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Warning! 
 

1. Very preliminary 

 

2. No helpful references 

 

3. My collaborators are busy 

 

                                      ☺ Any comments are welcome.                                           



Physical cosmology has been formulated in terms of effective 

field theories coupled to general relativity. 

 

Everything is allowed in cosmology. 
 

No genetic origin of inflaton(s) and ad hoc inflation potential 

for cosmic inflation 
 

Alternative, predictive model for the cosmic inflation? 

 
Advertisement: Recently a background-independent formulation of cosmic 

inflation was formulated in terms of matrix quantum mechanics. 

 

Emergent Spacetime and Cosmic Inflation I & II, arXiv:1503.00712 

Cosmic Inflation from Emergent Spacetime Picture, arXiv:1610.00712 

                  All is forgiven ?  



We consider an eight-dimensional Einstein-Yang-Mills theory to 

explore whether Yang-Mills instantons formed in extra dimensions 

can trigger a cosmic inflation in our four-dimensional spacetime. 

We first observe that the Yang-Mills instantons in extra dimensions 

and isometric in four-dimensional spacetime acts as a (quantized) 

cosmological constant for the four-dimensional Einstein gravity.  

As a result, the cosmic inflation in our four-dimensional spacetime 

can be triggered by the Yang-Mills instantons whereas the extra 

dimensions are dynamically compactified since the eight- 

dimensional spacetime must be Ricci-flat. Furthermore we want to 

examine whether the back-reaction from Yang-Mills instantons in 

extra dimensions can be used for the graceful exit from the inflation 

a.k.a. reheating mechanism. 

 Cosmic Inflation from Yang-Mills Instantons 





where A = Ai
M(X)τ idXM =

(
Aµ(x, y)dx

µ, Aα(x, y)dy
α
)

is a connection one-form of the g-bundle
E and τ i

(
i = 1, · · · , rank(g)

)
are Lie algebra generators obeying the commutation relation

[τ i, τ j] = f ijkτ k. (2.4)

We choose a normalization Trτ iτ j = −δij . The action for the eight-dimensional Yang-Mills theory
on a curved manifold M8 is then defined by

SYM =
1

4G2
YM

∫
M8

d8X
√
−GTrGMPGNQFMNFPQ. (2.5)

In order to appreciate whether Yang-Mills instantons formed in extra dimensions give rise to a
vacuum energy which triggers a cosmic inflation in the four-dimensional spacetime, let us consider a
simple geometry M8 = M3,1 ×X4 with a product metric

ds2 = GMNdX
MdXN = gµν(x)dx

µdxν + hαβ(y)dy
αdyβ

= Em ⊗ Em + Ea ⊗ Ea. (2.6)

For this product geometry, the action (2.5) takes the form

SYM =
1

4G2
YM

∫
M3,1

d4x
√
−g

∫
X4

d4y
√
hTr

(
gµνgρσFµνFρσ + 2gµνhαβFµαFνβ + hαγhβδFαβFγδ

)
.

(2.7)
We are interested in the gauge field configuration given by

Aµ(x, y) = 0, Aα(x, y) = Aα(y), (2.8)

for which the above action reduces to

SYM =
1

4G2
YM

∫
M3,1

d4x
√
−g

∫
X4

d4y
√
hTrhαγhβδFαβFγδ. (2.9)

The problem is if there exists any gauge field configuration for which the four-dimensional action
along the internal space X4 becomes a nonzero constant, i.e.,

In ≡ −
∫
X4

d4y
√
hTrhαγhβδFαβFγδ = constant. (2.10)

It is well-known that the four-dimensional gauge fields satisfying the condition (2.10) are precisely
Yang-Mills instantons obeying the self-duality equation

Fαβ = ±1

2

εξηγδ√
h
hαξhβηFγδ. (2.11)

In this case, In = 32π2n with n ∈ N and the action (2.9) can be written as

SYM = − 1

4G2
YM

∫
M3,1

d4x
√
−gIn. (2.12)
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Since [G2
YM ] = L4 in eight dimensions, it may be instructive to rewrite (2.9) as

SΛ = − 1

8πG4

∫
M3,1

d4x
√
−gΛ (2.13)

where G4 is the four-dimensional Newton constant and

Λ =
2πG4

G2
YM

In (2.14)

has the correct dimension of the cosmological constant in four dimensions, i.e., [Λ] = L−2.1 There-
fore we see that the Yang-Mills instantons in Eq. (2.10) generate the coupling with the quantized
cosmological constant Λ in the four-dimensional spacetime.

