
Role of Dense Matter 
in Supernova

Kyujin Kwak
UNIST

December 1, 2018
APCTP HaPhy Meeting @Seoul



Stellar Evolution

Pre-supernova at the end 
of the massive star 

evolution
http://burro.astr.cwru.edu

www.atnf.csiro.au



On the Way to Supernova Explosion

ü Inner core (about 0.5 M¤) contracts homologously.
ü Size of inner core weakly depends on the pre-SN 

structure.
ü Outer core falls supersonically.
ü Central region exceeds nuclear saturation density, 

which leads to bounce depending of equation of 
state. Alternatively, it collapses into a black hole.

ü Bouncing results in shock wave that forms near    
the edge of inner core. 

(From Introduction of Pejcha  & Thomson 2015. See 
the references therein.)

Figure from www.researchgate.net. 



ü Shock wave is stalled by losing energy to dissociate iron.
ü Standing accretion shock forms through the balance between neutrino        

emission from proto-neutron star (PNS) and infalling matter from outer core.
(From Introduction of Pejcha  & Thomson 2015. See the references therein.)

Slide from George Raffelt’s presentation 
(slideplayer.com)  



Uncertainties in Supernova Simulations

• Uncertain physics
• Neutrino self-interactions including oscillation at high luminosity
• Equation of state for dense (nuclear/quark) matter that affects the 

emissivity and opacity of neutrino transport
• Other mechanisms (e.g., rotational energy)

• Technical (numerical) challenges
• Proper implementation of general relativity 
• 3D simulations with neutrino radiative transfer
• Other effects (e.g., inclusion of magnetic field)



EoS for SN Simulations

• EoS for (cold) neutron star
• At beta equilibrium and T ≈ 0  

• A wider range (general purpose EoS)
• 0 ≤ T ≤ 100 MeV
• 104 g/cm3 ≤ ρ ≤ 1015 g/cm3

• 0 ≤ Ye ≤ 0.6

• Needs to cover gaseous nuclei to uniform nuclear matter
• Mixture of nuclei and nucleon
• Phase transition



Handling the Mixture

• Thomas–Fermi approximation
• Nucleus at the center (body-centered cubic) to minimize the          

Coulomb lattice energy
• Wigner–Seitz cell: approximation with sphere 
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whose volume is the same as the unit cell in the BCC lattice. The lattice constant a is defined

as the cube root of the cell volume, Vcell = a3 = NB/nB, where NB and nB are the baryon
number per cell and the average baryon number density, respectively. We define the baryon
mass density as ρB = munB with mu being the atomic mass unit (Amsler et al. 2008). We

calculate the Coulomb energy using the Wigner–Seitz approximation and adding an energy
correction for the BCC lattice (Oyamatsu 1993). This energy correction is negligible unless

the nuclear size is comparable to the cell size.

We assume the nucleon distribution function ni(r) (i = p or n) in the Wigner–Seitz cell

as
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where r represents the distance from the center of the nucleus and Rcell is the radius of
the Wigner–Seitz cell defined by Vcell = 4πR3

cell/3. The density parameters nin
i and nout

i are

the densities at r = 0 and r ≥ Ri, respectively. The parameters Ri and ti determine the
boundary and the relative surface thickness of the nucleus. For the distribution function of
alpha-particle nα(r), which should decrease as r approaches the center of the nucleus, we

assume
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which could give nα(r = 0) = 0 and nα(r > Rp) = nout
α . Here we use the same parameters

Rp and tp for both proton and alpha-particle distribution functions in order to avoid the
presence of too many parameters in the minimization procedure. The parameters Rn and tn
may be somewhat different from Rp and tp due to the additional neutrons forming a neutron
skin in the surface region. For a system with fixed temperature T , proton fraction Yp, and
baryon mass density ρB, there are eight independent parameters among the ten variables, a,

nin
n , n

out
n , Rn, tn, nin

p , n
out
p , Rp, tp, and nout

α . The thermodynamically favorable state is the one
that minimizes the free energy density with respect to these eight independent parameters.

In principle, the resulting nucleon distribution in the Wigner–Seitz cell would depend on the
form of the parameterization. It is also possible to determine the nucleon distribution by a

self-consistent Thomas–Fermi method without any form of parameterization (Sil et al. 2001;
Shen et al. 2010b). We have compared, in Figures 1 and 2 of Shen et al. (2010b), the results
obtained by the self-consistent Thomas–Fermi method with those using the parameterization

of Equation (16), and found that they were in good agreement with each other for the cases
considered. Therefore, Equation (16) is considered to be a reasonable form of the nucleon

distribution in the Wigner–Seitz cell.
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