
1 The matrix model approach to ABJM

The localized partition function of ABJM theory is

Zk(N) :=

∫
dNu dNw e−SABJM(u,w)

where

e−SABJM(u,w) := exp

[
ik

4π

N∑
i=1

(
u2i − w2

i

)] ∏
i<j sinh

2 ui−uj
2 sinh2

wi−wj

2∏
i,j cosh

2 ui−wj

2

.

The 1
6-BPS Wilson loop is given as

⟨W1⟩ =
1

Zk(N)

∫
dNu dNw e−SABJM(u,w) 1

N

N∑
i=1

eui,

⟨W2⟩ =
1

Zk(N)

∫
dNu dNw e−SABJM(u,w) 1

N

N∑
i=1

ewi.

The 1
2-BPS Wilson loop turns out to be

⟨W⟩ =
1

2
⟨W1⟩ +

1

2
⟨W2⟩.

QFT result:

⟨W1,2⟩ = 1 +
5

6
π2λ2 +O(λ4)

where λ = N
k . This can be easily reproduced from the localized

partition function by the 1/k expansion (up to the framing factor).

To obtain the large λ behavior, which is important in AdS/CFT,

we need to evaluate the integrals.
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The integrals can be done by applying the matrix model tech-

niques. To review the matrix model techniques, we start with the

Gaussian matrix model

Zg−1
s
(N) =

∫
dM exp

[
− 1

2gs
Tr(M 2)

]
(1)

where M runs over all N ×N Hermitian matrix.

M can be diagonalized as M = UΛU †. Since Tr(M 2) = Tr(Λ2),

U is a “gauge” d.o.f. To integrate U out, notice that the “metric”

Tr(dM 2) =
∑
i

dλ2
i +

∑
i<j

(λi − λj)
2|duij|2,

where U = eiu, induces the “volume form”

dM ∝
∏
i

dλi

∏
i<j

duij
√
−g,

√
−g :=

∏
i<j

(λi − λj)
2.

Therefore, (1) can be written as

Zg−1
s
(N) =

∫
dNλ e−SGauss(λ),

where

e−SGauss(λ) := exp

[
− 1

2gs

∑
i

λ2
i

]∏
i<j

(λi − λj)
2.

The observables of the Gaussian matrix model are

TrMn =
∑
i

λn
i .

The vev is given as

⟨TrMn⟩ =
1

Zg−1
s
(N)

∫
dNλ e−SGauss(λ)

∑
i

λn
i . (2)
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The evaluation of the integral can be done if N is large.

Notice that the terms in

SGauss(λ) =
1

2gs

∑
i

λ2
i −

∑
i<j

log(λi − λj)
2

are of order O(N 2) if

t := gsN = fixed.

In the planar limit (large N limit with t fixed), the saddle point

−1

t
λi +

2

N

∑
j ̸=i

1

λi − λj
= 0 (3)

dominates the integral, and the saddle point approximation be-

comes exact. The vevs (2) are given as

⟨TrMn⟩ =
∑
i

λn
i ,

where λl are the solution of (3). It is convenient to introduce

ρ(λ) :=
1

N

∑
i

δ(λ− λi)

by which

⟨TrMn⟩ =

∫
dλ ρ(λ)λn.

The “eigenvalue density” ρ(λ) contains all the information of the

planar limit.

Corrections to the saddle point approx. for large but finite N

give a 1/N 2 expansion. This is the WKB expansion if 1/N 2 is

regarded as the Planck constant.
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2 Planar limit

The saddle point equations

−1

t
λi +

2

N

∑
j ̸=i

1

λi − λj
= 0 (4)

can be interpreted as

(harmonic force) + (Coulomb repulsion) = 0.

Therefore, the eigenvalues λi are distributed around λ = 0 with a

width. Large t ⇔ broad distribution.

