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Abstract

This lecture note surveys the gamma matrices in general dimensions with arbitrary signa-
tures, the study of which is essential to understand the supersymmetry in the corresponding
spacetime. The contents supplement the lecture presented by the author at Modave Summer
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1 Preliminary

Where do we see Clifford algebra?
* Dirac equation, for sure.

* Supersymmetry algebra.

Non-anti-commutative superspace.

Division algebra, R, C, H, O.

ADHM construction for instantons, F' = =+ % F'.

The gamma matrices in the Euclidean two-dimensions provide the fermionic oscillators,

f2=0, fr=0, {f.f1=1, (1.1)

where f = 1(y' +i9?), f = 3(7! — i?). Consequently, the irreducible representation is given
uniquely by 2 x 2 matrices acting on two dimensional spinors, |+) and |—),

r=lei=(1 o) T=me=(0 o) (12

Higher dimensional gamma matrices are then constructed by the direct products of them.

2  Gamma Matrix

We start with the following Theorem on linear algebra.

Theorem
Any matrix, M, satisfying M? = \? # 0, A € C is diagonalizable, and furthermore if there is
another invertible matrix, N, which anti-commutes with M, {N, M} = 0, then M is 2n x 2n

matrix of the form
B A0 1
M—S(O _)\)S . 2.1

In particular, trM/ = 0. See Sec. A for our proof.



2.1 In Even Dimensions

In even d = t + s dimensions, with metric!

n" =diag(++ -k —— ), (2.2)

-~ -~

t S

gamma matrices, v*, satisfy the Clifford algebra
VA =2 (2.3)
With?
yHHz 7[#17/12 .. 'V“m] : (2.4)
we define ' M = 1,2, ---2¢ by assigning numbers to independent y#1#2"#m e g  imposing
< fo < - < L
DM = (L eyttt oy 12 2.5)
Then {T'M} /Z, forms a group
MY = QMNTL OMN — 41, (2.6)

where L is a fuction of M, N and €2,y = +1 does not depend on the specific choice of repre-
sentation of the gamma matrices.

Theorem (2.1) implies

1
—tr(TMTY) = Q™Y 2.7)
2n
which shows the linear independence of {I'™} so that any gamma matrix should not be smaller
than 24/2 x 24/2,

In two-dimensions, one can take the Pauli sigma matrices, o', 02 as gamma matrices with a

possible factor, ¢, depending on the signature. In general, one can construct d + 2 dimensional
gamma matrices from d dimensional gamma matrices by taking tensor products as

"o 1®% 1®0%) : up to a factor i . (2.8)

"Note that throughout the lecture note we adopt the field theorists’ convention rather than string theorists such
that the time directions have the positive signature. The conversion is straightforward.
2¢[1” means the standard anti-symmetrization with “strength one”.



Thus, the smallest size of irreducible representations is 2%/ x 2%/2 and {T'™} forms a basis of
24/2 % 2/2 matrices.

By induction on the dimensions, from eq.(2.8), we may require gamma matrices to satisfy the
hermiticity condition
+yH for time-like p

P =1, = : (2.9)
—# for space-like p

With this choice of gamma matrices we define v(4*1) as

(d+1)

D =\ (=1) Ty (2.10)

satisfying
,y(d-i-l) — (7(d+1)>_1 — ,y(d-i-l)f’

2.11)
{91V} =0.

For two sets of irreducible gamma matrices, v*, +'# which are 2n x 2n, 2n’ x 2n’ respectively,
we consider a matrix
S=> _rMrrv)t, (2.12)
M
where T, is an arbitrary 2n’ X 2n matrix.
This matrix satisfies for any N from eq.(2.6)

"VSg = STV . (2.13)

By Schur’s Lemmas, it should be either S = 0 or n = n/,det S # 0. Furthermore, S is unique
up to constant, although 7 is arbitrary. This implies the uniqueness of the irreducible 24/2 x 2¢/2
gamma matrices in even d dimensions, up to the similarity transformations. These similarity
transformations are also unique up to constant. Consequently there exist similarity transforma-
tions which relate 4 to y*f, v#*, v*T since the latter form also representations of the Clifford
algebra. By combining (1) with the similarity transformations, from eq.(2.11), we may acquire
the opposite sign, —y*T, —y#* —~HT as well.
Explicitly we define?

tt=1) 1 o9 .

A=y/(=1)"= 7y

3 Alternatively, one can construct C1. explicitly out of the gamma matrices in a certain representation [1].

coAt (2.14)




satisfying

A=A"1=AT,

P = (1) Ay AT

If we write
9" = Bi' By,

then from
Y = (y"*)* = By B (BLBy)

one can normalize B to satisfy [2, 3]

BiBy=c¢e41, £l = (_1)§(s—t)(s—ti2) ’
BiB, =1,

T
BizéiBi,

where the unitarity follows from

V' =k = (B Be) = £BLy"(BL) ™ = BLBAy"(BLBL)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

and the positive definiteness of BlBi. The calculation of € is essentially counting the dimen-

sions of symmetric and anti-symmetric matrices [2,3]*.

What is worth to note is the case e, = +1. As we see later in (4.4), (4.5), if ¢, = +1, the
gamma matrices can be chosen to real, i.e. B, = 1, while if e = +1, the gamma matrices
can be chosen to pure imaginary, i.e. 5_ = 1. Especially when the gamma matrices are real

we say they are in the Majorana representation.

4From (2.24) we have (Cynytirz=mn)T — o Cyyparabin x4 m gy (£1)00n(—1)nta(ttn)(E4n=1) (3 29)

Thus, one can obtain the dimension of the symmetric 2%/2 x 2%/2 matrices as

d!

d
d/2—1 (od/2 _\1 :
2 (2 +1)_22(1+Xni) nl(d—n)!

n=0

From this one can obtain the value of £+ (2.19).



The charge conjugation matrix, C'y, given by
Cy. = BIA, (2.23)

satisfies® from the properties of A and B

Ciy"Cil = ¢y, ¢=+(=1)", (2.24)
clcy =1, (2.25)
CT = (—1)3%4-2) 0 = e, (+1)}(~1)7-V O | (2.26)
CH(=1)2! VAT = BLAB' = CLACT!. (2.27)
e is related to ( as
ey = CH(—1) 2t D3 (2.28)

Eqgs.(2.24,2.26) imply

(Ci’ym“Q”'“")T _ Cn(_l)éd(d*CZH%n(n*l) Clpryiamzin

(2.29)
= 5i(:H)t+n(_1)n+%(t+n)(t+n—1) iz b
A+ satisfies
AT = (1) Ay @D AT = A(@+)
yHD* = (=1)F By B, (2.30)

7(d+1)T — (_Utgs Ci,y(d—i-l)cgl :
where {A,, A_} = {A 4TV A}

In stead of eq.(2.8) one can construct d + 2 dimensional gamma matrices from d dimensional
gamma matrices by taking tensor products as

(Y @0, Y R0l 1@ 0?) : up to a factor i . (2.31)

SEssentially all the properties of the charge conjugation matrix, '+ depends only on d and (. However it is useful
here to have expression in terms of the signature to dicuss the Majorana supersymmetry later.