In conclusion, if Yang-Mills instantons are formed in X4, their instanton number behaves like
a (quantized) cosmological constant in M3,1. Hence it is reasonable to expect that the Yang-Mills
instantons in the internal space generate a cosmic inflation in our four-dimensional spacetime. In next
section we will examine this idea.

3 Cosmic inflation from Yang-Mills instantons

In order to investigate whether Yang-Mills instantons in the internal space X4 can trigger the cosmic
inflation in the four-dimensional spacetime M3,1, let us consider the eight-dimensional Yang-Mills
theory (2.5) coupled to Einstein gravity. It is described by the Einstein-Yang-Mills theory with the
total action

S =
1

16πG8

∫
M8

d8X
√
−GR + SYM (3.1)

where G8 is the eight-dimensional gravitational constant. The gravitational field equations read as

RMN − 1

2
GMNR = 8πG8TMN (3.2)

with the energy-momentum tensor given by

TMN =
1

G2
YM

Tr
(
GPQFMPFNQ − 1

4
GMNFPQF

PQ
)
. (3.3)

The action (2.5) leads to the equations of motion for Yang-Mills gauge fields

GMNDMFNP = 0, (3.4)

where the covariant derivative is defined with respect to both the Yang-Mills and gravitational con-
nections, i.e.,

DMFNP = ∂MFNP − ΓMN
QFQP − ΓMP

QFNQ + [AM , FNP ] (3.5)

1If [G2
YM ] = M−4

GUT where MGUT ∼ 1016 GeV is the energy scale of grand unified theory (GUT),
√
Λ & 1014 GeV.

Hence the Yang-Mills instantons in the GUT scale are eligible for a source of the cosmic inflation.
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and ΓMN
P is the Levi-Civita connection. Therefore we need to show that the cosmic inflation trig-

gered by the Yang-Mills instantons satisfies both (3.2) and (3.4).
In order to find a solution, consider an ansatz for an eight-dimensional metric

ds2 = GMNdX
MdXN = gµν(x)dx

µdxν + e2f(x)hαβ(y)dy
αdyβ

≡ gµν(x)dx
µdxν + h̃αβ(x, y)dy

αdyβ. (3.6)

We also denote the corresponding vielbeins by

ds2 = GMNdX
MdXN = Ẽm ⊗ Ẽm + Ẽa ⊗ Ẽa, (3.7)

where
Ẽm = Em, Ẽa = ef(x)Ea. (3.8)

Although we are considering a warped product metric (4.1), the separation such as Eq. (2.7) is still
valid and the action for the configuration (2.8) reduces to

SYM =
1

4G2
YM

∫
M3,1

d4x
√
−g

∫
X4

d4y
√
hTrhαγhβδFαβFγδ, (3.9)

where we used the fact that the action (2.10) is invariant under the Weyl transformation hαβ →
e2f(x)hαβ . Then one can see that the equations of motion (3.4) take the simple form

hαβDαFβγ = 0. (3.10)

It is easy to show that Eq. (4.5) is automatically satisfied as far as the gauge fields obey the self-duality
equation (2.11). In consequence, the Yang-Mills instantons satisfy the equations of motion (3.4) even
in a warped spacetime with the metric (4.1).

