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1 S3 Partition function of ABJM theory

The partition function of the ABJM theory [1] is known to be written as the following 2N

dimensional integration [2]

Z(N) =
1

(N !)2

∫
dNλdN λ̃eπik

∑N
i=1(λ

2
i−λ̃2

i )Z1-loop, (1.1)

with

Z1-loop =

∏
i<j(2 sinh π(λi − λj))

2
∏

i<j(2 sinh π(λ̃i − λ̃j))
2∏

i,j(2 cosh π(λi − λ̃j))2.
(1.2)

Below we compute the partition function, or the free energy F = − logZ in the limit N → ∞,

through two different ways: (i) saddle point approximation [3] and (ii) Fermi gas formalism [4].
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1.1 Saddle point approximation for N → ∞ with finite k

First rewrite the partition function (1.2) as

Z(N) =

∫
dNλdN λ̃e−f(λ,λ̃) (1.3)

with

f(λ, λ̃) = −πik
N∑
i=1

(λ2i − λ̃2i )−
∑
i<j

log(2 sinhπ(λi − λj))
2 −

∑
i<j

log(2 sinhπ(λ̃i − λ̃j))
2

+
∑
i,j

log(2 cosh π(λi − λ̃j))
2. (1.4)

In the limit N → ∞, we can approximate the partition function as

Z(N) ≈ e−f(λsaddle,λ̃saddle), (1.5)

where the subscript “saddle” means that we choose the saddle point configuration, which is the

solution to the following saddle point equations

∂f

∂λi
= 0,

∂f

∂λ̃i
= 0. (1.6)

In the ’t Hooft limit k,N → ∞ with N/k kept finite, all the terms in the free energy f (1.4)

scale as O(N2) for generic values λi, λ̃i of O(1). This implies that we can solve the saddle point

equations for some (λi, λ̃i) which are of O(1).

In the eleven dimensional limit N → ∞ with k kept finite, the same choice does not

guarantee the balancing of terms. Instead we have to pose the following ansatz

λi =
√
Nx(i/N) + y(i/N), λ̃i =

√
Nx(i/N)− y(i/N). (1.7)

Substiuting these ansatz to (1.4) we indeed find that the first terms and the terms coming from

Z1-loop have the same scaling O(N3/2) [3, 5]:

f = 4πN3/2H +O(N),

H =

∫ 1

0

ds

[
−ikxy + 2

ẋ

( 1

16
+ y2

)]
, (1.8)

where s = i/N ∈ (0, 1) and we have assumed that Re(x) is monotonically increasing function

in s in the derivation.

Now we can determine the saddle point solution by solving the extremization problem of H

δH

δx
= 0 −→ −iky + d

ds

[ 2
ẋ2

( 1

16
+ y2

)]
= 0,
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∂H

∂x(s = 0, 1)
= 0 −→ − 2

ẋ2

( 1

16
+ y2

)∣∣∣
s=0,1

= 0,

δH

δy
= 0 −→ −ikx+ 4y

ẋ
= 0, (1.9)

instead of expanding and solving the original saddle point equations (1.6). The solution to (1.9)

is

x(s) = as+ b, y(s) =
ika(as+ b)

4
, (a =

√
2/k, b = −1/

√
2k) (1.10)

with which the free energy (1.4) is evaluated as

f =
π
√
2k

3
N3/2 +O(N). (1.11)

The saddle point approximation itself is available for various kinds of matrix model ob-

tained by the localization for general theories. However the construction of the solution is not

straightforward but rather heuristic, as it requires us to pose an non-trivial ansatz like (1.7).

This is in contrast to the Fermi gas formalism. Though it is applicable only to some special

theories, once we obtain the Fermi gas formalism for the partition function it is straightforward

to compute the free energy in the large N limit. Using the Fermi gas formalism we can also

compute the 1/N corrections to the free energy easily.

2 Fermi gas formalism

Using the cauchy determinant formula (see appendix A for derivation)∏
i<j(xi − xj)

∏
i<j(yi − yj)∏

i,j(xi − yj)
= (−1)

N(N−1)
2 det

i,j

( 1

xi − yj

)
, (2.1)

we can rewrite the partition function as

Z =
1

(N !)2

∫ (dx
2π

)N(dy
2π

)N[
det
i,j

O1(xi, yj)
][
det
i,j

O0(yi, xj)
]
, (2.2)

with

O1(x, y) = e
i

4πk
x2 1

2k cosh x−y
2k

e−
i

4πk
y2 , O0(x, y) =

1

2k cosh x−y
2k

. (2.3)

Now we remind some quantum statistical mechanics: a state of N fermions of same kind is

written, by taking the anti-symmetric property into account, as

|{x1, x2, · · · , xN}⟩ =
1√
N !