Therefore the gamma matrices in even dimensions can be chosen to have the “off-block diagonal”

form
0 o* 1 0
H — (d+1) —
gk (&“ 0), g (0 _1), (2.32)

d d . ~ .
where the 2271 x 227! matrices, o#, 5* satisfy

oto? + o¥ot = 2nt, (2.33)

ot =35, (2.34)

In this choice of gamma matrices, from eq.(2.30), A, B, Cy are either “block diagonal” or

“off-block diagonal” depending on whether ¢, t’TS, ”Ts are even or odd respectively.
In particular, in the case of odd ¢, we write from eqs.(2.14,2.15) A as

A= (g 8) , a=1/(-1)"T"0l52. ot =af =at, (2.35)
and in the case of odd HTS we write from eq.(2.26) C'. as
o= 0 ¢ c=e (—1)FHET = (ch! (2.36)
+¢ 0 ) + ’ '
where a, a, c, ¢ satisfy from eqs.(2.16,2.24)
oM = aota, o = agha,
(2.37)
ohl = (=1)*eotc! ot = (=1)caret.
If both of ¢t and HTS are odd then from eq.(2.27)
al = (=1) T cac!, al = (=1)z cac?. (2.38)

2.2 In Odd Dimensions

The gamma matrices in odd d + 1 = ¢ + s dimensions are constructed by combining a set of
even d dimensional gamma matrices with either +~(**1 or 4-i7(?*1) depending on the signature
of even d dimensions. This way of construction is general, since 7(**!) serves the role of 44+

—H :7d+1’y“<7d+1)_1, forp=1,2,---.d,

(2.39)
(v*1)? = £1,

7



and such a matrix is unique in irreducible representations up to sign.

However, contrary to the even dimensional Clifford algebra, in odd dimensions two different
choices of the signs in 7%*! bring two irreducible representations for the Clifford algebra, which
can not be mapped to each other® by similarity transformations

Y= (AR T and A = (7R ). (2.40)

If there were a similarity transformation between these two, it should have been identity up to
constant because of the uniqueness of the similarity transformation in even dimensions. Clearly
this would be a contradiction due to the presence of the two opposite signs in y¢+1.

In general one can put’

+4127d fort —s=1mod4,
= (2.41)
+iy!2d fort —s =3 mod4.

24/2 » 24/2 gamma matrices in odd d + 1 dimensions, ¥*,n = 1,2,---,d + 1, induce the
following basis of 24/2 x 2¢/2 matrices, I'M

TM = (1, i, oo yfak2 b)) M=1,2 .27 (2.42)

From eq.(2.41) o -
TMDN — QMNFL ,

. +1 fort —s=1mod4, (2.43)
Qun =
+1,+7 Fort—s=3mod4.

Here, contrary to the even dimensional case, Q umn depends on each particular choice of the
representations due to the arbitrary sign factor in v**!. This is why eq.(2.13) does not hold
in odd dimensions. Therefore it is not peculiar that not all of +~*T, +4** +~+*T are related
to v* by similarity transformations. In fact, if it were true, say for ++**, then the similarity

®Nevertheless, this can be cured by the following transformation. Under 2# = (x!, 22, ... 29t!) — 2/t =
(', 22,--- —2?*1), we transform the Dirac field (x) as ¢¥(z) —  ¢'(2') = ¢(z), to get Y(z)y -
op(z) — ()Y - 'Y (a") = Y(z)y - OY(x). Hence those two representations are equivalent describing
the same physical system.

7Our results (2.41-2.50) do not depend on the choice of the signature in d dimensions, i.e. they hold for either
increasing the time dimensions, d = (¢ — 1) + s or the space dimensions, d =t + (s — 1).



transformation should have been B (2.17) by the uniqueness of the similarity transformations in
even dimensions, but this would be a contradiction to eq.(2.30), where the sign does not alternate
under the change of B, « B_. Thus, in odd dimensions, only the half of £v#T, £~y#* +~#T are
related to v by similarity transformations and hence from eq.(2.30) there exist three similarity
transformations, A, B, C such that

(=)t = Ay A~ (2.44)
(1) 4" =By"B, (2.45)
(-1) 55 T = Cyre (2.46)
A, B, C' are all unitary and satisfy
A=A1t=A", C =B"A, (2.47)
B'B=cl=(-1)sts=1 (2.48)
BT =¢B, CT =g(=1)% C = (=1)strstDts=D (2.49)
(=1)7 AT = BAB™' = CAC™". (2.50)

In particular, A is given by eq.(2.14).

2.3 Lorentz Transformations

Lorentz transformations, L can be represented by the following action on gamma matrices in a
standard way
LML = LF A, (2.51)

where L and L are given by

1
L = emueh™ L= ezum

)

(2.52)
P\ ASv vA
(MH )p—n“ 0", —nrok.
For even d, if a 242 x 2%/2 matrix, M*#2Fn_ s totally anti-symmetric over the n spacetime

indices
M ] (2.53)

9



and transforms covariantly under Lorentz transformations in d or d + 1 dimensions as

Lot = TT L, Mo (2.54)

=1
then for 0 < n < max(d/2, 2), the general forms of M*1#2Fn are

(1 4 eyl ypanapn In even d dimensions,
sz (2.55)
yHIH2 B In odd d + 1 dimensions,

where c is a constant.

To show this, one may first expand M*1#2*#n in terms of Yy, 11,y VY0100 OF Yoy
depending on the dimensions, d or d + 1, with 0 < m < d/2. Then eq.(2.54) implies that the
coefficients of them, say T'#1#2Fm+n  are Lorentz invariant tensors satisfying

m+n
T ot ovssmen — s 256)

i=1

Finally one can recall the well known fact [4] that the general forms of Lorentz invariant tensors
are multi-products of the metric, n*, and the totally antisymmetric tensor, e#*#2"", which verifies
eq.(2.55).

2.4 Crucial Identities for Super Yang-Mills

The following identities are crucial to show the existence of the non-Abelian super Yang-Mills in
THREE, FOUR, SIX and TEN dimensions.

