S

∂rh
,

∂M

∂l
= V

∂P

∂l
,

∂M

∂Q
= ΦH , (38)

∂M

∂Q
=2q0Qrγ

hlδ = ΦH , (39)

∂M

∂rh
=M0βrβ−1

h lα + q0Q2γrγ−1
h lδ = M0βrβ−1

h lα + Q

2
ΦH

rh
γ = T

∂S

∂rh
,

∂M

∂l
=M0αrβ

h lα−1 + q0Q2δrγ
hlδ−1 = M0αrβ

h lα−1 + Q

2
ΦH

l
δ = V

∂P

∂l
(40)

By rearranging the last two equations, they are expressed as

M0 = 1
βrβ−1

h lα

(
T

∂S

∂rh
− Q

2
ΦH

rh
γ

)
= 1

αrβ
h lα−1

(
V

∂P

∂l
− Q

2
ΦH

l
δ

)
, (41)

PV = − (D − 2)
2

α

β
TS − 1

4
QΦH

(
− α

β
γ + δ

)
(42)
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Smarr Relation without PV for charged case
By putting PV term, we arrive

M =(D − 2)
(D − 3)

TS + ΦHQ − 2
(D − 3)

PV

=(D − 2)
(D − 3)

(
α + β

β

)
TS +

(
1
2

− (α + β)
2(D − 3)β

γ

)
ΦHQ (43)

=(D − 2)
β

TS +
(

1
2

− γ

2β

)
ΦHQ (44)

Again, using β = D + z − 2, Smarr Relation without PV for charged case is
obtained as

M = (D − 2)
(D + z − 2)

TS + (D + z − 2 − γ)
2(D + z − 2)

ΦHQ∗ (45)

where Q∗ again is the Maxwell charge participating in the first thermodynamic
law

dM = TdS + ΦHdQ∗ (46)
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E1: Lifshitz Blackhole with higher curvature term

Here is z = 2 and D = 5 case 3

S =
∫

dDx
√

−g
( 1

κ
[R − 2Λ] + aR2 + bRµνRµν + c

[
RµνρσRµνρσ − 4RµνRµν + R2])

a = −16l2

725 , b = 1584l2

13775 , c = 2211l2

11020

ds2 = −
(

r

l

)2z

f(r)dt2+ l2dr2

g(r)r2 +dx⃗2, f(r) = g(r) =
(

1 − ml5/2

r5/2

)
, Λ = −2197

551l2

M = 297
1102 · r5

hω0,3

l3 , S = 396r3
hπω0,3

551 , T = 5r2
h

8πl3 ⇒ M = 3
5T S

P = 2197
4408πl2 , 2M = 3T S − 2P V ⇒ V = 1782

2197 · r5
hπω0,3

l

3Y. Gim, W. Kim and S. H. Yi, “The first law of thermodynamics in Lifshitz black
holes revisited,” JHEP 1407, 002 (2014)
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E2: Einstein-Dilaton-Maxwell(NU(1))

S = 1
16πGD

∫
dDx

√
−g

[
R − 2Λ − 1

2(∂ϕ)2 − 1
4

N∑
i=1

eλiϕF 2
i

]
,

ds2 = −
(

r

l

)2z

f(r)dt2 + l2

r2
1

f(r)dr2 + r2dΩ2
k,D−2, Λ = − (D + z − 2)(D + z − 3)

2l2

f(r) = k
(

D − 3
D + z − 4

)2 l2

r2 + 1 − mr2−D−z +
N−k∑
n=2

q2
nµ

−

√
2(z−1)
(D−2)

l2z

2(D − 2)(D + z − 4)r−2(D+z−3),

A′
t,1 = l−z

√
2(D + z − 2)(z − 1)µ

√
D−2

2(z−1) rD+z−3,

A′
t,n = qnµ

−

√
2(z−1)
(D−2)

r3−D−z,

A′
t,N = l1−z

√
2k(D − 2)(D − 3)(z − 1)

