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@ Basic structures of DFT was established
o While DFT is based on string theory, it contains bunch of stringy features

o DFT has potential to describe Stringy Gravity
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MOTIVATION

@ Basic structures of DFT was established
o While DFT is based on string theory, it contains bunch of stringy features
o DFT has potential to describe Stringy Gravity

Thus applications of DFT is attractive subject!!
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BAsic STRUCTURES OF DFT

Doubled Spacetime
° YA = (iuvmu)v 814 = (éuval/)
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BAsic STRUCTURES OF DFT

Doubled Spacetime
4 YA = (iuvmu)v 814 = (éuval/)
Field contents in DFT Hull-Zweibach-Hohm[2010]
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O’HAB:HBA:(BQA g—Bg’lB>’ e = /ge %
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BAsic STRUCTURES OF DFT

Doubled Spacetime
° YA = (iuvmu)v aA = (éuval/)

Field contents in DFT Hull-Zweibach-Hohm[2010]
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3971 g_Bgle > ) € - ge

O(D, D) indices can be raise or lowered by metric

O’HAB:HBA:(
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°jAB:HACHOB:<1 O)
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BAsic STRUCTURES OF DFT

Doubled Spacetime
° YA = (iuvmu)v aA = (éuval/)

Field contents in DFT Hull-Zweibach-Hohm[2010]

-1 1
_ _ g -9 B —2d __ —2¢
°HAB7,HBA7( Bg' g-Bg'B ) , e = ,/ge

O(D, D) indices can be raise or lowered by metric

0 1
°jAB:HACHOB:<1 O)

Section condition

0 0404® =0
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BAsic STRUCTURES OF DFT

Doubled Spacetime
° YA = (iuvmu)v aA = (éuval/)

Field contents in DFT Hull-Zweibach-Hohm[2010]
-1 -1
g -9 B —2d -2
O’HAB:HBA:(BQA g—Bg’lB>’ e = /ge %
O(D, D) indices can be raise or lowered by metric

0 1
°jAB:HACHOB:<1 O)

Section condition
0 0400 =0
Strong constraints can be derived from assumption ® = ¢1¢2

0 Oad10%py =0
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BAsic STRUCTURES OF DFT

Doubled Spacetime
° YA = (iuvmu)v aA = (éuval/)

Field contents in DFT Hull-Zweibach-Hohm[2010]

-1 -1
g -9 B —2d -2
O’HAB:,HBA:(BQ71 g—Bg’lB>’ e = /ge %

O(D, D) indices can be raise or lowered by metric

0 1
°jAB:HACHOB:<1 O)

Section condition
0 0400 =0

Strong constraints can be derived from assumption ® = ¢1¢2
° 9a10%¢2 =0

Conventional choice

0 ap=0 Kill D dimensional unphysical coordinates
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BAsic STRUCTURES OF DFT

Projector can be defined Jeon-Park-Lee[2011]
@ Pap = %(7+H)AB, Pap = %(J—H)AB

© Pap = Pga, PacP®p = Pag, PacPp =0
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BAsic STRUCTURES OF DFT

Projector can be defined Jeon-Park-Lee[2011]
o Pap = %(7+H)AB, Pap = %(J—H)AB
e Pap = Pgpa, PucP°p = Pag, PycP°p =0
Properties of derivative of projections operators
0Pap = —6Pap = %6HAB , PA°§PcpPPp = PA°PcpPPr =0

PA°6PcpPPp = Pac6PC5, PA°8PcpPPp = 6PacPs
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BAsic STRUCTURES OF DFT

Projector can be defined Jeon-Park-Lee[2011]
o Pap = %(7+H)AB, Pap = %(J—H)AB
© Pap = Pga, PacP®p = Pag, PacPp =0

Properties of derivative of projections operators

6Pap = —0Pap = %6HAB, Ps®5PopPPp = PA%5PcpPPp =0
o
PA°6PcpPPp = Pac6PC5, PA°8PcpPPp = 6PacPs
DFT connection
I'cap= 2 (PacPP)[AB] +2 (p[ADPB]E — P[ADPB]E) Op Prc
— 51 (PetaPe” + PeaPp”) (Opd + (POP PP)ppy)
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BAsic STRUCTURES OF DFT

Projector can be defined Jeon-Park-Lee[2011]
o Pap = %(7+H)AB, Pap = %(J—H)AB
e Pap = Pgpa, PucP°p = Pag, PycP°p =0
Properties of derivative of projections operators
0Pap = —6Pap = %6HAB , PA°§PcpPPp = PA°PcpPPr =0
’ PA°6PcpPPp = Pac6PC5, PA°8PcpPPp = 6PacPs
DFT connection
Poap = 2(POcPP) ,p +2(Pa”Pr” — Pa” Pp”) 0p Pec
— 551 (PotaPp)” + PoiaPp) ”) (0pd + (PO” PP) D))
Semi-covariant derivative

B n B
o VeTa,..a, =0cTa,...a, —wl'PpcTa,...a, + Zi:l T'ca, TAl"'Ai—lBAi+1"'An
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BAsic STRUCTURES OF DFT

Semi-covriant derivative satisfies metric compatability
VaPpc =VaPpo =0, Vad=0ad+ 3TPpa =0
VaJee =0, VaHpe =0
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BAsic STRUCTURES OF DFT