(1) The following identity holds only in THREE or FOUR dimensions with arbitrary signature
0= (v"C™ Y ap(7.07"),s + cyclic permutations of a, 3, (2.57)

To verify the identity in even dimensions we contract (v*C~1)a5(7,)s With (Cy*172 )5, and
take cyclic permutations of «, 3,y to get

0= 24267 + (d — 2n)(C + C*(=1)2"0" D) (=1)Fadld=<2) (2.58)

10



This equation must be satisfied for all 0 < n < d, which is validonlyind =4, = —1.
Similar analysis can be done for the d+ 1 odd dimensions by adding (v C~1) ,5(y D C1) 5
term into eq.(2.57). We get

0 = 2287 + ) + (d = 20+ 1)(C + C (1)) (—1yadd-@, ¢ = ()i
(2.59)
Only in d = 2 and hence three dimensions, this equation is satisfied for all 0 < n < d.

(i1) The following identity holds only in TWO, FOUR or SIX dimensions with arbitrary signature

0= (0")ag(0u)ys + (07)15(00)as (2.60)

To verify this identity we take d dimensional sigma matrices from f = d — 2 dimensional gamma
matrices as in eq.(2.31)
ot = (y*, 7(f+1)’ i) (2.61)

to get
(Ju)aﬁ(au)’ﬁ = (VM)aﬁm/u)v(? + (’Y(f+1))aﬂ(7(f+l))75 - 5aﬁ(576 (2.62)

Again this expression is valid for any signature, (¢,s). Now we contract this equation with
(yrveva O 7Y g5, From eqs.(2.24,2.30) in the case of odd ¢ we get

((=0"(f = 2m) + (~D)F7 = 1) (e (2.63)

To satisfy eq.(2.60) this expression must be anti-symmetric over « < 7 forany 0 < n < f.
Thus from eq.(2.29) we must require 0 = (—1)"(f — 2n) + (—1)%”” — 1 for all n satis-
fying (—1)s/(=2+3n(n=1) — 1 This condition is satisfied only in f = 0,2,4 and hence
d = 2,46 (f = 6 case is excluded by choosing n = 6 and f > 8 cases are excluded by
choosing either n = 0 or n = 3).

(i11) The following identity holds only in TWO or TEN dimensions with arbitrary signature

0 = (o"c™ ") ap(ouc),s + cyclic permutations of a, 3,y (2.64)

11



3 Spinors

3.1 Weyl Spinor

In any even d dimensions, Weyl spinor, v, satisfies

,.y(d+1)w _ w

and so 1) = T A satisfies from eq.(2.30)

t

P = (C1) Q@ICET = (-1 O

3.2 Majorana Spinor

By definition Majorana spinor satisfies

b=vTCe or $=uTC

depending on the dimensions, even or odd. This is possible only if ¢, =

eqs.(2.19,2.48)
n=+1: t—s=20,1,2mod 8

n=-—1: t—s=20,6,7mod8
where 7) is the sign factor, 1, occuring in eq.(2.17) or eq.(2.45)8.

3.3 Majorana-Weyl Spinor

Majorana-Weyl spinor satisfies both of the two conditions above
VY =y =70,

Majorana-Weyl Spinor exists only if

n=+1: t—s=0mod8
n=-—1: t—s=0mod8
8In [2], n = —1 case is called Majorana and ) = +1 case is called pseudo-Majorana.

12
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1 and so from

(3.4)

(3.5)

(3.6)



4 Majorana Representation and SO(3)

Fact 1:
Consider a finite dimensional vector space, }V with the unitary and symmetric matrix, B = B7,

BB = 1. For every |[v) € V if Blv)* € V then there exists an orthonormal “semi-real ” basis,
V={|l), 1 =1,2,---} such that B|l)* = |I).

Proof

Start with an arbitrary orthonormal bais, {|v;), [ = 1,2,---} and let |1) o |v1) + Blvy)*. After
the normalization, (1|1) = 1, we can take a new orthonormal basis, {|1),[2'),]3’),- - -}. Now we
assume that {|1),]2),--- |k —1),|k), |(k+1)),- -} is an orhonormal basis such that B|j)* = |j)
for 1 < j < k — 1. To construct the & th such a vector, |k) we set |k) o< |k') + B|k')* with the
normalization. We check this is orthogonal to |j), 1 < j <k —1

(GICIE) + BIK)") = 0+ (klj) = 0. 4.1)

In this way one can construct the desired basis.

In the spacetime which admits Majorana spinor from Eq.(3.4)

n=+4+1: t—s=0,1,2mod 8
4.2)
n=-—1: t—s=20,6,7mod8§,
more explicitly in the even dimensions having ¢, = 1 (ore_ = 1) where B (or B_) is symmetric

and also in the odd dimensions of ¢ = 1 where B is symmetric, from Fact 1 above we can choose
an “semi-real ” orthonormal basis such that B,!|I)* = |I) (here it is B, that plays the role of B
in Fact 1). In the basis, we write the gamma matrices

V= Rill(ml. (4.3)
From 1 ~** = B,y*B, ' and the property of the semi-real basis, B, '|I)* = |I) we get
(Rp,,)" =nhy, . (4.4)
Since R* is also a representation of the gamma matrix
R'RY + RYR* = 20", 4.5)

adopting the true real basis, we conclude that there exists a Majorana represention where the
gamma matrices are real, » = + or pure imaginary, 7 = — in any spacetime admitting

13



Majorana spinors.

Furthermore from Eq.(2.30), in the even dimension of t —s = O mod 8, e, = 1 and ’y(d“)* =
B~(@) B~ (here we omit the subscript index + or 7 for simplicity.). The action, |v) — Bf|v)*
preserves the chirality, and from the fact 1 above we can choose an orthonormal semi-real basis
for the chiral and anti-chiral spinor spaces, V =V, + V_, V. = {|l+)} such that

(li\mi> = 5lm7 <li]m¢> = O, ’}/(d+1)|li> = :Hli> s B”li>* = ’li> . (46)

With the semi-real basis
1 0
(d+1) _
g ( 0 -1 ) ; 4.7)

and the gamma matrices are in the Majorana representation

" 0 r~ m d/2—1 povT v,.uT Qv
=1, , rt e 0(2 ), ripyt 4 prptt = 201 (4.8)
I

From Eq.(6.8) any two sets of semi-real basis, say {|/+)} and {|/1)} are connected by an
O((2%271)) transformation

\Zi> = Z Asp|ma), ZAilmAinm = Oin - 4.9)
If we define
Ar = Agi|le) (mel, (4.10)
lm
then |l+) = A4 |l.) and from the definition of the semi-real basis
Ay =BAXB=A.P, =P A, AN, =P,. (4.11)
We write -
My — n+1 1 n
Ap=e,  My=> (-1)""=(As = Py)" =In Ay (4.12)
n=1 n

Thus for A such that the infinity sum converges we have
M, =—-M}=BM!B=M.P, =P.M,. (4.13)

This gives a strong constraint when we express M. by the gamma matrix products. For the
Eucledean eight dimensions only the SO(8) generators for the spinors survive in the expansion!

