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Motivation

Basic structures of DFT was established

While DFT is based on string theory, it contains bunch of stringy features

DFT has potential to describe Stringy Gravity

Thus applications of DFT is attractive subject!!
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Basic Structures of DFT

Doubled Spacetime

Y A = (x̃µ, x
ν), ∂A = (∂̃µ, ∂ν)

Field contents in DFT Hull-Zweibach-Hohm[2010]

HAB = HBA =

(
g−1 −g−1B
Bg−1 g −Bg−1B

)
, e−2d =

√
ge−2φ

O(D,D) indices can be raise or lowered by metric

JAB = HACHCB =

(
0 1
1 0

)
Section condition

∂A∂
AΦ ≡ 0

Strong constraints can be derived from assumption Φ = φ1φ2

∂Aφ1∂
Aφ2 = 0

Conventional choice

∂̃Aφ = 0 Kill D dimensional unphysical coordinates
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Basic Structures of DFT

Projector can be defined Jeon-Park-Lee[2011]

PAB = 1
2
(J +H)AB , P̄AB = 1

2
(J −H)AB

PAB = PBA , PACP
C
B = PAB , P̄ACP

C
B = 0

Properties of derivative of projections operators

δPAB = −δPAB = 1
2
δHAB , PA

CδPCDP
D
B = P̄A

CδPCDP̄
D
B = 0

PA
CδPCDP̄

D
B = PACδP

C
B , P̄A

CδPCDP
D
B = δPACP

C
B

DFT connection

ΓCAB = 2
(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E
)
∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D
)(
∂Dd+ (P∂EPP̄ )[ED]

)
Semi-covariant derivative

∇CTA1···An = ∂CTA1···An − ωΓBBCTA1···An +
∑n
i=1 ΓCAi

BTA1···Ai−1BAi+1···An
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Basic Structures of DFT

Semi-covriant derivative satisfies metric compatability

∇APBC = ∇AP̄BC = 0 , ∇Ad = ∂Ad+ 1
2
ΓBBA = 0

∇AJBC = 0 , ∇AHBC = 0

Useful to define six-indexed projector Jeon-Park-Lee[2011]

PCABDEF = PC
DP[A

[EPB]
F ] + 2

D−1
PC[APB]

[EPF ]D

P̄CABDEF = P̄C
DP̄[A

[EP̄B]
F ] + 2

D−1
P̄C[AP̄B]

[EP̄F ]D

Satisfying following relations

PCABDEF = PDEFCAB = PC[AB]D[EF ]

PCABDEFPDEFGHI = PCABGHI

PAABDEF = 0 , PABPABCDEF = 0

PABP̄BCDEFG = P̄ABPBCDEFG = 0

ΓEFGP̄ABCEFG = ΓEFGPABCEFG = 0
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Basic Structures of DFT

Defining gauge parameter

XA = (Λµ, δx
ν)

Variation of the fields under the doubled gauge parameter

δXHAB = XC∂CHAB + 2∂[AXC]HCB + 2∂[BXC]HAC

δX(e−2d) = ∂A(XAe−2d)

Generalized Lie-derivative is defined

L̂XTA1...An :=

XB∂BTA1...An + ω∂BX
BTA1...An +

n∑
i=1

(∂AiXB − ∂BXAi)TA1...Ai−1

B
Ai+1...An

Generalized Lie-derivatives are closed under the C-bracket up to section condition

[L̂X , L̂Y ] = L̂[X,Y ]C + ÔX,Y

Where C-bracket is defined as follows

[X,Y ]AC := XB∂BY
A − Y B∂BXA + 1

2
Y B∂AXB − 1

2
XB∂AYB
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Basic Structures of DFT

Anomalous term

(δX − L̂X)ΓCAB ≡ 2[(P + P̄)CAB
FDE − δCF δADδBE ]∂F ∂[DXE]

