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Stellar Evolution

Evolutionary Tracks off the Main Sequence
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On the Way to Supernova Explosion
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v" Inner core (about 0.5 Mg) contracts homologously.

v" Size of inner core weakly depends on the pre-SN
structure.

v" QOuter core falls supersonically.

v" Central region exceeds nuclear saturation density,
which leads to bounce depending of equation of
state. Alternatively, it collapses into a black hole.

v Bouncing results in shock wave that forms near
the edge of inner core.

(From Introduction of Pejcha & Thomson 2015. See
the references therein.)

Figure from www.researchgate.net.




Neutrino-Driven Delayed Explosion

Ml Il Slide from George Raffelt's presentation
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Picture adapted from Janka, astro-ph/0008432

v Shock wave is stalled by losing energy to dissociate iron.

v' Standing accretion shock forms through the balance between neutrino
emission from proto-neutron star (PNS) and infalling matter from outer core.
(From Introduction of Pejcha & Thomson 2015. See the references therein.)



Uncertainties in Supernova Simulations

 Uncertain physics
 Neutrino self-interactions including oscillation at high luminosity

« Equation of state for dense (nuclear/quark) matter that affects the
emissivity and opacity of neutrino transport

« Other mechanisms (e.g., rotational energy)

 Technical (numerical) challenges
 Proper implementation of general relativity
3D simulations with neutrino radiative transfer
« Other effects (e.g., inclusion of magnetic field)



FoS for SN Simulations

* EoS for (cold) neutron star
At beta equilibrium and T = 0

« A wider range (general purpose EoOS)
«0<T <100 MeV
« 104 g/cm3 < p < 10" g/cm3
*0<Ye<06

* Needs to cover gaseous nuclei to uniform nuclear matter

 Mixture of nuclei and nucleon
e Phase transition



Handling the Mixture

« Thomas—Fermi approximation

* Nucleus at the center (body-centered cubic) to minimize the
Coulomb lattice energy

« Wigner—Seitz cell: approximation with sphere
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