My = tweyy™ Py . (4.14)

14



Namely we find an isomorphism between the two SO(8)’s, one for the semi-real vectors and the
other for the spinors in the conventional sense. Alternatively this can be seen from

a ploptlT 0
b ( e ) | (4.15)

where the each block diagonal is a generator of SO(D) while the dimension of the chiral space
is 2¢/21, Only in d = 8 both coincide leading to the “so(8) triolity” among so,(8), so.(8) and
s0z(8).

Fact 2: Relation to octonions.
In Euclidean eight dimensions, the 16 X 16 gamma matrices can be taken of the off-block diagonal
form,

Vo = ( 7’% 75 ) , rard +rprl =264, (4.16)
where the 8 x 8 real matrices, r,, 1 < a < §, give the multiplication of the octonions, o,
040 = (14)p°0c - 4.17)
Fact 3:
Consider an arbitrary real self-dual or anti-self-dual four form in D = 8
T3 g = £4 €apedegr TEIM . (4.18)

Using the SO(8) rotations one can transform the four form into the canonical form where the non-
vanishing components are T'5.,, Tisse, Tisres Tissr, Tites, Tiisss Tiig; and their dual counter
parts only.

Proof
We start with the seven linearly independent traceless Hermitian matrices

Eiy =Py, Eig=7""Py, Ei3=7""P., FEi=+""P;,

(4.19)
Eis=7"®'P., FEig=79""Py, Eir=7""P..
As they commute with each other, there exists a basis V. = {|l.)} diagonalizing the seven
quantities
Eq =) Mlle)(ll,  ()?=1. (4.20)
1

15



Further, since C'|l.)* is also an eigenvector of the same eigenvalues, from the fact 1 we can im-
pose the semi-reality condition without loss of generality, C'|l+)* = |I1).

Now for the self-dual four form we let
T = 1T 7. (4.21)

Since T* is Hermitian and C'(T*)*CT = T*, one can diagonalize T+ with a semi-real basis
T = AMi)(el,  Cla) =) (4.22)
I

For the two semi-real basis above we define a transformation matrix
O1 = [l2) (4. (4.23)

Then, since T is traceless, O, T iOl can be written in terms of £;’s. Finally the fact O gives
a spinorial SO(8) rotation completes our proof.

Some useful formulae are

j:Pi = EilEiZEiS = EilEizlEiE) = EilEiGEi7 = EiZEizlEit‘)

(4.24)
=EpoFEy 5By = EygEygByr = EysFysBye .
For an arbitrary self-dual or anti-self-dual four form tensor in D = 8, from
Ta:EdeT:tdee — (%>2€acdefghi 6bcdejklmfzﬂ:l:fghijﬂj:}:dm
(4.25)
—_ zlldaijiefTiCdef _ TaiCdeT:tbcde ’
we obtain an identity

Ty T = £ 6,0 Ty, [T (4.26)

16



5 Superalgebra

5.1 Graded Lie Algebra

Supersymmetry algebra is a Zs graded Lie algebra, g = {7}, which is an algebra with commu-
tation and anti-commutation relations [5, 6]

T,, Ty} = C5T. (5.1
where C¢, is the structure constant and
[T, T,} = T,T, — (—1)****T,T, (5.2)

with #a, the Z, grading of 7,

0 for bosonic a
#a= { 1 for fermionic a 5-3)
The generalized Jacobi identity is
[Ta7 [TIH Tc}} - (_1)#a#b[Tb7 [Tay TC}} - [[T(M Tb}7 TC} (54)
which implies
(—1)FFeCnCh + (1) CLCly + (1) CE,Ch = 0 (5.5)
For a graded Lie algebra we consider
g(z) = exp(z*1,) (5.6)

where z is a superspace coordinate component which has the same bosonic or fermionic property
as 1T, and hence z*T, is bosonic.
In the general case of non-commuting objects, say A and B, the Baker-Campbell-Haussdorff

formula gives
etel = exp (Z Cn(A, B)) 5.7

n=0

where C,, (A, B) involves n commutators. The first three of these are
Co(A,B)=A+B
Ci(A,B) = 3[A, B] (5.8)
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Since for the graded algebra
[2°T,, 2"Ty)) = 2°2°[T,, Ty} = 2°2°CS,T. (5.9)

the Baker-Campbell-Haussdorff formula (5.7) implies that g(z) forms a group, the graded Lie
group. Hence we may define a function on superspace, f*(w, z), by

gw)g(z) = g(f(w, 2)) (5.10)

Since ¢(0) = e, the identity, we have f(0,z) = z, f(w,0) = w and further we assume that
f(w, z) has a Taylor expansion in the neighbourhood of w = z = 0.
Associativity of the group multiplication requires f(w, z) to satisfy

f(f(uvw)vz> :f(uvf(w>z)> (5.1D)

5.2 Left & Right Invariant Derivatives

For a graded Lie group, left and right invariant derivatives, L,, I?, are defined by

Lag(2) = 9(2)T, (5.12)
R.9(z) = —Tag(2) (5.13)
Explicitly we have
df*(z,u)
L, = L,(2)0 Lb(z) = 22222 (5.14)
(2)0h (2) dur |,
b
Ry = R(2)0y,  R.(2) = — W (5.15)
u u=0

where 0O, = %.

It is easy to see that L, is invariant under left action, g(z) — hg(z), and R, is invariant under
right action, g(z) — g(2)h.
From eqs.(5.12,5.13) we get

[La, Ly} = CS, L. (5.16)

(R, Ry} = C%R, (5.17)
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and from eqs.(5.12,5.13) we can also easily show
[La, Ry} =0 (5.18)

Thus, L,(2), R.(z) form representations of the graded Lie algebra separately. For the supersym-
metry algebra, the left invariant derivatives become covariant derivatives, while the right invariant
derivatives become the generators of the supersymmetry algebra acting on superfields.

5.3 Superspace & Supermatrices

In general a superspace may be denoted by RP!9, where p, ¢ are the number of real commuting
(bosonic) and anti-commuting (fermionic) variables respectively. A supermatrix which takes
R4 — R may be represented by a (p + ¢) x (p + ¢) matrix, M, of the form

a b
M:(cd) (5.19)

where a, d are p X p, ¢ X ¢ matrices of Grassmanian even or bosonic variables and b, c are p X g,
g % p matrices of Grassmanian odd or fermionic variables respectively.
The inverse of M can be expressed as

-1 (a—bd~'c)™! —a~tb(d — ca'b)™?
M= ( —dilc(a . bd’lc)’l (d— Caflb)’l (5.20)

where we may write
o0

(a—bd eyt =at+ Z (a"tbd te) a™! (5.21)
n=1
Note that due to the fermionic property of b, ¢, the power series terminates at n < pq + 1.
The supertrace and the superdeterminant of M are defined as

str M =tra —trd (5.22)
sdet M = det(a — bd~'c)/ det d = det a/ det(d — ca™'b) (5.23)

The last equality comes from
det(1 —a 'bd'c) = det (1 —d 'ca™'b) (5.24)
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which may be shown using

— 1
det(l —a) = — —tra” 5.25
et(l —a) exp( nglnra> (5.25)
and observing
tr(a”'bd 'c)" = —tr (d 'ca )" (5.26)

From eq.(5.23) we note that sdet M # 0 implies the existence of M L. Thus the set of superma-
trices for sdet M # 0 forms the supergroup, Gl(p|q). If sdet M = 1 then

M € Sl(plq).