(δX − L̂X)∇CTA1···An =
∑n
i=1 2(P + P̄)CAi

BFDE∂F ∂[DXE]TA1···Ai−1BAi+1···An

Covariantization process

PC
DP̄A1

B1 P̄A2
B2 · · · P̄AnBn∇DTB1···Bn

P̄C
DPA1

B1PA2
B2 · · ·PAnBn∇DTB1···Bn

PABP̄C1
D1 P̄C2

D2 · · · P̄CnDn∇ATBD1D2···Dn

P̄ABPC1
D1PC2

D2 · · ·PCnDn∇ATBD1D2···Dn

PABP̄C1
D1 P̄C2

D2 · · · P̄CnDn∇A∇BTD1D2···Dn

P̄ABPC1
D1PC2

D2 · · ·PCnDn∇A∇BTD1D2···Dn
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Basic Structures of DFT

If we set

RCDAB := ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED

Satisfying properties

RCDAB = R[CD][AB] , PC
I P̄D

JRIJAB = 0

Riemann-like DFT curvature can be defined

SABCD := 1
2
(RABCD +RCDAB − ΓEABΓECD)

DFT lagrangian can be written Jeon-Park-Lee[2011]

LDFT = e−2d(PABPCD − P̄ABP̄CD)SACBD

With proper Riemannian parametrization∫
dx4 √−ge−2φ

(
R+ 4∂µφ∂

µφ− 1
12
HµνρH

µνρ
)

E.O.M also take form as follows

Rµν + 2Oµ∂νφ− 1
4
HµρσHν

ρσ = 0

OλHλµν − 2(∂λφ)Hλµν = 0

R+ 4�φ− 4∂µφ∂
µφ− 1

12
HµνρH

µνρ = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 10 / 36



Basic Structures of DFT

If we set

RCDAB := ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED

Satisfying properties

RCDAB = R[CD][AB] , PC
I P̄D

JRIJAB = 0

Riemann-like DFT curvature can be defined

SABCD := 1
2
(RABCD +RCDAB − ΓEABΓECD)

DFT lagrangian can be written Jeon-Park-Lee[2011]

LDFT = e−2d(PABPCD − P̄ABP̄CD)SACBD

With proper Riemannian parametrization∫
dx4 √−ge−2φ

(
R+ 4∂µφ∂

µφ− 1
12
HµνρH

µνρ
)

E.O.M also take form as follows

Rµν + 2Oµ∂νφ− 1
4
HµρσHν

ρσ = 0

OλHλµν − 2(∂λφ)Hλµν = 0

R+ 4�φ− 4∂µφ∂
µφ− 1

12
HµνρH

µνρ = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 10 / 36



Basic Structures of DFT

If we set

RCDAB := ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED

Satisfying properties

RCDAB = R[CD][AB] , PC
I P̄D

JRIJAB = 0

Riemann-like DFT curvature can be defined

SABCD := 1
2
(RABCD +RCDAB − ΓEABΓECD)

DFT lagrangian can be written Jeon-Park-Lee[2011]

LDFT = e−2d(PABPCD − P̄ABP̄CD)SACBD

With proper Riemannian parametrization∫
dx4 √−ge−2φ

(
R+ 4∂µφ∂

µφ− 1
12
HµνρH

µνρ
)

E.O.M also take form as follows

Rµν + 2Oµ∂νφ− 1
4
HµρσHν

ρσ = 0

OλHλµν − 2(∂λφ)Hλµν = 0

R+ 4�φ− 4∂µφ∂
µφ− 1

12
HµνρH

µνρ = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 10 / 36



Basic Structures of DFT

If we set

RCDAB := ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED

Satisfying properties

RCDAB = R[CD][AB] , PC
I P̄D

JRIJAB = 0

Riemann-like DFT curvature can be defined

SABCD := 1
2
(RABCD +RCDAB − ΓEABΓECD)

DFT lagrangian can be written Jeon-Park-Lee[2011]

LDFT = e−2d(PABPCD − P̄ABP̄CD)SACBD

With proper Riemannian parametrization∫
dx4 √−ge−2φ

(
R+ 4∂µφ∂

µφ− 1
12
HµνρH

µνρ
)

E.O.M also take form as follows

Rµν + 2Oµ∂νφ− 1
4
HµρσHν

ρσ = 0

OλHλµν − 2(∂λφ)Hλµν = 0

R+ 4�φ− 4∂µφ∂
µφ− 1

12
HµνρH

µνρ = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 10 / 36



Basic Structures of DFT

If we set

RCDAB := ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED

Satisfying properties

RCDAB = R[CD][AB] , PC
I P̄D

JRIJAB = 0

Riemann-like DFT curvature can be defined

SABCD := 1
2
(RABCD +RCDAB − ΓEABΓECD)