As N becomes large, the eigenvalues increase, but the Coulomb

repulsion becomes weak. In the planar limit,

ρ(λ) =
1

N

∑
i

δ(λ− λi) −→ a continuous function ρ(λ)

(in the sense of the distribution) with

supp{ρ} = [a, b].

The vevs are now given as

⟨TrMn⟩ =

∫ b

a

dλ ρ(λ)λn.

The task is to determine ρ(λ).

The standard tool is the resolvent defined as

v(z) :=

∫ b

a

dλ
ρ(λ)

z − λ
. (z ∈ C\[a, b])

This is the large N limit of

1

N

∑
i

1

z − λi
.
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Recall
1

x± iϵ
= P

1

x
∓ πiδ(x).

Using this identity, the resolvent can be written as

v(x± iϵ) = P

∫ b

a

dλ
ρ(λ)

x− λ
∓ πiρ(x). (x ∈ [a, b])

This implies:

• ρ(x) can be recovered from v(z) as

v(x + iϵ)− v(x− iϵ) = −2πiρ(x).

• Since the principal integral is

1

N

∑
j ̸=i

1

λi − λj
−→ P

∫ b

a

dλ
ρ(λ)

λi − λ
,

the saddle point equation (4) can be written as

1

t
x = v(x + iϵ) + v(x− iϵ). (x ∈ [a, b]) (5)

By construction, v(z) satisfies the following conditions:

• v(z) is holomorphic on C\[a, b].

• v(z) is finite at z = a and z = b.

(Otherwise, ρ(λ) is delta-function-like at z = a, b.)

• v(z) behaves asymptotically

v(z) =
1

z

∫ b

a

dλ ρ(λ) +O(z−2) =
1

z
+O(z−2).

These are enough to determine v(z) uniquely.
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To solve (5), introduce ω(z) such that

v(z) = ω(z)
√

(z − a)(z − b).

Then ω(z) satisfies
x

it
√
|(x− a)(x− b)|

= ω(x + iϵ)− ω(x− iϵ).

This implies that

ω(z) =
1

t

∫ b

a

dλ

2π

λ

z − λ

1√
|(λ− a)(λ− b)|

is a solution. The integral can be done as follows:∫ b

a

dλ

2π

λ

z − λ

1√
|(λ− a)(λ− b)|

=
1

2

∫
C

dλ

2πi

λ

z − λ

1√
(λ− a)(λ− b)

=
1

2

[
−
∮
z

+

∫
C∞

]
dλ

2πi

λ

z − λ

1√
(λ− a)(λ− b)

=
1

2

z√
(z − a)(z − b)

− 1

2
.

Therefore, we obtain

v(z) =
1

2t
z − 1

2t

√
(z − a)(z − b).

This is the right solution. The asymptotic behavior is

v(z) =
a + b

4t
+

(b− a)2

16tz
+O(z−2).

The correct behavior is obtained iff

−a = b = 2
√
t.

7



The eigenvalue density is therefore

ρ(λ) =
1

2πt

√
4t− λ2.

Indeed, this satisfies ∫ +2
√
t

−2
√
t

dλ ρ(λ) = 1

as expected from the definition.

The uniqueness of the solution:

Suppose there exists another solution ṽ(z). The difference δv(z) :=

ṽ(z)− v(z) satisfies

0 = δv(x + iϵ) + δv(x− iϵ).

Define δω(z) such that

δv(z) = δω(z)
√

(z − a)(z − b).

Then δω(z) satisfies

δω(x + iϵ) = δω(x− iϵ),

that is, δω(z) is an entire function. The asymptotic behavior of

δv(z) around infinity implies that δω(∞) = 0. Liouville’s theorem

then implies that δω(z) = 0. Therefore, the solution is unique.

8



3 Chern-Simons-matter matrix models

Let us apply the matrix model technique to CSM. The simplest

example is pure Chern-Simons theory. The partition function is

Z =

∫
dNu exp

[
ik

4π

∑
i

(ui)
2

]∏
i<j

(
sinh

ui − uj
2

)2

.