The supertrace and the superdeterminant have the properties

str (M My) = str (MyMy) (5.27)

sdet (M7 M) = sdet M sdet My (5.28)

We may define the transpose of the supermatrix, M, either as

t t
Mt — ( o > (5.29)

or as . .
MY = ( Zt _df ) (5.30)

where a', b', ¢!, d" are the ordinary transposes of a, b, ¢, d respectively.
We note that

(M, My)t = MEME (M My)Y = MY MY (5.31)

(MY = (MY)t =M (5.32)
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6 Super Yang-Mills

6.1 (3+1)D N = 1super Yang-Mills

In four-dimensional Minkowskian spacetime of the metric, n = diag(— + ++), the 4 x 4 gamma

matrices satisfy with 4 = 0,1,2, 3,

et =T, = —AI'M AT A=Tt=—AT,

[#* = + B BT BT = B,

T = —CTHCT, C =-CT=BrIt, Ct=(C 1,
The Majorana spinor, v satisfies then

=Tt =yTC — V" = Bip.
The four-dimensional super Yang-Mills Lagrangian reads
Lip = tr (—1F,F" —ilgTHD,y) .
The supersymmetry transformations are
6A, = iel = —iyl e, oY = —1F, I'"e.

62 (5+1)D (1,0) super Yang-Mills

Bt =pB1,

(6.1)

(6.2)

(6.3)

6.4)

In six-dimensional Minkowskian spacetime of the metric, n = diag(— + + + ++), the 8 x 8

gamma matrices satisfy with M = 0,1, 2, 3,4, 5,

PME =Ty = ATM At A= TI285 — gt — g1
rMT — orM et T = —C, ct=c,
rM+ — BrYpt, B=CA=—BT, Bt =B,

The gamma “seven” is given by ['() = 912345 g satisfy ['(V) = (DT = T(M~-1 and

LEMN _ %GLMNPQR FPQRF(7) ’

where 012345 — 1,
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The su(2) Majorana-Weyl spinor, 1;, i = 1, 2, satisfies then

IMep; = +4hy, TN = 4 . chiral
) 6.7)
V= (Y)TA = €9 ()T C : su(2) Majorana,
where € is the usual 2 x 2 skew-symmetric unimodular matrix. It is worth to note that /! T M1Mz--Man . —

0 and
tr(i&ierMz-..M2n+1pi) _ [tr(l’QElFMIMQM%JrlpZ)]T — _(_1)ntr(iﬁirM1M2mM2n+lwi) , (68)

where v, p; are two arbitrary Lie algebra valued su(2) Majorana-Weyl spinors.

The six-dimensional super Yang-Mills Lagrangian reads
Lop = tr (—2Fp FM™M — il TED ;) | (6.9

where all the fields are in the adjoint representation of the gauge group such that, with the Her-
mitian Lie algebra valued gauge field, A/,

Dy = 0y —i[Ap, ], Fry = 0L Ay — OmArL — i[AL, Ay (6.10)

From (6.8) the action is real valued.

The supersymmetry transformations are given by with a su(2) Majorana-Weyl supersymmetry
parameter, ¢;,

so that, in particular, §¢° = +1Fyne TN, The crucial Fierz identity for the supersymmetry
invariance is with the chiral projection matrix, P := (1 + '),

(P*P), 5 (TLP) s+ (PP) 5 (PLP),; =0, (6.12)
which ensures the vanishing of the terms cubic in v;,

tr (Y TH[0AL, ) = tr (YTH[ieT ey, ¢i]) = 0. (6.13)

The equations of motion are

Dy FEM 4 iTMop, =0, T'™Dyp; =0. (6.14)
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6.3 6D super Yang-Mills in the spacetime of arbitrary signature

With
(rM)" = +e, Moyt cl =7C., (6.15)
we have
(M)’ = —c.TM (6.16)
We introduce a pair of Weyl spinors of the same chirality,
(1, 102) PO = sihy, s =1, (6.17)

and define the charge conjugate spinor by

by =PI Cy (6.18)

The super Yang-Mills Lagrangian reads
Lep = tr (FunFMN + 50ITM Dyiy) | (6.19)
and the supersymmetry transformations are given by

§Ay = ET by = =T ey,

(6.20)
o = —%FMNFMNQ )
so that, in particular, 6} = 41 Fj n&.'". The Lagrangian transforms as, from (2.60),
6Lep = Optr (FMN6AN — LT M ;) (6.21)
Only if B} By = —1, as in the Minkowskian signature, one can impose the pseudo-Majorana
condition, N B
v =p = (%)'A. (6.22)
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6.4 (9+ 1)D SYM, its reduction, and 4D superconformal symmetry

* Conventions for (9 + 1)D gamma matrices
Spacetime signature : 1) = diag(— + + - - - +), mostly plus signature.
32 x 32 Gamma matrices:
i) Hermitian conjugate,

(TMYT =Ty = —TT'MIy = ATM AT
A=T129= At = A1 (6.23)

(ATMiMz-Ma )t — (_1)gn(n=1) AQMMo-Mn

i1) Complex conjugate,
(TMy* = £B.I'MBL |

(6.24)
Be =B =(BL)™",
iii) Transpose,
(MM)T = ¢, Vel
C.=BLA=+cT = ()", (6.25)
(C+FM1M2---Mn)T _ (_1)%n(n—1)C+FM1M2---]V[n '
Let the spinorial indices be located as
(T*)%, (A%,  (Bilag=(Bi)sa,  (Ci)as = E(Ci)pa- (6.26)
Define
F(IO) — P012-~9 — (F(IO))T — (F(IO))—I — _CI_(F(IO))TC_F ' (627)
The crucial identity for the super Yang-Mills action is
(CiTMT L) (0p(CiT il e) 5 =0 (6.28)

where ', = %(1 + I'10)) is either the chiral or the anti-chiral projector, and «, 3,y are
symmetrized. Note also the symmetric property, (C.'MT'y)T = C,TMT..
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For spinors we set

v =ylA. (6.29)