∑
σ∈SN

(−1)σ
⊕
i

|ψi = xσ(i)⟩, (2.4)
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where the overall factor 1/
√
N is determined by the normalization:

⟨{x1, x2, · · · , xN}|{y1, y2, · · · , yN}⟩ =
∏
i

⟨xi|yi⟩. (2.5)

Then each determinant in (2.2) can be regarded as the matrix element of Ôs ⊗ Ôs ⊗ · · · ⊗ Ôs

between |{x1, x2, · · · , xN}⟩ and |{y1, y2, · · · , yN}⟩, while each set of the N integrations multi-

plied with 1/N ! can be regarded as the insertion of unity. Hence the partition function is in

the same form as the partition function of N particle ideal Fermi gas

Z(N) =
1

N !

∫ (dx
2π

)N
det
i,j

⟨xi|ρ̂|xj⟩, (2.6)

with the one-particle Hamiltonian

ρ̂ = e−Ĥ = Ô1Ô0. (2.7)

Here we have defined the one-particle operators Ôs by ⟨x|Ôs|y⟩ = Os(x, y) with |x⟩, |y⟩ one-

particle position eigenstates. We can find that Ô can be written explicitly as

Ô0 =
1

2 cosh P̂
2

, Ô1 =
1

2 cosh P̂+Q̂
2

. (2.8)

where Q̂ and P̂ are the canonical position/momentum operators obeying [Q̂, P̂ ] = iℏ with

ℏ = 2πik. (2.9)

For later convenience we shall redefine P̂ + Q̂ as Q̂ so that

ρ̂ =
1

2 cosh Q̂
2

1

2 cosh P̂
2

. (2.10)

2.1 Free energy in large N limit

Suppose the eigenvalues of the 1-particle Hamiltonian Ĥ are 0 ≤ E1 ≤ E2 ≤ · · · . Since any

two fermions cannot occupy the same state, the lowest total energy is realized by the occupying

the first N states counted from the ground state, hence the partition function is

Z(N) ≈ exp
[
−

N∑
i=1

Ei

]
. (2.11)

If we introduce n(E), the “number of 1-particle states with Ĥ ≤ E” as we often do in the

exercises on the quantum statistical mechanics, then

N∑
i=1

Ei =

∫ Emax

0

dE
dn

dE
E, (n(Emax) = N). (2.12)
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We can compute the large E expansion of n(E) by using the small k (semiclassical) expansion

as [4]

n(E) = CE2 + n0 +O(e−E), C =
2

π2k
, n0 = − 1

3k
+

k

24
. (2.13)

Noticing the fact H ∼ (|Q|+ |P |)/2 for |Q|, |P | ≫ 1, it is not difficult to understand the leading

part of n(E) as the phase space volume inside the polygon

n(E) ∼
∫

|Q|+|P
2

≤E

dQdP

2πℏ
= CE2. (2.14)

On the other hand, the sub-leading part comes from the deviation of the actual Fermi surface

from the approaching polygon which is significant only around the vertices of the polygon (see

figure 1).
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Figure 1: Red: the surface of H = E with H(Q,P ) ∼ log(2 coshQ/2) + log(2 coshP/2); Blue:

the polygon |Q|/E + |P |/2 = E to which H = E approaches in the limit E → ∞.

Hence the free energy in the large N limit is computed by (2.12) as

F = − logZ ≈ 2

3
C− 1

2N
3
2 , (2.15)

which coincide with the result obtained from the saddle point approximation (1.11).
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3 Perturbative corrections in 1/N

In this section we explain the determination of the all order perturbative corrections in 1/N to

the large N free energy (2.15). Our goal is to show the following expression

F = − logZpert + (non-perturbative in 1/N), (3.1)

where

Zpert = eAC− 1
3 Ai[C− 1

3 (N −B)] (3.2)

with A some constant independent of N ,

C =
2

π2k
, B =

1

3k
+

k

24
, (3.3)

and the Airy fuction given by the following integration

Ai(x) =

∫ i∞

−i∞

dt

2π
e

1
3
t3−tx. (3.4)

3.1 Grand potential J(µ) for large µ

First we introduce the auxiliary parameter µ called the chemical potential and define the grand

potential J̃(µ) by

eJ̃(µ) = 1 +
∑
N≥1

eµNZ(N) = eJ̃(µ). (3.5)

The grand potential is written as [4]

J̃(µ) = Tr log(1 + eµρ̂). (3.6)

Then, from the large E expansion of the number of states n(E) we can evaluate the large µ

expansion of the grand potential J̃(µ) as follows.