Semi-covriant derivative satisfies metric compatability
VaPpc =VaPpo =0, Vad=0ad+ 3TPpa =0
VaJee =0, VaHpe =0

Useful to define six-indexed projector Jeon-Park-Lee[2011]

PoapPP = PcP PulP Py + 525 Popa Py P PFIP

° — — — — — — —
PoapPEF = PCDP[A[EPB]F] + 52 Pora P = pFID
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BAsic STRUCTURES OF DFT

Semi-covriant derivative satisfies metric compatability
VaPpc =VaPpo =0, Vad=0ad+ 3TPpa =0
VaJee =0, VaHpe =0

Useful to define six-indexed projector Jeon-Park-Lee[2011]

PoapPP = PcP PulP Py + 525 Popa Py P PFIP
o

PoapPPF = PP PulE Py P 4 2 Py Pyl PFIP
Satisfying following relations
Pcapper = PpeErcaB = PclaB|DIEF)
PeasP P Ppert! = Poap™!
PA apper =0, PABPapcppr =0

AB 5AB
P*"Ppcpera = P""Ppcperc =0
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BAsic STRUCTURES OF DFT

Semi-covriant derivative satisfies metric compatability
VaPpc =VaPpo =0, Vad=0ad+ 3TPpa =0
VaJee =0, VaHpe =0

Useful to define six-indexed projector Jeon-Park-Lee[2011]

PoapPP = PcP PulP Py + 525 Popa Py P PFIP
o

PoapPPF = PP PulE Py P 4 2 Py Pyl PFIP
Satisfying following relations
Pcapper = PpeErcaB = PclaB|DIEF)
PeasP P Ppert! = Poap™!
PA apper =0, PABPapcppr =0
PABPpcppre = PP Ppeperc =0

5 EFG EFG
o 'ergPasc =TI'ercPasc =0

SUNG MoON Ko (SOGANG UNIVERSITY) DOUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



Basic Structures of DFT

Defining gauge parameter

o X4 =(A,,dz")




Basic Structures of DFT

Defining gauge parameter
o X4 =(A,,dz")
Variation of the fields under the doubled gauge parameter

6xHap = X“OcHap +20uXc )M B + 205 XcyHA®
6X (e—Qd) — aA(XA€_2d)
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Basic Structures of DFT

Defining gauge parameter
o X4 =(A,,dz")
Variation of the fields under the doubled gauge parameter

6xHap = X“OcHap +20uXc )M B + 205 XcyHA®
6X (e—Qd) — aA(XA€_2d)

Generalized Lie-derivative is defined

° ﬁXTAlmAn =

XPOpTa,. A, +wdsXPTa,  a, + Z(aAiXB — 5’BXA1-)TA1...A1-,1BAI-H...A”

i=1
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Basic Structures of DFT

Defining gauge parameter
o X4 =(A,,dz")

Variation of the fields under the doubled gauge parameter
6xHap = X“OcHap +20uXc )M B + 205 XcyHA®
Sx(e72d) = 9a(XAe29)

Generalized Lie-derivative is defined

° ﬁXTAlmAn =

XPOpTa,. A, +wdsXPTa,  a, + Z(aAiXB — 5’BXA1-)TA1...A1-,1BAI-H...A”

i=1

Generalized Lie-derivatives are closed under the C-bracket up to section condition

° [ﬁx,[:Y] = [:[X,Y]C + éx,y
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Basic Structures of DFT

Defining gauge parameter
o X4 =(A,,dz")

Variation of the fields under the doubled gauge parameter
6xHap = X“OcHap +20uXc )M B + 205 XcyHA®
Sx(e72d) = 9a(XAe29)

Generalized Lie-derivative is defined

° ﬁXTAlmAn =

XPOpTa,. A, +wdsXPTa,  a, + Z(aAiXB — 5’BXA1-)TA1...A1-,1BAI-H...A”

i=1
Generalized Lie-derivatives are closed under the C-bracket up to section condition
° [éx,[:Y] = [:[X,Y]C + éx,y
Where C-bracket is defined as follows

o [X,Y]4 :=XPopY* —YPopX" +1YP0'Xp — 1XP0%Ys
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BAsic STRUCTURES OF DFT

Anomalous term
o (6x — Lx)Toap =2[(P+ P)oap™PF — 5cF64P05")0r0p X5y

° ((Sx - Z:X)VCTAlmAn = ?:1 2(7) + 75)0,41.BFDEaFa[DXE]TAl.4.AFIBAH1.4.A"
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BAsic STRUCTURES OF DFT

Anomalous term
o (6x — Lx)Toap =2[(P+ P)oap™PF — 5cF64P05")0r0p X5y
o (6x — Lx)VeTaya, =01 2(P +P)oa, P PEOrOp X g Ty Ay BA oy An
Covariantization process
PcPPa,P1Py, P2 Py, BV pTs, .5,
PcPPa,PrPa, P2 Pa, PV T, .5,
PAB P Prpo, P2 ... Po PnN aTsp, Dy D,
PABp, Prpo, P2 ... Po Pn¥ ATsp, Dy D,
PABPo, PrPe,P2 .. Pe, PNV AV BT, Ds...0,,

HAB D D D
P*7Pc, "' Pc,”? -+ Pc,""VaVBIp,Dy...0,
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If we set
® Repap :=04Tsep — 08T acp +Tac®Teep — Tec®TarD
Satisfying properties

e Repas = RicpjaB) Pc'Pp?Risap =0
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Basic Structures