Majorana-Weyl Spinor, 1, satisfies
Iy =44  : Weyl condition , (6.30)
=By : Majorana condition , (6.31)

or equivalently, B B
YT 10 = —4) : opposite chirality ,

B (6.32)
§=9TC, .
Hence for the fermionic Majorana-Weyl spinors,
Wy DA Moy = 0, (6.33)
and’
Q)ElI‘MlMT“M?’hLl@Z)Q — (_1)n+1&21‘\M1M2"'M2n+1¢1 — _(&1FM1M2.“M2”+11/}2)T . imaginary .
(6.34)
We can further set
M 0 Y M AN Nz M MN .
= ) YN AN = 29N n=diag(— +++---+).
(6.35)

Namely, (v*,7) are the real 16 x 16 matrices appearing in the off block-diagonal parts
of the 32 x 32 gamma matrices,
satisfying'”
=M, (YM)T = 39M5° = A,
(6.36)

,~Yo,yl,~y2,__,yg:+1’ 70f~Y172...f~y9:_1_

9When the spinor is Lie algebra valued, Eq.(6.34) does not hold in general.
VOFrom M = (v3,) 7! it also follows that M ~yN + 3NM = 29MN = One may further impose the symmetric
property, (vM)T = M ‘but it is not necessary in our paper.
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* Lagrangian.
Let the gauge group be su(V) or u(XV).
Lie algebra valued fields,

Ay = A% T,, v = wrT,, (T,)'=1T,. (6.37)
Field strength and the covariant derivative are
Fun = 0yAn — OnAp — i[Anr, AN Dy =0y —i[Ap, V] . (6.38)
Bianchi identity reads
DiFyn + Dy Fnrp + Dy Frayr =0. (6.39)

The gauge symmetry is given by, for g = g7,

AM — gAMg_l + ig@Mg_l, FMN — gF’]\/[Ng_1 , U — g\I/g_l . (640)

The Lagrangian of 10D super Yang-Mills theory reads
L =tr[—1FynFMY — il UTM Dy, V]
B (6.41)
= tr [~ 2 FynFMY — ilgyMDyp] |

where U = (¢ 0)7 and v is a sixteen component spinor and v := 77",

Under arbitrary infinitesimal transformations, d A/, 0,

6L = tr [(DLF™ + UTMW) § Ay — iWTM Dy 0] + Ontr [FMN6 Ay — ig6 0TV O]

(6.42)
e Summary of supersymmetry in D < 10.
The ordinary supersymmetry and kinetic supersymmetry are given by
0Ay =0T y&s = —i& Ty ¥, 00 = GFynTMVE + € vy, (6.43)
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so that B B B
0w = _%€+FMNFMN + f;leN ) (6.44)

where &, and ¢/, are constant Majornana-Weyl spinors corresponding to the ordinary and
kinetic supersymmetry parameters. + denotes the chirality. The above is the symmetry of
the (9 + 1)D and also any dimensionally reduced super Yang-Mills action.

In four-dimensions of either Minkowskian or Euclidean signature, the supersymmetry gets
enhanced to the superconformal symmetry as

5AM = Z\I/FM(S‘(?L’) = —’Lg—({L‘)FM\If s oV = %FMNF]WNS(I'> - QqDQFaf_ + fg_leN s
(6.45)
where m is for the four-dimensions and a is for the rest. £_ is a constant Majornana-Weyl
spinor of the opposite chirality corresponding to the special superconformal symmetry pa-
rameter, and

E(x) =amTné + & (6.46)

In any case, the conserved supercurrent is of the universal form,

JM = —itr (UTM6W) = +itr (5OTMV) . (6.47)

In Appendix C, we present the derivation.
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* Superconformal symmetry in 4D of arbitrary signature.
The 32 supersymmetries in 4D super Yang-Mills which consist of ordinary supersymmetry
and special superconformal symmetry read

§Ay = i0T (1 + 2™T,,)€ = —i&(1 + 2™, Ty ¥,
oW = 1(14+TU0) LFyNTMN (1 + 2™T,) — 20,17 €, (6.48)
oW =& [—1(14a™D,) FynIMN — 29,1 L(1 — T00)
where £ is a 32 component Majorana spinor,
& =B (6.49)

The chiral decomposition of the spinor gives the ordinary supersymmetry and special su-
perconformal symmetry,!!

=6 +¢&, gx=5(1ETUD)E. (6.50)
The 32 component Majorana supercurrent is of the form,
M = +iQMe = —igQM
QM = tr [(3(1 + 2™T) Fie DR +29,I) TM U]

QY — tr [UIM (L FiuTRH(1 4 27T,) +28,1%)] = (Q¥)1 A = (Q¥)7C,
(6.51)

The supercharge is given by
Q= / d*z Q°. (6.52)

Note also &(z) = (1 +T10)(1 + 2™, )€.
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A Proof of the Theorem

Theorem 1

Any N x N matrix, M, satisfying M? = A\?1,,y, A # 0, is diagonalizable.

Proof
Suppose for some K, 1 < K < N, we have found a basis,

{ea, v 1 1<a< K, 1<r<N-K}

such that
Me, = \s€q , forl <a< K,

Mv, = P%.vs + h%.e,, for K+1<r,s<N.

From M? = X214,
2=\,

Azﬂr = (PQ)STUS —+ [(hp)ar + )\ahar] €a,
and hence,

2 2
P?= ) 1(N—K)><(N—K)7

(hP)*, 4+ Agh®, = 0.

(A.1)

(A2)

(A.3)

(A4)

The assumption holds for K = 1 surely. In order to construct ex 1 we first consider an eigenvec-

tor of the (N — K) x (N — K) matrix, P,

PTSCS = /\K_HCT, )\%{Jrl = )\2,
and set
v=cv,, h® = h%.c",
Mv = >\K+1U + h“ea .
Consequently
(Ags1 +A)h* =0 : not a sum,
so that
h* =0 if  Agy1+ A #0.

We construct ek 1, with K unknown coefficients, d“, as

ext1 =v+d,.
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From

Meg i1 = Agr1ex1 + [+ (Ao — Agy1)d?] eq, (A.10)
we determine .
AK}‘—_A it A1 7 Ao
d* = 17 % (A.11)
any number if Agi1= Ao

From (A.8) and A%, = A2 = A\? # 0, we have
Megi1 = Agy1€r41 - (A.12)
This completes our proof.
If we seta N x N invertible matrix, .S, by
(9)%, = (eq)?, Me, = A€y, 1<a,b<N, (A.13)

then
STIMS = diag(A1, Ag, - -+, An) . (A.14)
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B Gamma matrices in 4,6,10,12 dimensions

Our conventions are such that

AT m=20,1,2,3 for 1+ 3D,
yH : =126 for 244D,
~v* : a="7,8---,12 for 0+ 6D, (B.1)
ra M=0,1,2,3,7,---,12 for 1+9D,
™M . M=1,2-.--,12 for 2+ 10D.