J̃(µ) =

∫ ∞

0

dE
dn

dE
log(1 + eµ−E)

=
[
n(E) log(1 + eµ−E)

]E=∞

E=0
+

∫ ∞

0

dEn(E)
eµ−E

1 + eµ−E

=

∫ ∞

0

dEn(E)
eµ−E

1 + eµ−E
. (3.7)
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This convert each term in the large E expansion of the number of states n(E) (2.13) in linear

manner, as

n(E) = CE2 + · · · −→ J̃(µ) = −2C Lis(−eµ) + · · ·
n(E) = n0 + · · · −→ J̃(µ) = n0 log(1 + eµ) + · · · , (3.8)

where the polylogarithm function is defined as

Lis(x) =
∞∑
n=1

xn

ns
(3.9)

and we have used the following integration formula∫ ∞

0

dEEs eµ−E

1 + eµ−E
= −Γ(s+ 1)Lis+1(−eµ). (3.10)

If we assume |Im(µ)| < πi the polylogarithm functions can be expanded for large µ as

Li3(−eµ) = −1

6
µ3 − π2

6
µ+O(e−µ), log(1 + eµ) = µ+O(e−µ), (3.11)

hence we obtain

J̃(µ) =
C

3
µ3 +

(
n0 +

π2C

3

)
µ+ A+O(e−µ). (3.12)

Note that, besides the non-perturbative corrections O(e−µ) we cannot determine the con-

stant A from the parturbative expansion of n(E) in 1/E (2.13) alone. Indeed, if we have

n(E) = · · ·+ e−αE, for example, then this term contribute to the large µ expansion of J̃(µ) as

n(E) = e−αE + · · · −→ J̃(µ) =
∞∑
ℓ=1

(−1)ℓ−1 eℓµ

ℓ+ α
+ · · · = 1

α
+O(e−µ) + · · · . (3.13)

To obtain the exact value of A we need more complicated analysis. Here we would like to just

quote the final result: [6]

A(k) =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞

0

dx
x

ekx − 1
log(1− e−2x)

=
2ζ(3)

π2k
− k

12
− π2k3

4320
+

π4k5

907200
− π6k7

50803200
+O(k9), (3.14)

where the second line is the result we can obtain by the small k expansion of the grand potential

[4], with which the first line is understood as the resummation.
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3.2 All order perturbative corrections in 1/N

Since the inverse transformation J̃(µ) → Z(N) to (3.5) is

Z(N) =

∫ iπ

−iπ

dµ

2πi
eJ̃(µ)−µN , (3.15)

now we have almost reproduced the Airy function (3.2), except the discrepancy in the integra-

tion domains and the discrepancy in the integrand by the multiplication of eO(e−µ).

First consider the difference in the integration domain. This is resolved by introduce the

modified grand potential J(µ)

eJ̃(µ) =
∑
n∈Z

eJ(µ+2πin). (3.16)

with which

Z(N) =

∫ i∞

−i∞

dµ

2πi
eJ(µ)−µN . (3.17)

The difference between the original grand potential J̃ and the modified grand potential J(µ)

can be evaluated as follows. First rewrite (3.16) as

J̃(µ) = J(µ) + Josc(µ), (3.18)

with

Josc(µ) = log
[
1 +

∑
n ̸=0

eJ(µ+2πin)−J(µ)
]
. (3.19)

Now suppose

J(µ) =
C

3
µ3 +Bµ+ A+O(e−µ), (3.20)

then, since

J(µ+ 2πin)− J(µ) = C
(
2πiµ2 + (2πi)2µ+

(2πi)3

3

)
+B(2πi) +O(e−µ)

= −8n2µ

k
+ i(2πCµ2 + 2πB) +O(e−µ), (3.21)

we find that the large µ expansion of Josc(µ) consist only of the non-perturbative effects:

Josc = log(1 +
∑
n ̸=0

e−
8n2µ

k
+···) = O(e−µ/k). (3.22)
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Hence the assumption (3.20) is indeed consistent, and we obtain

Z(N) =

∫ i∞

−i∞

dµ

2πi
eJpert(µ)+O(e−µ)−µN (3.23)

with Jpert the perturbative part of the large µ expansion of the modified grand potential.