If we set

o Repap = 0aTBep — 98T acp + Tac”Teep — Tl app
Satisfying properties

e Repas = RicpjaB) Pc'Pp?Risap =0
Riemann-like DFT curvature can be defined

o Sapcp = 3(Rascp + Repas — I'? ApTrcp)

3 MooN Ko (SOGANG UN

AND APPLICATIONS VITY AND CO:



Basic Structures of DFT

If we set
® Repap = 0aTsop — 98T acp + Tac®Teep —Tsc"Tapp
Satisfying properties
e Repas = RicpjaB) Pc'Pp?Risap =0
Riemann-like DFT curvature can be defined
o Sapcp = 3(Rascp + Repas — I'? ApTrcp)
DFT lagrangian can be written Jeon-Park-Lee[2011]

e Lppr = 672d(PABPCD _ PABPCD)SACBD

MooN Ko (SoGANG UNI O r RY AND APPLICATIO

AVITY AND COSMOL! 10 / 36



Basic Structures of DFT

If we set
® Repap = 0aTsop — 98T acp + Tac®Teep —Tsc"Tapp
Satisfying properties
e Repas = RicpjaB) Pc'Pp?Risap =0
Riemann-like DFT curvature can be defined
o Sapcp = 3(Rascp + Repas — I'? ApTrcp)
DFT lagrangian can be written Jeon-Park-Lee[2011]
o Lopr = e 2(PABPCD _ pABPCDYG, (o

With proper Riemannian parametrization

o [da* y=ge~2* ( R+ 40,¢0"¢ — L H,,, H"" )
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Basic Structures of DFT

If we set

o Repap = 0aTBep — 98T acp + Tac”Teep — Tl app
Satisfying properties

e Repas = RicpjaB) Pc'Pp?Risap =0
Riemann-like DFT curvature can be defined

o Sapcp = 3(Rascp + Repas — I'? ApTrcp)
DFT lagrangian can be written Jeon-Park-Lee[2011]

o Lopr = e 2(PABPCD _ pABPCDYG, (o
With proper Riemannian parametrization

o [dzt \/—ge 2* ( R+ 489,60" ¢ — %HWPH””")
E.O.M also take form as follows

o Ry +2V,0,¢ — THupe H,*” =0

o V Hy,, — 2(0*¢)Hxuw =0
o R+ 40¢ — 40,¢0" ¢ — {5 Hypup H*? =0
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Dynamics of Perturbations in Double Field Theory

Dynamics of Perturbations in Double Field Theory

&
Non-Relativistic String Theory
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o DFT admits non-Riemannian solutions naturally
e Non-Riemannian solutions lead to new landscape of string theory

o Especially non-relativistic string theory is one of the example
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MOTIVATION

o DFT admits non-Riemannian solutions naturally

e Non-Riemannian solutions lead to new landscape of string theory

Especially non-relativistic string theory is one of the example

Perturbation method is also useful broadly
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DOUBLED YET GAUGED SPACETIME

From the section condition [Lee-Park 2013]

0 940%® =0
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DOUBLED YET GAUGED SPACETIME

From the section condition [Lee-Park 2013]

0 940%® =0

Coordinate gauge symmetry can be read
Bzt L) =d(x), A =0t

z? ~ a? + ¢(x)0%p(2)

SuNG MooN Ko (SOGANG UNIVERSITY) DoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



DOUBLED YET GAUGED SPACETIME

From the section condition [Lee-Park 2013]

0 940%® =0

Coordinate gauge symmetry can be read
Bzt L) =d(x), A =0t

)
z? ~ a? + ¢(x)0%p(2)
Above relation hints us to assume one-form transformation rule

o dz™ = dz™ + d(¢pdM )
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DOUBLED YET GAUGED SPACETIME

From the section condition [Lee-Park 2013]

0 940%® =0

Coordinate gauge symmetry can be read
Oz + A) = d(x), AN = pdp
’ z? ~ a? + ¢(x)0%p(2)
Above relation hints us to assume one-form transformation rule
o dx'™ = dz™ + d(¢pdM )
Hence to construct covariant vector, gauge connection is required

o AM = AM 4 4(®10M ®,)
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DFT SicMA MODEL

Collection altogather, gauge invariant vector can be constructed

0 D XM =9, XM _ AM
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DFT SicMA MODEL

Collection altogather, gauge invariant vector can be constructed

0 D XM =9, XM _ AM

The connection satisfies following section condition

o AMoy =0,  AMAN =0
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DFT SicMA MODEL

Collection altogather, gauge invariant vector can be constructed
0 Do XM =0, XM — A.M

The connection satisfies following section condition
o AMoy =0,  AMAN =0

The action of DFT sigma model [Lee-Park 2013]
o S= 1 /d20£sig

1
Lsig = —32(—h)2h* Do XM Dy X" Hrrn (X) — e’ Do XM Apus
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DFT SicMA MODEL

Collection altogather, gauge invariant vector can be constructed
0 Do XM =0, XM — A.M

The connection satisfies following section condition
o AMoy =0,  AMAN =0

The action of DFT sigma model [Lee-Park 2013]
o S= 1 /d20£5ig

1
Lsig = —32(—h)2h* Do XM Dy X" Hrrn (X) — e’ Do XM Apus

There are two types of generalized metric : Rimannian
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DFT SicMA MODEL