B.1 Four dimensions
In Minkowskian four dimension of the metric, 7 = diag(— + ++), the gamma matrices satisfy
FTAT A = 20 (™) = Y, (B.2)
where m,n = 0, 1,2, 3. The chiral matrix reads
58 =~ = (30)7 = (3O (B.3)

The three pairs of unitary matrices, Ay, By, Cy, relate the hermitain conjugate, complex
conjugate, and the transpose of the gamma matrices,

+(3m™)t = A 4mAL ALAL =1,
+(3™* =BA"BL,  BlB.=1, (B.4)
LT = CAmel, Gl =1,

Especially in Minkowskian four dimensions, they can be chosen further to satisty

~ ~ ~

Ay = =iy, A=—4  AL=A0),
BBy = +1, BT =+B., B_=DB,39, (B.5)

Co=BTA, =BTA,, CT=-C., C. =C30.



B.2 Four to six dimensions

Using the four dimensional gamma matrices above, one can construct the six dimensional gamma
matrices in the off-block diagonal form,

0 12
’VH:(P“ po )’ ,LL:1,2,“',6, pMﬁV+prM:2nMV_ (B6)

With the relevant choice of the metric,

n = diag(— — + + ++), (B.7)
we require p* = (p,,)" and set
V' =U(-ine 1)U, Y =U(neym) U,
A (B.8)
. Cy 0O
YV =U(ne4y®)UT, U:( 0+ 1).
Explicitly with (B.3), (B.5)
pl = _é+a pm+2 = CA’-F& ) p6 = é— )
(B.9)
ﬁl — +C_;1, pm+2 — ,.A}/m ;1’ ﬁG — C:l
Note
(M — itz A (L0 B.10
YW =iyly?. . = R (B.10)
0 -1
and especially the anti-symmetric property of the 4 x 4 matrices,
(Pu)aﬂ = _(Pu)ﬁom (ﬁu)aﬁ = _%Eaﬁw(pﬂ)“ﬂ' (B.11)

The spinorial indices, a, 3 = 1,2, 3,4, denote the fundamental representation of su(2,2). It
follows that {p*} and {p"} separately form bases for the anti-symmetric 4 X 4 matrices with the
completeness relation,

(p) =405, (0)ap(P) = 2(0a7857 — 5557). (B.12)

On the other hand, Eq.(B.8) implies that!?

Al _Z%E,uu)\o'rn

pp N = g T by PR PloPrDr] (B.13)

12We put €'23456 = 1 and “[]” denotes the standard anti-symmetrization with “strength one”.
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so each of the sets pltp” pM = p* or pltp¥ pN = p*** has only 10 independent components and
forms a basis for symmetric 4 x 4 matrices,

tr( 0" Pgry) = —id e — 245[ﬁ5”75’\,l ;
(B.14)
(PPN ap (D) = —24(80765° + 0570,°) .
Finally, {p"* = 5 (p"p” — p"p")} or {p"” = (p"p* — p"p")} forms an orthonormal basis for the
general 4 x 4 traceless matrices,

tl“(p’wp)m) = 4((5#“5”/\ - 5’/.@5#)\) ) _%<pul/)aﬂ(p;w)'y§ + i(;aﬁ(s'yé = 5046676 ) (BIS)

satisfying
(") = —(0")5". (B.16)

B.3 Six dimensions

The result above can be straightforwardly generalized to other signatures in six dimensions. In
Euclidean six dimensions, gamma matrices satisfy

Y+ = 26%, (B.17)

where we set a, b run from 7 to 12, instead of 1 to 6, as the latter have been reserved for so(2,4).
With the choice,

. 1 0
AT = iy T8 12 = B , (B.18)
0 —1
the six dimensional gamma matrices are in the block diagonal form,
a_( 0 p
P)/ - < ﬁa O ) ) (B19)
satisfying the hermiticity conditions,
P = ("' (B.20)
We can further set all the 4 x 4 matrices, p®, p® to be anti-symmetric [?]
(o = =(0gas ()0 = =35, ®21)

which makes the relation, su(4) = so(6), manifest. That is, the indices, &, 5 =1,2,3,4, denote
the fundamental representation of su(4).

Note that precisely the same equations as (B.12)-(B.16) hold for the so(6) gamma matrices,
{p®, p°} after replacing p, v, o, B by a, b, &, 3, etc.
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B.4 Ten dimensions again

Using the four and six dimensional gamma matrices above, we write the ten dimensional gamma

matrices,
' =4"o~0  for m=0,1,2,3

(B.22)
r=1wy* for a =7,8,9,10,11,12.
In the above choice of gamma matrices, we have from (6.27), (B.3), (B.18)
o) — ﬁ(5) ® 7(7) 7 (B.23)
and
A=A, ®1, By =CiA,
o 0 +1 A 0 +1
B+—B®<—1 0 ) B_B+®<+1 0 ) (B.24)
A 0 -1 A 0 +1
C+_C‘®(+1 0)’ €= +®(+1 0)'
Majorana spinor is now of the form,
U5 o
v=Btw =) @t = (Bast™, (B.25)
oo

where « is the so(1, 3) spinor index and £ denote the so(6) chirality.

Further to have 10 dimensional Majorana-Weyl spinor, imposing the chirality condition, [!9¥ =
V¥, we also have

O, = py (B.26)
For the later convenience, we define ¥nq, ¢ by
Yoo = i(Cilaptia, 970 =v2*. (B.27)

The Majorana condition is equivalent to

~

Do = A%(W)ﬁd, A=iA = AT = A1 (B.28)
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B.5 Twelve dimensions

In order to make the SO(2, 4) x SO(6) isometry of AdS5 x S° geometry manifest, it is convenient
to employ the twelve dimensional gamma matrices of spacetime signature, (— — + + + + + +
+ + ++), and write them in terms of two sets of six dimensional gamma matrices, {v*}, {7*},
which we reviewed above,

I =@~  for p=1,2,3,4,5,6
(B.29)
I =1®9" for a =7,8,9,10,11,12.