DFT lagrangian can be written Jeon-Park-Lee[2011]

LDFT = e−2d(PABPCD − P̄ABP̄CD)SACBD

With proper Riemannian parametrization∫
dx4 √−ge−2φ

(
R+ 4∂µφ∂

µφ− 1
12
HµνρH

µνρ
)

E.O.M also take form as follows

Rµν + 2Oµ∂νφ− 1
4
HµρσHν

ρσ = 0

OλHλµν − 2(∂λφ)Hλµν = 0

R+ 4�φ− 4∂µφ∂
µφ− 1

12
HµνρH

µνρ = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 10 / 36



Basic Structures of DFT

If we set

RCDAB := ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED

Satisfying properties

RCDAB = R[CD][AB] , PC
I P̄D

JRIJAB = 0

Riemann-like DFT curvature can be defined

SABCD := 1
2
(RABCD +RCDAB − ΓEABΓECD)

DFT lagrangian can be written Jeon-Park-Lee[2011]

LDFT = e−2d(PABPCD − P̄ABP̄CD)SACBD

With proper Riemannian parametrization∫
dx4 √−ge−2φ

(
R+ 4∂µφ∂

µφ− 1
12
HµνρH

µνρ
)

E.O.M also take form as follows

Rµν + 2Oµ∂νφ− 1
4
HµρσHν

ρσ = 0

OλHλµν − 2(∂λφ)Hλµν = 0

R+ 4�φ− 4∂µφ∂
µφ− 1

12
HµνρH

µνρ = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 10 / 36



Dynamics of Perturbations in Double Field Theory

Dynamics of Perturbations in Double Field Theory

&

Non-Relativistic String Theory
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Motivation

DFT admits non-Riemannian solutions naturally

Non-Riemannian solutions lead to new landscape of string theory

Especially non-relativistic string theory is one of the example

Perturbation method is also useful broadly
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Doubled yet Gauged Spacetime

From the section condition [Lee-Park 2013]

∂A∂
AΦ = 0

Coordinate gauge symmetry can be read

Φ(x+4) = Φ(x) , 4A = φ∂Aϕ

xA ' xA + φ(x)∂Aϕ(x)

Above relation hints us to assume one-form transformation rule

dx′M = dxM + d(φ∂Mϕ)

Hence to construct covariant vector, gauge connection is required

A′M = AM + d(Φ1∂
MΦ2)
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DFT Sigma Model

Collection altogather, gauge invariant vector can be constructed

DaX
M = ∂aX

M −AaM

The connection satisfies following section condition

AM∂M = 0 , AMAM = 0

The action of DFT sigma model [Lee-Park 2013]

S = 1
4πα′

∫
d2σLsig

Lsig := − 1
2
(−h)

1
2 habDaX

MDbX
NHMN (X)− εabDaXMAbM

There are two types of generalized metric : Rimannian
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Non-relativistic String

With the background gαβ = Gηαβ , Bαβ = (G− µ)εαβ , and taking the limit
G→∞, we obtain flat non-Riemannian background

HAB =

(
0 εαβ
−εαβ 2µηαβ

)

With this metric, DFT sigma model reduced to G-O string model

SG−O = 1
2πα′

∫
d2z

(
β∂̄γ + β̄∂γ̄ +

µ

2
∂γ∂̄γ̄ + ∂Xi∂̄Xi

)
Here β, β̄ are lagrange multipliers and γ, γ̄ are light-cone coordinates
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Dynamics of Linear Perturbation

DFT lagrangian for the NS-NS sector

L = 1
8
[(PACPBD − P̄AC P̄BD)SABCD − 2Λ]