Collection altogather, gauge invariant vector can be constructed
0 Do XM =0, XM — A.M

The connection satisfies following section condition
o AMoy =0,  AMAN =0

The action of DFT sigma model [Lee-Park 2013]
o S= 1 /d20£5ig

1
Lsig = —3(—=h)2h* Do XM Dy X" Hrrn (X) — e’ Do XM Apua

There are two types of generalized metric : _

SuNG MooN Ko (SOGANG UNIVERSITY) DoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



NON-RELATIVISTIC STRING

With the background gog = Gnas, Bag = (G — 1)eas, and taking the limit
G — 00, we obtain flat non-Riemannian background

0 €a5 )
) H =
48 < —ca”  2pnap
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NON-RELATIVISTIC STRING

With the background gog = Gnas, Bag = (G — 1)eas, and taking the limit
G — 00, we obtain flat non-Riemannian background

0 €a5 )
e Hap =
b < —ea”  2pmas

With this metric, DFT sigma model reduced to | G-O string model

o So 0= ﬁ/d% (557 + Bo7 + %ayéﬁ + aXiéXi)

Here 3, B are lagrange multipliers and -, 7 are light-cone coordinates
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DyNAMICS OF LINEAR PERTURBATION

DFT lagrangian for the NS-NS sector
o L =1[(PACPBP _ pACPBED)S  pop — 2A]
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DyNAMICS OF LINEAR PERTURBATION

DFT lagrangian for the NS-NS sector
o L =L[(PAPPP — PAYPEP)Supcp — 2A]

Main Result
DFT fluctuations satisfy the following completely covariant E.O.M
o (PAP — PAPYV 40p6d — AV AVESPAP =0
PA°PpPVcopdd+ L(Pa“Ap” — AA“PsP)6Pcp =0
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DyNAMICS OF LINEAR PERTURBATION

DFT lagrangian for the NS-NS sector
o L =L[(PAPPP — PAYPEP)Supcp — 2A]

Main Result
DFT fluctuations satisfy the following completely covariant E.O.M
o (PAP — PAPYV 40p6d — AV AVESPAP =0
PA°PpPVcopdd+ L(Pa“Ap” — AA“PsP)6Pcp =0

These E.O.M can be drived from effective lagrangian

o Lo :=e " [L(P— P)*P046d0pdd — £046dV g6 PAP
+ 16PAP(AA“Pe” — AA“Ps")6Pcp]
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DyNAMICS OF LINEAR PERTURBATION

DFT lagrangian for the NS-NS sector
o L =1[(PACPBP _ pACPBED)S  pop — 2A]

Main Result
DFT fluctuations satisfy the following completely covariant E.O.M
o (PAP — PAPYV 40p6d — AV AVESPAP =0
PA°PpPVcopdd+ 3(Pa°ApP — Aa®PpP)éPcp =0

These E.O.M can be drived from effective lagrangian
o Lo :=e " [L(P— P)*P046d0pdd — £046dV g6 PAP
+ %(5PAB(AACPBD — AACPBD)(SPCD}
Here A 4B, A48 are the novel second order differntial operator

o AP = PsPPPYVp —2PsPPBEC(VeVp — Sop)
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DyNAMICS OF LINEAR PERTURBATION

DFT lagrangian for the NS-NS sector
o L =1[(PACPBP _ pACPBED)S  pop — 2A]

Main Result
DFT fluctuations satisfy the following completely covariant E.O.M
o (PAP — PAPYV 40p6d — AV AVESPAP =0
PA°PpPVcopdd+ 3(Pa°ApP — Aa®PpP)éPcp =0

These E.O.M can be drived from effective lagrangian
o Lo :=e " [L(P— P)*P046d0pdd — £046dV g6 PAP
+ %(5PAB(AACPBD — AACPBD)(SPCD}

Here A 4B, A 4" are the novel second order differntial operator

o AP = PsPPPYVp —2PsPPBC(VeVp — Sop)
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FLucTUuATION A

Linearized gauge symmetries are

® 6:(0Pap) = HacOBEC + HopdalS — Hac0 s — Hopd“éa
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FLUCTUATION ANALYSIS

Linearized gauge symmetries are
® 6:(0Pap) = HacOBEC + HopdalS — Hac0 s — Hopd“éa

Specific equations for linearized gauge symmetry

Shef =0,

Sh*' = —g ;A
She; = o2 O,

Shap = 200,05y — 20, X0}y + 2f15(a0) A7 ,
5h, = 80‘)\“705 — oo N,

Sho' = g7 (BaXj — OjAa) — 01O\,

Shai = Gij0aN + [1ayOiXNT + 0o (8idg — Dpi) .

GRAVITY AND COSMOLOGY

> THEORY AND APPLICATIONS

SUNG MoON Ko (SOGANG UNIVERSITY)



FLUCTUATION ANALYSIS

Linearized gauge symmetries are
® 6:(0Pap) = HacOBEC + HopdalS — Hac0 s — Hopd“éa

Specific equations for linearized gauge symmetry

Shap = 200,05\ — 20, X0 0} + 2f1a0p AT, 6h°7 =0,

6haﬂ:aa)\wa’€_gg&/)\ﬁ’ 5hm‘:_ ija_)\a
° ) g ~ ~ )

Oha' = g7 (Balj = OiAa) = 020,N, Oh%i = o5 ONT

Ohai = gijaa)\j + f’l?a»yai)\’y + Uaﬂ(aij\g — (9,35\7,) .