The saddle point equations are

k

2πi
ui =

∑
j ̸=i

coth
ui − uj

2
.

Introducing xi := eui makes the equations simplified.

k

2πiN
log xi =

1

N

∑
j ̸=i

xi + xj
xi − xj

. (6)

These resembles (4). The ’t Hooft coupling t is defined as

t =
2πiN

k
.

We define the resolvent v(z) in this case as

v(z) :=
t

N

∑
i

z + xi
z − xi

. (7)

Then (6) can be written as

2 log x = v(x+) + v(x−), (x ∈ [a, b]) (8)

The vev of the Wilson loop is given as

⟨W ⟩ =
1

N

∑
i

eui =
1

N

∑
i

xi.

This appears in the expansion of v(z):

v(z) = t + 2t⟨W ⟩z−1 +O(z−2).
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The equation (8) can be solved in the same way. Introduce ω(z)

such that

v(z) = ω(z)
√

(z − a)(z − b).

Then, ω(z) satisfies

2 log x

i
√

|(x− a)(x− b)|
= ω(x+)− ω(x−).

This implies that

ω(z) =

∫ b

a

dx

2π

2 log x

z − x

1√
|(x− a)(x− b)|

is a solution. This integral can be done and the result is

ω(z) =
1√

(z − a)(z − b)
log

(
z +

√
ab−

√
(z − a)(z − b)

)2

a + b + 2
√
ab

.

Therefore, the resolvent v(z) is

v(z) = 2 log
z +

√
ab−

√
(z − a)(z − b)

√
a +

√
b

.

The definition (7) implies −v(0) = v(∞) = t which then implies

ab = 1, t = 2 log

√
a +

√
b

2
.

Recall that the physical t is purely imaginary. Therefore, a must

be a complex number. The large N
k corresponds to the large phase

of a.
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The expansion of v(z) gives

2t⟨W ⟩ =
1

2

(√
b−

√
a
)2

.

The finite N result for ⟨W ⟩ is known:

⟨W ⟩ = eiϕ · 1

N

sin πN
k

sin π
k

.

The phase eiϕ is determined by the “framing.” In the planar limit,

⟨W ⟩ → eiϕ
sin πN

k
πN
k

= 2eiϕ
sinh 2

t

t
.

The matrix model result is

⟨W ⟩ =
1

4t

(√
b−

√
a
)2

=
1

4t

[(√
b +

√
a
)2

− 4

]
=

et − 1

t
= e

t
2
sinh t

2

t
.

This is the correct result with ϕ = πN
k .

Note that |⟨W ⟩| is bounded from above for large N
k .
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The calculation can be extended to ABJM theory. There are

two eigenvalues ui, wi. Their distributions are encoded into two

resolvents v1(z), v2(z), satisfying

2 log x = v1(x+) + v1(x−)− 2v2(x), (x ∈ [a1, b1])

−2 log(−y) = v2(y+) + v2(y−)− 2v1(y). (y ∈ [a2, b2])

This can be simplified by introducing

ω(z) := v1(z)− v2(z).

Then the equations become

2 log x = ω(x+) + ω(x−),

2 log(−y) = ω(y+) + ω(y−).

Therefore, ω(z) is a “two-cut” solution of pure CS matrix model.

Explicitly,

ω(z) = log

√
(z − a2)(z − b2)−

√
(z − a1)(z − b1)√

a1 + b1 − a2 − b2
.

The extension to ABJ theory is trivial, but the extension to GT

theory is not. In the latter case, ω(z) satisfies

2κ1 log x = ω(x+) + ω(x−),

−2κ2 log(−y) = ω(y+) + ω(y−).

ω(z) has an integral formula

ω(z) = κ1

∫
C1

dx

2πi

1

z − x

log x

s(x)
− κ2

∫
C2

dx

2πi

1

z − x

log(−x)

s(x)
,

where

s(z) :=
√

(z − a1)(z − b1)(z − a2)(z − b2),

but performing these integrals looks hopeless.
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4 The derivative of resolvents

The calculations so far are quite tedious. For GT theory, the re-

sulting resolvent is not explicit enough.