Main Result

DFT fluctuations satisfy the following completely covariant E.O.M

(PAB − P̄AB)∇A∂Bδd− 1
2
∇A∇BδPAB ≡ 0

PA
C P̄B

D∇C∂Dδd+ 1
4
(PA

C4̄BD −4AC P̄BD)δPCD ≡ 0

These E.O.M can be drived from effective lagrangian

Leff := e−2d
[

1
2
(P − P̄ )AB∂Aδd∂Bδd− 1

2
∂Aδd∇BδPAB

+ 1
8
δPAB(4̄ACPBD −4AC P̄BD)δPCD

]
Here 4AB , 4̄AB are the novel second order differntial operator

4AB := PA
BPCD∇C∇D − 2PA

DPBC(∇C∇D − SCD)
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Fluctuation Analysis

Linearized gauge symmetries are

δξ(δPAB) = HAC∂BξC +HCB∂AξC −HAC∂CξB −HCB∂CξA

Specific equations for linearized gauge symmetry

δhαβ = 2σγ(α∂β)λ̃γ − 2∂γ λ̃(ασ
γ
β) + 2fηγ(α∂β)λ

γ , δhαβ = 0 ,

δh β
α = ∂αλ

γσβγ − σγα∂γλβ , δhαi = −gij∂jλα ,
δh i
α = gij(∂αλ̃j − ∂j λ̃α)− σγα∂γλi , δhαi = σαγ ∂iλ

γ ,

δhαi = gij∂αλ
j + fηαγ∂iλ

γ + σα
β(∂iλ̃β − ∂βλ̃i) .

Gauge fixing conditions

δPαβ = −f 1
2
ĥσαβ , δPαβ = 0, δPαi = 0
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ĥσαβ , δPαβ = 0, δPαi = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 19 / 36



Fluctuation Analysis

Linearized gauge symmetries are

δξ(δPAB) = HAC∂BξC +HCB∂AξC −HAC∂CξB −HCB∂CξA

Specific equations for linearized gauge symmetry

δhαβ = 2σγ(α∂β)λ̃γ − 2∂γ λ̃(ασ
γ
β) + 2fηγ(α∂β)λ

γ , δhαβ = 0 ,

δh β
α = ∂αλ

γσβγ − σγα∂γλβ , δhαi = −gij∂jλα ,
δh i
α = gij(∂αλ̃j − ∂j λ̃α)− σγα∂γλi , δhαi = σαγ ∂iλ

γ ,

δhαi = gij∂αλ
j + fηαγ∂iλ

γ + σα
β(∂iλ̃β − ∂βλ̃i) .

Gauge fixing conditions

δPαβ = −f 1
2
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Fluctuation Analysis

Fluctuation E.O.M take the form

(PA
C4̄BD −4AC P̄BD)δPCD + 8PA

C P̄B
D∂C∂Dδd = 0

∂A∂BδPAB − 4HAB∂A∂Bδd = 0

Planewave form

δPAB(x) = hABe
ip+x

++ip−x
−+ikix

i

Consider following form of fluctuation

E−+ = k2ĥ ,

E +
− = 2p−(k2φ+ − p−ĥ) E−+ = 2p+(k2φ− + p+ĥ) ,

E +
i = −k2h⊥+

i − p−kiĥ , E−i = −k2h⊥−i + p+kiĥ

E−+ = fk2(p−φ
− − p+φ

+ + 1
4
fĥ) + 8p+p−ψ ,

E−i = p−k
m(hmi − bmi) + 2p2

−h
−
i + f

2
k2h⊥+

i + 4p−kiψ ,

Ei+ = p+k
m(hmi + bmi)− 2p2

+h
+
i −

f
2
k2h⊥−i + 4p+kiψ

NO normalizable fluctuations around the G-O background
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E +
− = 2p−(k2φ+ − p−ĥ) E−+ = 2p+(k2φ− + p+ĥ) ,

E +
i = −k2h⊥+

i − p−kiĥ , E−i = −k2h⊥−i + p+kiĥ

E−+ = fk2(p−φ
− − p+φ

+ + 1
4
fĥ) + 8p+p−ψ ,

E−i = p−k
m(hmi − bmi) + 2p2

−h
−
i + f

2
k2h⊥+

i + 4p−kiψ ,

Ei+ = p+k
m(hmi + bmi)− 2p2

+h
+
i −

f
2
k2h⊥−i + 4p+kiψ

NO normalizable fluctuations around the G-O background
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Conformal Symmetry