Gauge fixing conditions
0 0P = —flho§,  6Pus=0, Pai=0

GRAVITY AND COSMOLOGY

DOUBLE FIELD THEORY AND APPLICATIONS

SUNG MoON Ko (SOGANG UNIVERSITY)



FLUCTUATION ANALYSIS

Fluctuation E.O.M take the form
° (PACABD — AACPBD)(SPCD + 8PACPBD808D6d =0
04088Pap — AHAP040B6d = 0
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FLUCTUATION ANALYSIS

Fluctuation E.O.M take the form
° (PACABD — AACPBD)(SPCD + 8PACPBD808D6d =0
04088Pap — AHAP040B6d = 0

Planewave form

i + 14 — ikt
° (SPAB(CE’) :hABezp+m +ip_x” +ik;x

SuNG MooN Ko (SOGANG UNIVERSITY) DOoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



FLUCTUATION ANALYSIS

Fluctuation E.O.M take the form
° (PACABD — AACPBD)(SPCD + 8PACPBD808D6d =0
020B6Pap — 4HAP040p6d = 0
Planewave form
o 0Pap(z) = hoapgeP+et Hip_aT +ikiat
Consider following form of fluctuation
Et =k%h,
gt =2p_ (K¢t —p-h) €, =2p: (K¢ +pih),
EF = —k*hit —p_kih, €7, = —k*h}T 4+ pikih
Ev = [K*(p-¢~ —p+odT + 11h) + 8pip-1,
Eoi = k" (hmi — bms) + 202 by + LR + dp ki,
Eir = Pk (hami + bmi) — 2pThi — LA™ + dpi ki

>l
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FLUCTUATION ANALYSIS

Fluctuation E.O.M take the form
° (PACABD — AACPBD)(SPCD + 8PACPBD808D6d =0
020B6Pap — 4HAP040p6d = 0
Planewave form
o 0Pap(z) = hoapgeP+et Hip_aT +ikiat
Consider following form of fluctuation
Et =k%h,
gt =2p_ (K¢t —p-h) €, =2p: (K¢ +pih),
EF = —k*hit —p_kih, €7, = —k*h}T 4+ pikih
Ev = [K*(p-¢~ —p+odT + 11h) + 8pip-1,
Eoi = k" (hmi — bms) + 202 by + LR + dp ki,
Eir = Pk (hami + bmi) — 2pThi — LA™ + dpi ki

>l

I NO normalizable fluctuations I around the G-O background
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CONFORMAL SYMMETRY

Killing condition
o LeHap =€EC0cHan + Hac(05EC — 0%¢R) + Hop(0aC —9%€a) =0
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CONFORMAL SYMMETRY

Killing condition
o LeHap =€EC0cHan + Hac(05EC — 0%¢R) + Hop(0aC —9%€a) =0
Bargmann algebra

o
[Bi, H] = P [Bi,Pj] =6;N  [Mij, P] = 6iPj — 6;n P

[Mij, Br] = 6 Bj — 01 Bi [Mij, Mye) = 0i Mo — 6i¢ My — 056 Mie + 60 Mg
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CONFORMAL SYMMETRY

Killing condition
° ﬁgHAB =¢%0cHap +Hac(08E° —0°€R) + Hep(04EC —0%€E4) =0
Bargmann algebra

]
[Bi, H] = P; [Bi, Pj] = 6i; N [Mij, Pe] = ik Pj — 65 P

[Mij, Br] = dix Bj — 61 B; [Mij, Mye] = 05 Mje — 050 My; — 051 Mg + 050 Mk
Killing vectors generates Galilean symmetry
H = —04, Q= -0, P = —0;

N = —81, Mij = —(aci@j - {Ejai)7 Bi = —t&- — mi(:)l
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CONFORMAL SYMMETRY

Killing condition
° ﬁgHAB =¢%0cHap +Hac(08E° —0°€R) + Hep(04EC —0%€E4) =0
Bargmann algebra

]
[Bi, H] = P; [Bi, Pj] = 6i; N [Mij, Pe] = ik Pj — 65 P

[Mij, Br] = dix Bj — 61 B; [Mij, Mye] = 05 Mje — 050 My; — 051 Mg + 050 Mk
Killing vectors generates Galilean symmetry
H = —04, Q= -0, P = —0;

N = —81, Mij = —(aci@j - {Ejai)7 Bi = —t&- — mi(:)l
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CONFORMAL SYMMETRY

Splitting coordinates z* = (2™, ), we introduce novel background
_ (0 o5 (w0
Has = ( 03 Hos ) ) His = < 0 w26, )

o
(0% ) m= (2 0
4—-2z ) B 7%0
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CONFORMAL SYMMETRY

Splitting coordinates z* = (2™, ), we introduce novel background

_ (0 o5 (w0
Hap = ( 03 Hos ), His = < 0 w26, )

-4 0 N 0 —u?
Haﬁ = ( 0 u? u472z > ) O'ﬁ - 7% 0

Schrodinger generators
H =-96,, D = —2t0; — ™ Om — udy — (2 — 2)2' 0,

o P, =-0m, Bnm = —tOm — ™"
E—— y Mupn =—(a™0, —2"0m)