The energy-momentum tensor (3.3) is determined by the Yang-Mills instantons and one finds that

Tµν = − 1

4G2
YM

g̃µνTrFαβF
αβ,

Tαβ =
e−2f(x)

G2
YM

Tr
(
hγδFαγFβδ −

1

4
hαβFγδF

γδ
)
= 0, (3.11)

Tµα = 0,

where g̃µν(x) = e−4f(x)gµν(x) and all indices are raised and lowered with the original metric (2.6).
We used the fact that the energy momentum tensor identically vanishes for an instanton solution
satisfying Eq. (2.11). Note that the energy-momentum tensor Tµν can be written as the form

Tµν = g̃µν(x)ρn(y), (3.12)
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where ρn(y) is the instanton density in X4 which is uniform along the four-dimensional spacetime
M3,1. Hence Tµν effectively acts as a cosmological constant in M3,1 as we observed in the previous
section. In the end, the gravitational field equations (3.2) read as

Rµν −
1

2
gµνR = 8πG8Tµν , (3.13)

Rµα = 0, Rαβ = 0. (3.14)

For the warped product geometry (3.6), the Ricci tensor is given by

Rµν = R(0)
µν − 4(∇(g)

µ ∂νf + ∂µf∂νf),

Rαβ = R
(0)
αβ − (∇2

(g)f + 4gµν∂µf∂νf)e
2f(x)hαβ, (3.15)

Rµα = 0,

where R
(0)
µν and R

(0)
αβ are the Ricci tensors when f = 0 and ∇(g)

µ is a covariant derivative with respect
to the metric gµν(x). And the Ricci scalar is

R = R(g) + e−2f(x)R(h) − 8∇2
(g)f − 20gµν∂µf∂νf, (3.16)

where R(g) and R(h) are the Ricci scalars of the metrics gµν and hαβ when f = 0, respectively.
For the ansatz (3.6), the Einstein equations can thus be written as the form

R(0)
µν − 1

2
gµνR(g) − 4

(
∇(g)

µ ∂νf + ∂µf∂νf
)

+2
(
∇2

(g)f + gρσ∂ρf∂σf − 4πG8e
−4f(x)ρn(y)

)
gµν = 0, (3.17)

R
(0)
αβ = (∇2

(g)f + 4gµν∂µf∂νf)e
2f(x)hαβ. (3.18)

If the four-dimensional metric is given by

gµν = diag
(
− 1, e2Ht, e2Ht, e2Ht

)
, (3.19)

the Einstein tensor for the metric (3.19) is given by

R(0)
µν − 1

2
gµνR(g) = −3H2gµν . (3.20)

Instead, if we consider a different ansatz for an eight-dimensional metric

ds2 = GMNdX
MdXN = e2f(y)gµν(x)dx

µdxν + hαβ(y)dy
αdyβ, (3.21)

the energy-momentum tensor (3.3) is given by

Tµν = − 1

4G2
YM

g̃µνTrFαβF
αβ,

Tαβ =
1

G2
YM

Tr
(
hγδFαγFβδ −

1

4
hαβFγδF

γδ
)
= 0, (3.22)

Tµα = 0,
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where g̃µν(x) = e2f(y)gµν(x). For the warped geometry with the metric (3.21), the corresponding
Ricci tensor is given by

Rµν = R(0)
µν − (∇2

(h)f + 4hαβ∂αf∂βf)e
2f(y)gµν ,

Rαβ = R
(0)
αβ − 4(∇(h)

α ∂βf + ∂αf∂βf), (3.23)

Rµα = 0,

where R
(0)
µν and R

(0)
αβ are the Ricci tensors when f = 0 and ∇(h)

α is a covariant derivative with respect
to the metric hαβ(y). And the Ricci scalar is

R = e−2f(y)R(g) +R(h) − 8∇2
(h)f − 20hαβ∂αf∂βf, (3.24)

where R(g) and R(h) are the Ricci scalars of the metrics gµν and hαβ when f = 0, respectively.
For the latter ansatz, the Einstein equations can be written as the form

R(0)
µν − 1

2
R(g)gµν +

(
∇2

(h)f + 4hαβ∂αf∂βf − 8πG8ρn(y)
)
e2f(y)gµν = 0, (3.25)

R
(0)
αβ = 4(∇(h)

α ∂βf + ∂αf∂βf). (3.26)

If the four-dimensional metric is given by

gµν = diag
(
− 1, e2Ht, e2Ht, e2Ht

)
, (3.27)

the first equation (3.25) is reduced to the following differential equation

∇2
(h)f + 4hαβ∂αf∂βf − 8πG8ρn(y)− 3H2e−2f(y) = 0. (3.28)