Killing condition

L̂ξHAB = ξC∂CHAB +HAC(∂Bξ
C − ∂CξB) +HCB(∂Aξ

C − ∂CξA) = 0

Bargmann algebra

[Bi, H] = Pi [Bi, Pj ] = δijN [Mij , Pk] = δikPj − δjkPi

[Mij , Bk] = δikBj − δjkBi [Mij ,Mk`] = δikMj` − δi`Mkj − δjkMi` + δj`Mik

Killing vectors generates Galilean symmetry

H = −∂t, Q = −∂1, Pi = −∂i

N = −∂̃1, Mij = −(xi∂j − xj∂i), Bi = −t∂i − xi∂̃1
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Conformal Symmetry

Splitting coordinates xi = (xm, u), we introduce novel background

HAB =

(
0 σαβ
σαβ Hαβ

)
, HIJ =

(
u2δij 0
0 u−2δij

)
Hαβ =

(
− 1
u2z 0

0 u4−2z

)
, σαβ =

(
0 −u2

− 1
u2 0

)
Schrödinger generators

H = −∂t , D = −zt∂t − xm∂m − u∂u − (z − 2)x1∂1

Pm = −∂m , Bm = −t∂m − xm∂̃1

N = −∂̃1 , Mmn = −(xm∂n − xn∂m)

C = −t2∂t − txm∂m − tu ∂u − 1
2
(x2 + u2)∂̃1

Killing vector around the background generates Bargmann algebra, especially when
z = 2 the algebra becomes Schrödinger algebra
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The rotation curve of a point particle in stringy gravity

The rotation curve of a point particle in stringy gravity
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Motivation

DFT has potential to describe Stringy Gravity

There are definite evidences for Dark Matter

But still no clear understanding of underlying mechanics of Dark Matter

DFT might have a chance to modify convensional gravity

Hints for the fundamental frame between String and Einstein frame

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 24 / 36



Motivation

DFT has potential to describe Stringy Gravity

There are definite evidences for Dark Matter

But still no clear understanding of underlying mechanics of Dark Matter

DFT might have a chance to modify convensional gravity

Hints for the fundamental frame between String and Einstein frame

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 24 / 36



Motivation

DFT has potential to describe Stringy Gravity

There are definite evidences for Dark Matter

But still no clear understanding of underlying mechanics of Dark Matter

DFT might have a chance to modify convensional gravity

Hints for the fundamental frame between String and Einstein frame

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 24 / 36



Motivation

DFT has potential to describe Stringy Gravity

There are definite evidences for Dark Matter

But still no clear understanding of underlying mechanics of Dark Matter

DFT might have a chance to modify convensional gravity

Hints for the fundamental frame between String and Einstein frame

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 24 / 36



Motivation

DFT has potential to describe Stringy Gravity

There are definite evidences for Dark Matter

But still no clear understanding of underlying mechanics of Dark Matter

DFT might have a chance to modify convensional gravity

Hints for the fundamental frame between String and Einstein frame

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 24 / 36



Most General Spherical Symmetric Ansatz

For point-like particle in DFT

Sparticle =

∫
dτ e−1 Dτx

ADτx
BHAB(x)− 1

4
m2e

With conventional gauge choice

Dτx
A ≡

(
˙̃xµ −Aµ , ẋν

)
Further with Riemannian parametrized DFT-metric and dilaton

HAB ≡
(

g−1 −g−1B
Bg−1 g −Bg−1B

)
, e−2d ≡

√
−ge−2φ

The Lagrangian is reduced in following form

Dτx
ADτx

BHAB
≡ ẋµẋνgµν +

(
˙̃xµ −Aµ+ ẋρBρµ

) (
˙̃xν −Aν+ ẋσBσν

)
gµν

Each fields are coupled with String frame metric
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Most General Spherical Symmetric Ansatz

First, we consider the most general spherical symmetric ansatz

ds2 = e2φ(r)
[
−A(r)dt2 +A−1(r)dr2 +A−1(r)C(r) dΩ2

]
B(2) = B(r) cosϑdr ∧ dϕ+ h cosϑ dt ∧ dϕ

H(3) = dB(2) = B(r) sinϑ dr ∧ dϑ ∧ dϕ+ h sinϑ dt ∧ dϑ ∧ dϕ

These ansatz stisfies Killing equation Park-Rey-Rim-Yuho[2015]