N
o C=—t20 —tx™0m — tu Oy — %(x2 + u2)(§1
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CONFORMAL SYMMETRY

Splitting coordinates z* = (2™, ), we introduce novel background

_ (0 o5 (w0
Hap = ( 03 Hos ), His = < 0 w26, )

-4 0 N 0 —u?
Haﬁ = ( 0 u? u472z > y O = _ 12 0

Schrodinger generators

H =-96,, D = —2t0; — ™ Om — udy — (2 — 2)2' 0,
o P, =-0m, Bnm = —tOm — ™"
N =-8', Mpu, =—(2"8,—2"0n)

o C=—t20 —ta™0m — tudy — 3(z* +u ot

Killing vector around the background generates Bargmann algebra, especially when
z = 2 the algebra becomes Schrodinger algebra

SuNG MooN Ko (SOGANG UNIVERSITY) DoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



The rotation curve of a point particle in stringy gravity

The rotation curve of a point particle in stringy gravity
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MOTIVATION

o DFT has potential to describe Stringy Gravity
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MOTIVATION

o DFT has potential to describe Stringy Gravity
@ There are definite evidences for Dark Matter

o But still no clear understanding of underlying mechanics of Dark Matter

DFT might have a chance to modify convensional gravity
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MOTIVATION

o DFT has potential to describe Stringy Gravity
@ There are definite evidences for Dark Matter

o But still no clear understanding of underlying mechanics of Dark Matter

DFT might have a chance to modify convensional gravity

Hints for the fundamental frame between String and Einstein frame

THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

For point-like particle in DFT

—1 Ap B 1,2
@ Sparticle = /dT e " D,;2"Drx"Hap(x) — ym’e
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

For point-like particle in DFT
(] Sparticle = /dT 671 DT"L'ADTIBHAB(I) — im2e

With conventional gauge choice

o D.a? = (2, — Ay, ")
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

For point-like particle in DFT
® Sparticle = /d’T e ' D2 DraPHap(z) — tmPe
With conventional gauge choice
o D.a? = (2, — Ay, ")
Further with Riemannian parametrized DFT-metric and dilaton

—1 —1
_( g -9 B —2d — . —2¢
e Hap 7< Bg-! g—Bg-'B ), e =./—ge
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

For point-like particle in DFT

® Sparticle = /d’T e ' D2 DraPHap(z) — tmPe
With conventional gauge choice

o D.a? = (2, — Ay, ")
Further with Riemannian parametrized DFT-metric and dilaton

-1 -1
= 9 -9g—'B —2d = /T ge—2¢
o Hanp 7< Bg-! g—Bg-'B ), e =./—ge

The Lagrangian is reduced in following form
D 2D, 2" Hap

= i"8" gy + (Eu — Aut @ Bpy) (£ — Av+ 87 Bow) g
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

For point-like particle in DFT

® Sparticle = /d’T e ' D2 DraPHap(z) — tmPe
With conventional gauge choice

o D.a? = (2, — Ay, ")
Further with Riemannian parametrized DFT-metric and dilaton

-1 -1
= 9 -9g—'B —2d = /T ge—2¢
o Hanp 7< Bg-! g—Bg-'B ), e =./—ge

The Lagrangian is reduced in following form
D 2D, 2" Hap

= i"8" gy + (Eu — Aut @ Bpy) (£ — Av+ 87 Bow) g

Each fields are coupled with String frame metric
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

First, we consider the most general spherical symmetric ansatz
o ds? = 24 [—A(r)dt* + A7 (r)dr? + A7 (r)C(r) dQ?]
@ By = B(r)cosddr Ady + hcosddt Ady
e Hiy =dB) = B(r)sinddr AdY Ade + hsinddt A dd A de
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

First, we consider the most general spherical symmetric ansatz

o ds? = ¢? [ A(r)dt® + A7 (r)dr? + A7 (r)C(r) dQ?]

@ By = B(r)cosddr Ady + hcosddt Ady

e Hiy=dBpe) = B(r)sinddr Add Ade + hsinddt Add Ade
These ansatz stisfies Killing equation Park-Rey-Rim-Yuho[2015]

° ﬁVaHAB =0

° ljva (6_2d) =0

o Vo, Ve =2, €abcVe
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

First, we consider the most general spherical symmetric ansatz
o ds? = ¢? [ A(r)dt® + A7 (r)dr? + A7 (r)C(r) dQ?]
@ By = B(r)cosddr Ady + hcosddt Ady
e Hiy=dBpe) = B(r)sinddr Add Ade + hsinddt Add Ade
These ansatz stisfies Killing equation Park-Rey-Rim-Yuho[2015]
° ﬁVaHAB =0
° ljva (6_2d) =0
o [Va, Vil = > . €ancVe
Where V, = (Aap, €)

SuNG MooN Ko (SOGANG UNIVERSITY) OUBLI > THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

First, we consider the most general spherical symmetric ansatz

A\ = s [hdt + B(T)d?“] , &1 =sinp0dy + cot ¥ cos L,O&p

sin ¥
o N\ = :2? [hdt + B(r)dr], & = —cospdy + cot ¥ sin pd,
A3 =0, &3 =—0,

SuNG MooN Ko (SOGANG UNIVERSITY) DoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