Jpert(µ) =
C

3
µ3 +Bµ+ A. (3.24)

Second let us consider the deviation eO(e−µ) in the integrand (3.23). In the large N limit,

the effect of this term can be evaluated by a “probe approximation” as follows. First let us

neglect this term, then the integration (3.23) can be evaluated for large N by the saddle point

approximation: ∫ i∞

−i∞

dµ

2πi
eJpert(µ)−µN ≈ eJpert(µ∗)−µ∗N (3.25)

with

d

dµ
(Jpert − µN) = 0 −→ µ∗ =

√
N −B

C
. (3.26)

Now suppose J have an additional non-perturbative term ae−ωµ. Although this insertion mod-

ifies the saddle point equation (3.26) by (−aω + ∂µa)e
−ωµ, we can neglect this effect as the

saddle point value µ∗ is large. Hence we can evaluate the effect of eO(e−µ) by using the same

saddle as ∫ i∞

−i∞
eJpert(µ)−µNeae

−ωµ ≈ Zpert(N) · eae−ω
√

(N−B)/C

, (3.27)

where

Zpert =

∫ i∞

−i∞

dµ

2πi
eJpert(µ)−µN = eAC− 1

3 Ai[C− 1
3 (N −B)]. (3.28)

Hence the non-perturbative effects O(e−µ) in large µ in J(µ) correspond to the non-perturbative

effects in large N in the free energy F

J = Jpert + ae−ωµ −→ F − (− logZpert) ≈ ae−ω
√

N−B
C . (3.29)

Therefore we have finally obtained the Airy function expression for the all order perturbative

corrections in 1/N to the free energy (3.1).
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4 M2-branes on more general orbifold

The Fermi gas formalism exist for more general 3d U(N) circular quiver superconformal Chern-

Simons theories. An example is the N = 4 U(N) circular quiver superconformal Chern-Simons

theory with the levels U(N)k×U(N)q−1
0 ×U(N)−k×U(N)p−1

0 [7] called the (q, p)k model. This

theory corresponds to the AdS4 × S7/Γq,p,k spacetime where

RAdS = (32π2qpkN)
1
6 , (4.1)

and S7/Γq,p,k is the radial section of (C2/Zq × C2/Zp)/Zk, where the orbifolds act as

S7 =

{
(z1, z2, z3, z4)

∣∣∣∣∣
4∑

i=1

|zi|2 = R2
AdS

}
,

Zq :(z1, z2, z3, z4) → (e
2πi
q z1, e

2πi
q z2, z3, z4),

Zp :(z1, z2, z3, z4) → (z1, z2, e
2πi
p z3, e

2πi
p z4),

Zk :(z1, z2, z3, z4) → (e
2πi
qk z1, e

2πi
qk z2, e

2πi
pk z3, e

2πi
pk z4). (4.2)

From the localization technique the partition function of the (q, p)k model is given as

Z(N) = (−1)
(q+p)N(N−1)

2

q+p∏
a=1

( 1

N !

∫ N∏
i=1

dλ
(a)
i

)
eπik

∑N
i=1(λ

(1)2
i −λ

(q+1)2
i )

×
q+p∏
a=1

∏
i<j 2 sinh π(λ

(a)
i − λ

(a)
j )
∏

i<j 2 sinh π(λ
(a+1)
i − λ

(a+1)
j )∏

i,j 2 cosh π(λ
(a)
i − λ

(a+1)
j )

, (4.3)

which can be rewritten into the Fermi gas partition function (2.6) with one-particle Hamiltonian

ρ̂ = e−Ĥ =
( 1

2 cosh Q̂
2

)q( 1

2 cosh P̂
2

)p
. (4.4)

The large E expansion of the number of state n(E) for this theory is [4, 8]

n(E) = Cq,pE
2 + n0q,p +O(e−E) (4.5)

with

Cq,p =
2

π2qpk
, n0q,p = − 1

6k

(p
q
+
q

p

)
+
kqp

24
. (4.6)

and the large µ expansion of the grand potential is

J(µ) =
Cq,p

3
µ3 +Bq,pµ+ Aq,p +O(e−µ), Bq,p = n0q,p +

π2Cq,p

3
(4.7)

with Aq,p observed to be written in terms of the A in the ABJM case (3.14) as

Aq,p =
p2A(qk) + q2A(pk)

2
. (4.8)
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5 Membrane instantons in k → 0 limit

Finally let us evaluate the non-perturbative effects. For this purpose we need to evaluate the

grand potential J̃(µ) more exactly. Such a computation is extremely difficult, except in the

limit k → 0. Here we would like to consider the (q, p)k model, not the simpest ABJM case, to

keep some orbifold-dependence of the non-perturbative effect, which will help us to argue the

gravitational interpretation of these effects.