L̂VaHAB = 0

L̂Va
(
e−2d

)
= 0

[Va, Vb]C =
∑
c εabcVc

Where Va = (λaµ, ε
ν
a)
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Most General Spherical Symmetric Ansatz

First, we consider the most general spherical symmetric ansatz

λ1 = cosϕ
sinϑ

[
hdt+B(r)dr

]
, ξ1 = sinϕ∂ϑ + cotϑ cosϕ∂ϕ

λ2 = sinϕ
sinϑ

[
hdt+B(r)dr

]
, ξ2 = − cosϕ∂ϑ + cotϑ sinϕ∂ϕ

λ3 = 0 , ξ3 = −∂ϕ

Assuming following form of 3-form flux

H(3) = dB(2) = B(r) sinϑ dr ∧ dϑ ∧ dϕ+ h sinϑ dt ∧ dϑ ∧ dϕ

The Killing equation is beautifully satisfied

LξaH(3) = d (iξaH(3)) + iξa (dH(3)) = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 27 / 36



Most General Spherical Symmetric Ansatz

First, we consider the most general spherical symmetric ansatz

λ1 = cosϕ
sinϑ

[
hdt+B(r)dr

]
, ξ1 = sinϕ∂ϑ + cotϑ cosϕ∂ϕ

λ2 = sinϕ
sinϑ

[
hdt+B(r)dr

]
, ξ2 = − cosϕ∂ϑ + cotϑ sinϕ∂ϕ

λ3 = 0 , ξ3 = −∂ϕ

Assuming following form of 3-form flux

H(3) = dB(2) = B(r) sinϑ dr ∧ dϑ ∧ dϕ+ h sinϑ dt ∧ dϑ ∧ dϕ

The Killing equation is beautifully satisfied

LξaH(3) = d (iξaH(3)) + iξa (dH(3)) = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 27 / 36



Most General Spherical Symmetric Ansatz

First, we consider the most general spherical symmetric ansatz

λ1 = cosϕ
sinϑ

[
hdt+B(r)dr

]
, ξ1 = sinϕ∂ϑ + cotϑ cosϕ∂ϕ

λ2 = sinϕ
sinϑ

[
hdt+B(r)dr

]
, ξ2 = − cosϕ∂ϑ + cotϑ sinϕ∂ϕ

λ3 = 0 , ξ3 = −∂ϕ

Assuming following form of 3-form flux

H(3) = dB(2) = B(r) sinϑ dr ∧ dϑ ∧ dϕ+ h sinϑ dt ∧ dϑ ∧ dϕ

The Killing equation is beautifully satisfied

LξaH(3) = d (iξaH(3)) + iξa (dH(3)) = 0

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 27 / 36



Most General Spherical Symmetric Ansatz

Recall the E.O.M of DFT in Riemannian parametrization

Rµν + 2Oµ∂νφ− 1
4
HµρσHν

ρσ = 0

OλHλµν − 2(∂λφ)Hλµν = 0

R+ 4�φ− 4∂µφ∂
µφ− 1

12
HµνρH

µνρ = 0

The rotation symmetric solution can be fixed

A(r) =
(
r−α
r+β

) a√
a2+b2

C(r) = (r − α)(r + β)

B(2) = h cosϑ dt ∧ dϕ

e2φ = γ+

(
r−α
r+β

) b√
a2+b2 + γ−

(
r−α
r+β

) −b√
a2+b2

Where α, β and γ± are

α= a
a+b

√
a2 + b2

β= b
a+b

√
a2 + b2

γ±= 1
2
(1±

√
1− h2/b2)

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 28 / 36



Most General Spherical Symmetric Ansatz

Recall the E.O.M of DFT in Riemannian parametrization

Rµν + 2Oµ∂νφ− 1
4
HµρσHν

ρσ = 0

OλHλµν − 2(∂λφ)Hλµν = 0

R+ 4�φ− 4∂µφ∂
µφ− 1

12
HµνρH

µνρ = 0

The rotation symmetric solution can be fixed

A(r) =
(
r−α
r+β

) a√
a2+b2

C(r) = (r − α)(r + β)