4 Different Ansatz

In order to find a solution, let us examine a different ansatz for an eight-dimensional metric

ds2 = GMNdX
MdXN = k(x, y)2

(
gµν(x)dx

µdxν + e2f(x)hαβ(y)dy
αdyβ

)
≡ g̃µν(x, y)dx

µdxν + h̃αβ(x, y)dy
αdyβ. (4.1)

We also denote the corresponding vielbeins by

ds2 = GMNdX
MdXN = Ẽm ⊗ Ẽm + Ẽa ⊗ Ẽa, (4.2)

where
Ẽm = k(x, y)Em, Ẽa = k(x, y)ef(x)Ea. (4.3)
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Although we are considering a general ansatz (4.1), the separation such as Eq. (2.7) is still valid and
the action for the configuration (2.8) reduces to

SYM =
1

4G2
YM

∫
M3,1

d4x

∫
X4

d4y
√

−g̃
√
hTrhαγhβδFαβFγδ, (4.4)

where we used the fact that the action (2.10) is invariant under the Weyl transformation hαβ →
k(x, y)2e2f(x)hαβ . Then one can see that the equations of motion (3.4) take the simple form

hαβDαFβγ +
1

2
Fγβ∂

βk−2 = 0. (4.5)

It is easy to show that Eq. (4.5) is automatically satisfied as far as the gauge fields obey the self-duality
equation (2.11). In consequence, the Yang-Mills instantons satisfy the equations of motion (3.4) even
in a general spacetime with the metric (4.1).

The energy-momentum tensor (3.3) is determined by the Yang-Mills instantons and one finds that

Tµν = − 1

4G2
YM

k(x, y)−4e−4f(x)g̃µν(x, y)TrFαβF
αβ,

Tαβ =
k(x, y)−2e−2f(x)

G2
YM

Tr
(
hγδFαγFβδ −

1

4
hαβFγδF

γδ
)
= 0, (4.6)

Tµα = 0,

where all indices of gauge fields are raised and lowered with the original metric (2.6). We used the
fact that the energy momentum tensor identically vanishes for an instanton solution satisfying Eq.
(2.11). Note that the energy-momentum tensor Tµν can be written as the form

Tµν = k(x, y)−2e−4f(x)ρn(y)gµν(x), (4.7)

where ρn(y) is the instanton density in X4 which is uniform along the four-dimensional spacetime
M3,1. In the end, the gravitational field equations (3.2) read as

Rµν −
1

2
g̃µνR = 8πG8Tµν , (4.8)

Rµα = 0, Rαβ = 0. (4.9)

Let us denote the metric (4.1) by GMN = k(x, y)2GMN . Then we have the relation for the Weyl
transformation:

ΓMN
P = ΓMN

P
+

1

k

(
δPM∂Nk + δPN∂Mk −GMN∂

Pk
)
,

RMN = RMN +
1

k2

(
12∂Mk∂Nk − 5GMN∂

Pk∂Pk)−
1

k

(
6∇M∂Nk +GMN�k

)
, (4.10)

R =
1

k2
R− 14

k4

(
2∂Mk∂Mk + k�k

)
,
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where the barred quantities are evaluated with the metric GMN , e.g., �k = 1√
−G

∂M
(√

−GG
MN

∂Nk
)
.

Since the metric GMN takes the form of a warped product geometry, the corresponding Ricci tensor
is given by

Rµν = R(0)
µν − 4(∇(g)

µ ∂νf + ∂µf∂νf),

Rαβ = R
(0)
αβ − (∇2

(g)f + 4gµν∂µf∂νf)e
2f(x)hαβ, (4.11)

Rµα = 0,

where R
(0)
µν and R

(0)
αβ are the Ricci tensors when f = 0 and ∇(g)

µ is a covariant derivative with respect
to the metric gµν(x). And the Ricci scalar is

R = R(g) + e−2f(x)R(h) − 8∇2
(g)f − 20gµν∂µf∂νf, (4.12)

where R(g) and R(h) are the Ricci scalars of the metrics gµν and hαβ when f = 0, respectively. With
this notation, the Laplacian in Eq. (4.10) is expressed as

�k = ∇2
(g)k + e−2f(x)∇2

(h)k + 4gµν∂µf∂νk. (4.13)

5 Discussion
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