First we rewrite the grand potential (3.6) in an integration of an auxiliary parameter t [9]

J =

∫ ϵ+i∞

ϵ−i∞

dt

2πi

π

t sinπt
Z(t)etµ (5.1)

where

Z(t) = Trρ̂t. (5.2)

If we assume Re(µ) < 0, we can pinch the contour to surround the right half of the complex

plane (Re(t) > ϵ) as eµt → 0 for Re(t) → ∞. Hence we can evaluate the integration by

collecting the residues therein:

Re(µ) < 0 −→ J =
∞∑
n=1

Res
[ π

t sin πt
Z(t)etµ, t→ n

]
(5.3)

where we have assumed that Z(t) have no poles in Re(t) > 0. Hence the integration indeed

reproduce the infinite sum coming from the expansion of log(1 + eµρ̂) (3.6).

Now assume µ > 0. Then the integration can be evaluated by pinching the contour opposite

way, hence we obtain

Re(µ) > 0 −→ J =
∞∑
ta

Res
[
− π

t sinπt
Z(t)etµ, t→ ta

]
, (5.4)

where the overall minus sign comes from the orientation of the integration contour and ta are

the poles of the integrand in Re(t) ≤ 0. Therefore we can obtain all the non-perturbative

effects by computing Z(n), continuing its expression n ∈ N → n ∈ R and identifying its pole

structures.

In the classical limit k → 0, the computation of Z(n) is straightforward and we obtain

Z(n) =
1

ℏ
Z0(n) +O(ℏ),

Z0 =

∫
dQdP

2π

( 1

2 cosh Q
2

)q( 1

2 cosh P
2

)p
=

1

2π

Γ(nq
2
)2Γ(np

2
)2

Γ(nq)Γ(np)
. (5.5)

11



This function indeed have no poles in Re(t) > 0, hence our strategy (5.3) works.

The poles of the integrand in (5.3) in Re(t) ≤ 0 are

t = 0,

t = −2ℓ

q
, (ℓ = 1, 2, · · · )

t = −2ℓ

p
, (ℓ = 1, 2, · · · )

t = −ℓ. (ℓ = 1, 2, · · · ) (5.6)

The last three lines says that there are three kinds of the non-perturbative effects e−2ℓµ/q, e−2ℓµ/p

and e−ℓµ.

From the gravity side, the non-perturbative effect can be interpreted as a closed membrane

winding on S7/Γq,p,k (see figure 2). For example, according to the inverse transformation (3.29)

AdS4
S7/Γq,p,k

AdS4
S7/Γq,p,k

Figure 2: Left: closed M2-brane without winding (red line); Right: closed M2-brane wind-

ing on some 3-cycle in S7/Γq,p,k, which looks like zero dimensional object in AdS4 spacetime

(instanton).

the non-perturbative effect of e−2µ/q corresponds in the free energy to

F non-pert = (· · · ) · e
− 2

q

√
N−Bq,p

Cq,p . (5.7)

Using the explicit expression of Cq,p (4.6), the exponent can be expressed in terms of RAdS (4.1)

as (we temporary neglect the shift B)

2

q

√
N −Bq,p

Cq,p

∼ π

q

√
2qpkN = TM2 ·R3

AdS ·
π2

q
(5.8)

where TM2 is the tension of the M2-brane TM2 = 1/(2π)2. As the coefficient of TM2 in the

exponent indeed completely coincides with the volume of RP3/Zq (RP3 = {(z1, z2, z3, z4) ∈
S7/Zk|z1 = z∗3 , z2 = z∗4}). We call such effect as the “instantons”. On the other hand, the

gravitational interpretation for the coefficient in front of the exponent is still obscure.
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From the residues of these poles we obtain

J(µ) =
1

ℏ
J0(µ) +O(ℏ),

J0 = Jpert
0 + Jnp

0 , (5.9)

with Jpert
0 the perturbative part coming from the residue at t = 0

Jpert
0 =

4

3πqp
µ3 +

π(4− q2 − p2)

3qp
µ+

2(q3 + p3)ζ(3)