First, we consider the most general spherical symmetric ansatz

A\ = s [hdt + B(T)d?“] , &1 =sinp0dy + cot ¥ cos L,O&p

sin ¥
o N\ = :2? [hdt + B(r)dr], & = —cospdy + cot ¥ sin pd,
A3 =0, &3 =—0,

Assuming following form of 3-form flux

e Hiy =dBg) = B(r)sinddr Add Ade + hsind dt Add Ade
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

First, we consider the most general spherical symmetric ansatz

A\ = s [hdt + B(T)d?“] , &1 =sinp0dy + cot ¥ cos L,O&p

sin ¥
o N\ = :2? [hdt + B(r)dr], & = —cospdy + cot ¥ sin pd,
A3 =0, &3 =—0,

Assuming following form of 3-form flux

e Hiy =dBg) = B(r)sinddr Add Ade + hsind dt Add Ade
The Killing equation is beautifully satisfied

® Le,Hesy =d(ig, Hes)) + g, (dHs) =0

SuNG MooN Ko (SOGANG UNIVERSITY) OUBLI > THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Recall the E.O.M of DFT in Riemannian parametrization
® Ry +2V,0,¢ — THupo H,”” =0
o V’Hyuw — 2(0*¢)Hapw =0
o R+ 40¢ — 40,¢0" ¢ — {5 HupH*? =0
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Recall the E.O.M of DFT in Riemannian parametrization
® Ry +2V,0,¢ — THupo H,”” =0
o V Hy — 2(0*¢)Hapw = 0
o R+ 40¢ — 40,¢0" ¢ — {5 HupH*? =0

The rotation symmetric solutlon can be fixed

o A(r) = (2 a)\/jw

r+8
o C(r) = (r—a)(r+p)
@ By =hcos?dt Adp

—b
s () 0 () O
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Recall the E.O.M of DFT in Riemannian parametrization
® Ry +2V,0,¢ — THupo H,”” =0
o V’Hyuw — 2(0*¢)Hapw =0
o R+ 40¢ — 40,¢0" ¢ — {5 HupH*? =0

The rotation symmetric solutlon can be fixed

o A(r) = (2 a)\/jw

r+8
o C(r) = (r—a)(r+p)
e B :hcosﬂdt/\dnp

e =y (Tﬂa) Ve +7- (
Where «, 8 and 4 are

_ 2 2
= +ba+b

b ﬁ:mm
o yi=1(14/1—h2/b2)

SUNG MoON Ko (SOGANG UNIVERSITY) OUBL! > THEORY AND APPLICATIONS
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Comparing to the known result Burgess-Myers-Quevedo[1994]

o ds? = e®") [~ f(r)dt* + f~1(r)dr? + h*(r) dQ?]
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Comparing to the known result Burgess-Myers-Quevedo[1994]
o ds? = e®") [~ f(r)dt* + f~1(r)dr? + h*(r) dQ?]
Where each functions are written explicitly as following

S =-D7 K =D

] T T

VY +62=1
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Comparing to the known result Burgess-Myers-Quevedo[1994]
o ds? = e [—f(r)dt® + f~ ' (r)dr® + h*(r) dQ?]

Where each functions are written explicitly as following

S =-D7 K =D

r r
VY +62=1

One can find the mapping between our notation

a b
o=—4 =2
° Va2 + b2 K Va2 + b2
l=+Va2+b2, b=Qa

SuNG MooN Ko (SOGANG UNIVERSITY) DOoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Introducing the proper radius

o Bi=/50s(r) = /OTI/AT) e
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Introducing the proper radius
o Bi=/50s(r) = /OTI/AT) e
The solution is now tweaked

o ds® = —e*?Adt? + 2 A1 (4B) TP dR? + R2Q2.
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Introducing the proper radius
o Bi=/50s(r) = /OTI/AT) e

The solution is now tweaked

o ds® = —e*?Adt? + 2 A1 (4B) TP dR? + R2Q2.

From geodesic equation of radial direction

dr . (dt\? . [(de)?
o ﬁ+rtt (a) JrF(p(p (E) :0
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MosT GENERAL SPHERICAL SYMMETRIC ANSATZ

Introducing the proper radius
o Bi=/50s(r) = /OTI/AT) e
The solution is now tweaked

o ds® = —e*?Adt? + 2 A1 (4B) TP dR? + R2Q2.

From geodesic equation of radial direction

dr . (dt\? . [(de)?
Oﬁ+rtt<g> +FW¢(E> :0
Rotation velocity can be extracted
]

‘/Orbit = ’Rd%| = [—%R%]%

—atb a—b 20
(w— ( :1;) Ve2io2 +- (%) VaZ o2 ) (7+(a+b)(r_a 202, (ab))

'y+(2r7a+ﬂfa+b)(rlg) \% a? 42 +v_ (2r—a+B—a—>b)

o

SUNG MoON Ko (SOGANG UNIVERSITY) DOUBLE FIELD THEORY AND APPLICATIONS
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GLOBAL CONSERVED CHARGE

DFT global conserved charge is defined as Park-Rey-Rim-Yuho[2015]
o QIX] = §,,, dPwap e (KAB + 2X[ABB1)

o KAP = 4(PV)A(PX)P) — 4(PV)A(PX)P
o B4 =2(PAYPBP _ pACPBDYIpop = 4(P — P)*P0gd — 205 PP

SuNG MooN Ko (SOGANG UNIVERSITY) DoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