B(2) = h cosϑ dt ∧ dϕ

e2φ = γ+

(
r−α
r+β

) b√
a2+b2 + γ−

(
r−α
r+β

) −b√
a2+b2

Where α, β and γ± are

α= a
a+b

√
a2 + b2

β= b
a+b

√
a2 + b2

γ±= 1
2
(1±

√
1− h2/b2)

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 28 / 36



Most General Spherical Symmetric Ansatz

Recall the E.O.M of DFT in Riemannian parametrization

Rµν + 2Oµ∂νφ− 1
4
HµρσHν

ρσ = 0

OλHλµν − 2(∂λφ)Hλµν = 0

R+ 4�φ− 4∂µφ∂
µφ− 1

12
HµνρH

µνρ = 0

The rotation symmetric solution can be fixed

A(r) =
(
r−α
r+β

) a√
a2+b2

C(r) = (r − α)(r + β)

B(2) = h cosϑ dt ∧ dϕ

e2φ = γ+

(
r−α
r+β

) b√
a2+b2 + γ−

(
r−α
r+β

) −b√
a2+b2

Where α, β and γ± are

α= a
a+b

√
a2 + b2

β= b
a+b

√
a2 + b2

γ±= 1
2
(1±

√
1− h2/b2)

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 28 / 36



Most General Spherical Symmetric Ansatz

Comparing to the known result Burgess-Myers-Quevedo[1994]

ds2 = eφ(r)
[
−f(r)dt2 + f−1(r)dr2 + h2(r) dΩ2

]
Where each functions are written explicitly as following

f(r) = (1− l

r
)−δ , h2(r) = r2(1− l

r
)1−δ

γ2 + δ2 = 1

One can find the mapping between our notation

δ =
a√

a2 + b2
, γ =

b√
a2 + b2

l =
√
a2 + b2 , b = QA
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Most General Spherical Symmetric Ansatz

Introducing the proper radius

R :=
√
gϑϑ(r) =

√
C(r)/A(r) eφ(r)

The solution is now tweaked

ds2 = −e2φAdt2 + e2φA−1
(

dR
dr

)−2
dR2 +R2dΩ2 .

From geodesic equation of radial direction

d2r

dτ2
+ Γrtt

(
dt

dτ

)2

+ Γrϕϕ

(
dϕ

dτ

)2

= 0 .

Rotation velocity can be extracted

Vorbit =
∣∣R dϕ

dt

∣∣ =
[
− 1

2
R dgtt

dR

] 1
2

=


γ+( r−αr+β

) a+b√
a2+b2 +γ−

(
r−α
r+β

) a−b√
a2+b2


γ+(a+b)

(
r−α
r+β

) 2b√
a2+b2 +γ−(a−b)


γ+(2r−α+β−a+b)

(
r−α
r+β

) 2b√
a2+b2 +γ−(2r−α+β−a−b)


1
2

.
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dR

] 1
2

=


γ+( r−αr+β

) a+b√
a2+b2 +γ−

(
r−α
r+β

) a−b√
a2+b2


γ+(a+b)

(
r−α
r+β

) 2b√
a2+b2 +γ−(a−b)


γ+(2r−α+β−a+b)

(
r−α
r+β

) 2b√
a2+b2 +γ−(2r−α+β−a−b)


1
2

.

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 30 / 36



Most General Spherical Symmetric Ansatz

Introducing the proper radius

R :=
√
gϑϑ(r) =

√
C(r)/A(r) eφ(r)

The solution is now tweaked

ds2 = −e2φAdt2 + e2φA−1
(

dR
dr

)−2
dR2 +R2dΩ2 .

From geodesic equation of radial direction

d2r

dτ2
+ Γrtt

(
dt

dτ

)2

+ Γrϕϕ

(
dϕ

dτ

)2

= 0 .

Rotation velocity can be extracted

Vorbit =
∣∣R dϕ

dt

∣∣ =
[
− 1

2
R dgtt

dR

] 1
2

=


γ+( r−αr+β

) a+b√
a2+b2 +γ−

(
r−α
r+β

) a−b√
a2+b2


γ+(a+b)

(
r−α
r+β

) 2b√
a2+b2 +γ−(a−b)


γ+(2r−α+β−a+b)

(
r−α
r+β

) 2b√
a2+b2 +γ−(2r−α+β−a−b)


1
2

.