In the above choice of gamma matrices, the twelve dimensional charge conjugation matrices,
C., are given by

i(FM)T:CiFMC:T:1> M:1727"'7127 Ci:< 0 1)@( 0 1),

+1 0 F1 0
(B.30)
while the complex conjugate matrices, A, read
t A
A, = (/‘é qEOA ) ® ((1) fl ) A= —ipy = —iA0 = iA_ = A= A1 (B3I)
satisfying
+(IM)T = AL, TMAL!. (B.32)
In particular, for p = 1,2, ---,6, we have
(Pt = —AprA' = p,, (P)F = —A'prA=p,. (B.33)
Now if we define the twelve dimensional chirality operator as
3 — 7(7) ® 7(7) 7 (B.34)
then
{rt3 ™} =0, C_=C, I3 A_=A,T03 (B.35)

In 2+10 dimensions it is possible to impose the Majorana-Weyl condition on spinors to have
sixteen independent complex components which coincides with the number of supercharges in
the AdSs x S° superalgebra, su(2,2|4). Up to the redefinition of the spinor by a phase factor,
there are essentially two choices for the Majorana-Weyl condition depending on the chirality,

U =4T®W¥  and ¥=UVA, =TTC,. (B.36)
Our choice will be the plus sign so that the 2+ 10 dimensional Weyl spinor carries the same chiral
indices for su(2,2) and su(4),i.e. ¥ = (1,4, ¥*%)T, while the Majorana condition relates them

as % = A%3(y)")P% which is identical to (B.28). Hence, the Majorana-Weyl spinor in 2 + 10
dimenisons can be identified as the Majorana spinor in 1 + 9 dimensions.
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C Looking for the general odd symmetry

With a Majorana-Weyl spinor, £, Ay, which may depend on 2™, we focus on the following
transformations,

§Ay = 9T € = —ifT ¥, o = %FMNI‘MNS + Ay, (C.1)

so that B B .
60 = —1EFNTMN + Ay (C.2)

Note that Ay is Lie algebra valued, while £ is not.

From
WPyt (T,T,T,) = WP bty (T,T,T,) = VPO (T, T,T,), (C.3)
and the identity (6.28), we note that the second term in (6.42) vanishes

tr (VT UT,E) = 0. (C.4)

We also get, using the Bianchi identity (6.39),
UMDy o0 = %DLFMN\II(FLMN + 2nEMTN)E + %\IIFLFMN&SFMN +UI'' D Ay
= —iDy FMN§Ay + LOTLTMN G EFyy + UTED Ay
(C.5)

Thus, semi-finally, we obtain

0L = —itr [ Fyn T TYNOLE + UTF DAy | + Ontr [FMN6 Ay +i30TN6T] . (C.6)

We first note that constant £, and constant Ay which is central in the Lie algebra lead to the
ordinary and kinetic supersymmetries

E, Ag : constant and Ay X 1yun - (C.7)

Henceforth, keeping the dimensional reduction either to Minkowskian d-dimensions, 0 <
m<d-—1d<a <09, or Euclidean d-dimensions, 1 < m < d,a =0,d+1<a <9, we set
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Ay = D,, “0, =07, and look for some possibilities of more general symmetries.

Since
FynT TYNOLE = (Fpnl'T™ 4+ 2D, @ I'T™ + D, @, I'T ™) Q€ (C.8)
we first require
r'rm™gE =0, (C.9)
or equivalently
[ ig,E = 20monE — 2Im9™E . (C.10)

It follows after multiplying I',,,,, without m,n summing,
I'o,E = 2I'0,,E +2I"9,E : no sum for m # n. (C.11)

Egs.(C.9), (C.10),(C.11) are trivial when d = 0, 1. For d > 2, summing over m # n in (C.11) we
get
(d—1)(d—4)T'0,E =0. (C.12)

Hence, ford = 2,3, d > 5,
"o, =-1"0,€ : no sum and m # n. (C.13)
* Ford = 3, d > 5, we easily conclude 0,,€ = 0, i.e. constant parameter, £.

* When d = 2, we get
On€ = —1,,,0"E : ford=2, (C.14)

so that
00, =0. (C.15)

Let 0 # 7 be the two different spacetime indices in d = 2 case. Eq.(C.9) is simply

equivalent to
(0, +1,70;)E =0. (C.16)

This can be solved easily in the diagonal basis of I',”. In the Minkowskian two-dimensions,
as ['y! is hermitian, the solution is given by the left and right modes, o & 7. On the other
hand, in the Euclidean two-dimensions, [';? is anti-hermitian and the solution involves
holomorphic functions, o & 7.

* For d = 4 we have for any m,

Om& =T &, £ =1iTipE. (C.17)

- 1
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From 0y,,,0,)€ = 0 we get an essenitally same relation as (C.13),
I'"opé. = —-1I"0,6_ : no sum and m # n. (C.18)
Hence, £_ is a constant spinor, and
E=a"T 6 +&, (C.19)

where &, , £ are constant Majorana-Weyl spinors of the opposite chiralities, corresponding
to the ordinary supersymmetry and special superconformal symmetry, respectively.

Provided the above solutions for (C.9), we are ready for the full analysis.

1. When d = 0 : IKKT matrix model.
Eq.(C.8) becomes trivial, and we natually require

T[®,, Ay] = 0. (C.20)

We need to find the algebraic solution for Ay in terms of the Lie algebra valued fields, @,
d < a < 9. Clearly, the kinetic supersymmetry transformation, i.e. Ag o 1y,y, satisfies
the above equation. In fact, we can show that this is the most general solution.

Proof
We consider the special case, &, = 0, d < a < 7. Eq.(C.20) gives

[Dg, T8 Ay] + [Pg, T?Ay] = 0. (C.21)
Multiplying ®g and taking the u(/NV) trace we get
tr ([Dg, Dg]Ag) = 0. (C.22)

Since the commutator, [®g, Py, can be arbitrary except 1,,y, we conclude that Ay
1y«~. This completes our proof.

Therefore, when d = 0, £ and Ay are simply constant Majorana-Weyl spinors correspond-
ing to the ordinary and the kinetic supersymmetries.

2. When d = 1 : BFSS matrix model.
Eq.(C.9) is trivial, and with the coordinate, 7 for d = 1, From Eq.(C.6) we require

0 =1FynlETMY9LE +TED Ay
(C.23)
=T7D.(Ay 4+ ©,I™0,E) + T’ Dy(Ay — 10,I79,E) — ©,I"070, € .

The only possible algebraic solutions are (C.7) corresponding to the ordinary and the kinetic
supersymmetries.
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3.

When d = 2.
From (C.6) we require, using (C.14), (C.15),

0 = 1FynIETMY9LE +TEDL Ay
(C.24)
=1"D, Ay +1"D,Ay + 2(D"®, — D°®,I," )0, .

We conclude again that the only possible algebraic solutions are (C.7) corresponding to the
ordinary and the kinetic supersymmetries.

4. Whend = 3,d > 5.

5.

Since £ is constant, the only possible algebraic solutions are (C.7) corresponding to the
ordinary and the kinetic supersymmetries.

When d = 4.
From (C.6) we require, using (C.19),

0 = sFunTETMNOLE+TED L Ay

(C.25)
=TEDp(Ay + 28,1 ) .
Thus the algebraic solution reads
Ay +29,M¢_ o 1y - (C.26)
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