Observation: The derivatives of the resolvents are simple.

• Pure CS:

zv′(z) = 1− z − 1√
(z − a)(z − b)

.

• ABJM:

zω′(z) = 1− z2 − 1

s(z)
.

What happened?

The saddle point equations are also simplified.

• Pure CS:

2 = x+v
′(x+) + x−v

′(x−). (9)

• ABJM:

2 = x+ω(x+)+x−ω(x−), 2 = y+ω(y+)+y−ω(y−). (10)

log x in the LHS disappears.

The differentiation does not lose information.

v(z) =

∞∑
n=0

cnz
−n ⇒ zv′(z) = −

∞∑
n=1

ncnz
−n.

The constant term c0 = t can be recovered as

t =
1

2

∫ ∞

0

dz v′(z).
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Let us solve (9). Let

zv′(z) = 1 +
f (z)√

(z − a)(z − b)
.

Then, f (z) satisfies

f (x+) = f (x−).

Therefore, f (z) is holomorphic. The asymptotic behavior zv′(z) =

O(z−1) implies

f (z) = −z + c.

The behavior at the origin zv′(z) = O(z) implies c = 1.

Next, let us solve (10). Let

zω′(z) = 1 +
f (z)

s(z)
.

Then f (z) satisfies

f (x+) = f (x−), f (y+) = f (y−).

Therefore, f (z) is holomorphic. The behavior at z = 0,∞ implies

f (z) = −z2 + cz + 1.

The leading coefficients of zω′(z) in the expansions are proportional

to ⟨W ⟩. This implies c = 0.

v′(z) contains the same information as v(z) but the former is

much simpler than the latter. In particular, v′(z) is algebraic.
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For GT theory, the life is not such simple, but better anyway.

zω′(z) has an integral formula

zω′(z) =
1

2
f (z) +

1

2
f (z−1),

where

f (z) = κ1

∫
C1

dξ

2πi
Ω(z, ξ)− κ2

∫
C2

dξ

2πi
Ω(z, ξ),

Ω(z, ξ) =
1

z − ξ

zs(ξ)

ξs(z)
.

Note that f (z) is given in terms of the elliptic integrals. Therefore,

zω′(z) is given in terms of 3 standard elliptic integrals.

zω′(z) = −κ2

[
1− z2 − 1

s(z)

]
− κ1 + κ2

2

z2 − 1

s(z)
F (z), (11)

where F (z) is given in terms of K(k), E(k) and Π1(z, k). Due to

Π1(z, k), zω
′(z) is not algebraic.

The vev of a Wilson loop in GT theory can be obtained from

(11). The expansion gives

zω′(z) = −2 (t1⟨W1⟩ + t2⟨W2⟩) z−1 +O(z−2).

Note that this combination corresponds to the half-BPS Wilson

loops for ABJM theory. One obtains

t1⟨W1⟩+ t2⟨W2⟩ = −κ2

4
(a1 + b1 + a2 + b2) + (elliptic integrals).
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The same technique can be applied to variants of ABJM theory

in which the # of bi-fundamental matters is n ̸= 2.

The saddle point equations are

2 log x = v1(x+) + v1(x−)− nv2(x), (x ∈ [a1, b1])

−2 log(−y) = v2(y+) + v2(y−)− nv1(y). (y ∈ [a2, b2])

It turns out that v′1(z) and v′2(z) are written in terms of the theta

functions. The elliptic functions appear due to the presence of two

cuts. The vevs of the Wilson loops can be obtained explicitly in

terms of the theta functions.

Open issues

• Generalization to CSM matrix models with more nodes.

• Systematic study of the large ’t Hooft coupling limit.

• N = 2 CSM matrix models.

• etc.
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