√
D + z − 4

µ
(D−3)√

2(D−2)(z−1) rD+z−5,

eϕ = µr
√

2(D−2)(z−1)

4
4J. Tarrio and S. Vandoren, “Black holes and black branes in Lifshitz spacetimes,”

JHEP 1109, 017 (2011)
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• k = 0

- At least one (N = 1) U(1) gauge field is required. As the gauge and the
dilaton fields diverge in order to support the Lifshitz asymptotics when
r → ∞, the metric does not possesses a charge and yields uncharged
Lifshitz black holesolutions.
- For N ≥ 2, the extra gauge field converges as r → ∞ and in this case the
extra U(1) charges appear in the metric. This corresponds to a charged
Lifshitz black hole solution.

• k = 1

-At least two (N = 2) U(1) gauge fields are necessarily required: one to
support the Lifshitz asymptotics with the dilaton field and the other to
sustain the SD−3 topology, namely the near-horizon geometry given by
AdS2 × SD−2. It yields uncharged Lifshitz black hole solution.
- For N = 3, the extra gauge charge appears in the metric and this leads to
the charged Lifshitz black hole solution.

• k = −1

there is an imaginary charge density for z ̸= 1 and so the hyperbolic case is
only admitted for z = 1.
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- For N = 3, the extra gauge charge appears in the metric and this leads to
the charged Lifshitz black hole solution.

• k = −1
there is an imaginary charge density for z ̸= 1 and so the hyperbolic case is
only admitted for z = 1.

Miok Park Thermodynamic Mass and Volume in Lifshitz Spacetimes 28/32
28/32



• Thermodynamic variable can be directly red off

T = rz

4πlz+1

(
(D + z − 2) + k

l2(D − 3)2

r2(D + z − 4) −
N−k∑
n=2

q2
nµ

−

√
2(z−1)
(D−2)

l2z

2(D − 2) r
−2(D+z−3)
h

)
S = ωk,D−2

4GD
rD−2

h , P = (D + z − 2)(D + z − 3)
16πGDl2 ,

Φn = −qn µ
−

√
2(z−1)
(D−2)

(D + z − 4) r4−D−z
h , Qi = 1

16πGD

∫
eλiϕ ∗ F = qiωk,D−2lz−1

16πGD

• The mass is obtained by the modified Korma formula

M = (D − 2)ωk,D−2

16πGD

[(
1 + k

(D − 3)2l2

(D + z − 4)2r2
h

)
lz−1rD+z−2

h +
N−k∑
n=2

q2
nµ

−

√
2(z−1)
(D−2)

2(D − 2)(D + z − 4) lz−1r4−D−z
h

]
,

• Smarr Relation without P V for k = 0 is satisfied

M = D − 2
D + z − 2T S +

N∑
n=2

D + z − 3
D + z − 2ΦnQn
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• Demanding Smarr Relation for k = 1, 0

(D − 3)M = (D − 2)T S − 2P V + (D − 3)ΦHQ,

• Thermodynamic volume is

V = (D − 2)ωk,D−2

(D + z − 3)(D + z − 2)

[(
(z + 1)

2 + k
(D − 3)2(z − 1)l2

2(D + z − 4)2r2
h

)
l1−zrD+z−2

h

−
N−k∑
n=2

(z − 1)q2
nµ

−

√
2(z−1)
(D−2)

4(D − 2)(D + z − 4) lz+1r4−D−z
h

]
,
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Summary

When existence of Λ < 0, it will be satisfied with

• General Smarr Relation in D dim. for k = 1, 0, and −1

(D − 3)M = (D − 2)TS − 2PV + (D − 3)ΦHQ,

• General Smarr Relation without PV in D dim Especially, k = 0

M = (D − 2)
(D + z − 2)

TS + (D + z − 2 − γ)
2(D + z − 2)

ΦHQ
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