GLOBAL CONSERVED CHARGE

DFT global conserved charge is defined as Park-Rey-Rim-Yuho[2015]

o QIX] = §,\ d*zap e (KAB + QXV‘BB])

o KAP = 4(PV)A(PX)P) — 4(PV)A(PX)P

o B4 =2(PAYPBP _ pACPBDYIpop = 4(P — P)*P0gd — 205 PP
The global charge is conserved if the following meets

] aAa[BXc] =0
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GLOBAL CONSERVED CHARGE

DFT global conserved charge is defined as Park-Rey-Rim-Yuho[2015]

o QIX] = §,\ d*zap e (KAB + QXV‘BB])

o KAP = 4(PV)A(PX)P) — 4(PV)A(PX)P

o B4 =2(PAYPBP _ pACPBDYIpop = 4(P — P)*P0gd — 205 PP
The global charge is conserved if the following meets

® 040BXc) =0

Only surviving component of K48 is K'*

° Ktr+2X[tB7‘] :g'rrgttaTgttXt+4th7‘rard7Xtargr'r
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GLOBAL CONSERVED CHARGE

DFT global conserved charge is defined as Park-Rey-Rim-Yuho[2015]
o QIX] = §,\ d*zap e (KAB + QXV‘BB])
o KAP = 4(PV)A(PX)P) — 4(PV)A(PX)P
o B4 =2(PAYPBP _ pACPBDYIpop = 4(P — P)*P0gd — 205 PP
The global charge is conserved if the following meets
® 040BXc) =0
Only surviving component of K45 is K"
o K" +2X'B" = ¢"g"0,gu X" + 4X'g""0,d — X'0rg""
With DFT dilaton d = ¢ — $In(—g)

o K" +2XIBT = _2Xtg" ¢%8,g00 + 4X g™ Orop

SuNG MooN Ko (SOGANG UNIVERSITY) DoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



GLOBAL CONSERVED CHARGE

Substituting specific metric solution
o e MK =¢e* (2C0,¢ + S0, A) sin X’
° 2X[tB'r] — 4thrr8T¢ _ grv‘gttaTgttXt _ QQTTgeeargant

SuNG MooN Ko (SOGANG UNIVERSITY) DoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



GLOBAL CONSERVED CHARGE

Substituting specific metric solution
o e MK =¢e* (2C0,¢ + S0, A) sin X’
° 2X[tB'r] — 4thrr8T¢ _ grv‘gttaTgttXt _ QQTTgGQaTgegXt

The global conserved charge

- _ 1
o Qx[0:] == _7{ dP 2z pe 2d peltr] _ Z(a—’_ b2 — h?)
oM

1 —-b 1
e Qxp = §(a+ Zier\/aQ—&-bQ)—Z(a—i—\/bQ—&-hQ)
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GLOBAL CONSERVED CHARGE

Substituting specific metric solution

o e MK =¢e* (2C0,¢ + S0, A) sin X’

° 2X[tB'r] — 4thrr8T¢ _ grv‘gttaTgttXt _ QQTTgGQaTgegXt
The global conserved charge

o Qxld] = —?{ dPPrape K = 1(a+ b2 — h?)
oM 4

1 —-b 1
e Qxp = §(a+ Zier\/aQ—&-bQ)—Z(a—i—\/bQ—&-hQ)

0 Qo) = S(a+ Va2 1)

2 +b

SuNG MooN Ko (SOGANG UNIVERSITY) DoUBLE FIELD THEORY AND APPLICATIONS GRAVITY AND COSMOLOGY



VARIOUS LIMITS OF SOLUTION

Schwarzschild solution (b = h = 0)
dR?

QQ2
Toam T

o ds?’ = —(1 — a/R)dt* +

@
2R

o Vorit =
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VARIOUS LIMITS OF SOLUTION

Schwarzschild solution (b = h = 0)

o ds?> = —(1 —a/R)dt* + _dR® + R*dAQ?
1-a/R
o Vorbit = %
Hernquist model (a = h =0)
, —dt? +dR* 5
= dQ
e ds 1T b/R +R
1
2¢__
°° 1+b/R
bR
o Vit = m
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VARIOUS LIMITS OF SOLUTION

Schwarzschild solution (b = h = 0)
dR?

o ds? = —(1 — a/R)dt* + TouR + R*d0?
o Vorbit = %
Hernquist model (a = h =0)
o ds?= %+R2d92
° &= 1+1b/R
@ Vorbit = ﬁ

F-JNW solution (h = 0)
o ds® = —A(r)dt® + A(r) " [dr® + 7 (r — Va2 + b?) dQ7]
o A(r):= [dr® +r (r — Va® + %) dQ?)

b

0 %% = <1 — 7a2 +b2) V aZ b2
r
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VARIOUS LIMITS OF SOLUTION
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Figure: Main Result

Figure: Schwarzschild
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@ DFT introduces non-Riemannian background very naturally

o DFT linearized E.O.M had been obtained

o Target space formulation of DFT also involve non-relativistic string theory

o Galilean and Schodinger algebra are induced from DFT under certain background
o Corresponding global conserved charge was computed

@ The solution can reproduce series of well-known solutions

@ The shape of plot is similar to that of dark matter

@ Scalar dilaton and two form field can be treated as candidates of dark matter

@ The global conserved charge of DFT might admits negative values

o Gravitational lensing effect is also a very attractive subject
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