πqp
, (5.10)

and Jnp
0 the contributions from the other poles

Jnp
0 =

∞∑
ℓ=1

aℓe
− 2ℓµ

q +
∞∑
ℓ=1

bℓe
− 2ℓµ

p +
∞∑
ℓ=1

cℓe
−ℓµ, (5.11)

where

aℓ =

(
2ℓ

ℓ

)
1

ℓ sin 2πℓ
q

Γ(−pℓ
q
)2

Γ(−2pℓ
q
)
,

bℓ =

(
2ℓ

ℓ

)
1

ℓ sin 2πℓ
p

Γ(− qℓ
p
)2

Γ(−2qℓ
p
)
,

cℓ =
(−1)ℓ−1

2πℓ

Γ(− qℓ
2
)2Γ(−pℓ

2
)2

Γ(−qℓ)Γ(−pℓ)
. (5.12)

Interestingly, the coefficients of the instanton sometimes diverges. We can see that a diver-

gence occurs at the instanton number ℓ such that its instanton exponent is included in either

of the other two series of the instantons. For example, aℓ diverges at ℓ = q where the instanton

exponent is e−2µ, which is included in the second series {e−2ℓµ/p}∞ℓ=1 (ℓ = p) as well as the third

series {e−ℓµ}∞ℓ=1 (ℓ = 2). The divergence simultaneously occurs in these instantons with the

same exponent and completely cancel together to give a finite coefficient in total. Nevertheless

the remaining coefficient after the pole cancellation have non-trivial µ depenence:

instnaton coefficient ∼ O(µ#), (5.13)

with # the number of species contribute to the pole cancellation. As this is reflected to the

coefficient of the corresponding non-perturbative effect in the free energy as well

F non-pert = · · ·+O(N#/2) · e−TM2·vol(M2), (5.14)

hopefully the structure of divergence and cancellation will help us to understand the instnaton

coefficient in gravity side in future.
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A Proof of Cauchy determinant formula

Proof goes as induction. First consider the case of N = 1. Then
∏

i<j(xi−xj) =
∏

i<j(yi−yj) =
1 and

∏
i,j(xi − yj) = (x1 − y1) and the formula (2.1) trivially follows. To proof the formula for

N ≥ 2, let us rewrite (2.1) as∏
i<j

(xi − xj)
∏
i<j

(yi − yj) = (−1)
N(N−1)

2

∏
i,j

(xi − yj) det
i,j

1

xi − xj
. (A.1)

If we regard both sides as functions of x1, then both of them are polynomials of degree N − 1.

Moreover, since the left-hand side vanishes at x1 = xi (i = 2, 3, · · · , N) and so does the right-

hand side (because i-th degenerate with the 1st row when x1 = xi), these two polynomials are

written as

left-hand side = aL

N∏
i=2

(x1 − xi)

right-hand side = aR

N∏
i=2

(x1 − xi). (A.2)

Hence what we have to do to prove (2.1) for rank N is to show aL = aR. From (A.1) aL and

aR are written as

aL =
∏

2≤i<j

(xi − xj)
∏
i<j

(yi − yj),

aR =
∏
i≥2

∏
j

(xi − yj) lim
x1→∞

x1 det
i,j

1

xi − yj
. (A.3)

The limit in aR can be computed as

x1 det
i,j

1

xi − yj
= det


x1

x1−y1

x1

x1−y2
· · · x1

x1−yN
1

x2−y1
1

x2−y2
· · · 1

x2−yN
...



→
x1→∞

det


1 1 · · · 1
1

x2−y1
1

x2−y2
· · · 1

x2−yN
...


↓ subtract (1st row)× (xi − y1)

−1 from i-th row

= det


1 1 · · · 1

0 ( 1
x2−y2

− 1
x2−y1

) · · · ( 1
x2−yN

− 1
x2−y1

)
...


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=
∏
i≥2

1

xi − y1

∏
j≥2

(yj − y1) det
2≤i≤N
2≤j≤N

1

xi − yj
(A.4)

Hence the condition aL = aR is identical to

aL = aR ⇐⇒
∏

2≤i<j(xi − xj)
∏

2≤i<j(yi − yj)∏
i,j≥2(xi − yj)

= (−1)
(N−1)(N−2)

2 det
2≤i,j≤1

1

xi − yj
, (A.5)

which follows if (2.1) for rank N − 1 is true. Since (2.1) is true for rank N = 1, we conclude

that (2.1) is true for general N ≥ 2.
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