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 30 / 36



Most General Spherical Symmetric Ansatz

Introducing the proper radius

R :=
√
gϑϑ(r) =

√
C(r)/A(r) eφ(r)

The solution is now tweaked

ds2 = −e2φAdt2 + e2φA−1
(

dR
dr

)−2
dR2 +R2dΩ2 .

From geodesic equation of radial direction

d2r

dτ2
+ Γrtt

(
dt

dτ

)2

+ Γrϕϕ

(
dϕ

dτ

)2

= 0 .

Rotation velocity can be extracted

Vorbit =
∣∣R dϕ

dt

∣∣ =
[
− 1

2
R dgtt

dR

] 1
2

=


γ+( r−αr+β

) a+b√
a2+b2 +γ−

(
r−α
r+β

) a−b√
a2+b2


γ+(a+b)

(
r−α
r+β

) 2b√
a2+b2 +γ−(a−b)


γ+(2r−α+β−a+b)

(
r−α
r+β

) 2b√
a2+b2 +γ−(2r−α+β−a−b)


1
2

.

Sung Moon Ko (Sogang University) Double Field Theory and Applications Gravity and Cosmology 30 / 36



Global Conserved Charge

DFT global conserved charge is defined as Park-Rey-Rim-Yuho[2015]

Q[X] =
∮
∂M d2xAB e−2d

(
KAB + 2X [ABB]

)
KAB = 4(P̄∇)[A(PX)B] − 4(P∇)[A(P̄X)B]

BA = 2(PACPBD − P̄AC P̄BD)ΓBCD = 4(P − P̄ )AB∂Bd− 2∂BP
AB

The global charge is conserved if the following meets

∂A∂[BXC] = 0

Only surviving component of KAB is Ktr

Ktr + 2X [tB̃r] = grrgtt∂rgttX
t + 4Xtgrr∂rd−Xt∂rg

rr

With DFT dilaton d = φ− 1
4 ln(−g)

Ktr + 2X [tB̃r] = −2Xtgrrgθθ∂rgθθ + 4Xtgrr∂rφ
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Global Conserved Charge

Substituting specific metric solution

e−2dKtr = e2φ
(
2C∂rφ+ C

A
∂rA

)
sin θXt

2X [tBr] = 4Xtgrr∂rφ− grrgtt∂rgttXt − 2grrgθθ∂rgθθX
t

The global conserved charge

QK [∂t] := −
∮
∂M

dD−2xABe
−2dK [tr] =

1

4
(a+

√
b2 − h2)

QXB =
1

2
(a+

a− b
a+ b

√
a2 + b2)− 1

4
(a+

√
b2 + h2)

Q[∂t] =
1

2
(a+

a− b
a+ b

√
a2 + b2)
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Various Limits of Solution

Schwarzschild solution (b = h = 0)

ds2 = −(1− a/R)dt2 +
dR2

1− a/R +R2dΩ2

Vorbit =

√
a

2R

Hernquist model (a = h = 0)

ds2 =
−dt2 + dR2

1 + b/R
+R2dΩ2

e2φ=
1

1 + b/R

Vorbit =

√
bR

2(R+ b)2

F-JNW solution (h = 0)

ds2 = −A(r)dt2 +A(r)−1
[
dr2 + r

(
r −
√
a2 + b2

)
dΩ2

]
A(r) :=

[
dr2 + r

(
r −
√
a2 + b2

)
dΩ2

]
e2φ =

(
1−
√
a2 + b2

r

) b√
a2+b2
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Various Limits of Solution

Figure: Schwarzschild Figure: Main Result
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Conclusion

DFT introduces non-Riemannian background very naturally

DFT linearized E.O.M had been obtained

Target space formulation of DFT also involve non-relativistic string theory

Galilean and Schödinger algebra are induced from DFT under certain background

Corresponding global conserved charge was computed

The solution can reproduce series of well-known solutions

The shape of plot is similar to that of dark matter

Scalar dilaton and two form field can be treated as candidates of dark matter

The global conserved charge of DFT might admits negative values

Gravitational lensing effect is also a very attractive subject
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