Workshop 2017 on "Discrete Approaches to the Dynamics of Fields and Space-Time" 19 Sept. 2017, @APCTP

Geometry of Quantum Entanglement

Hiroaki Matsueda (Sendai National College of Tech.)

"Entanglement and Geometry of Quantum Systems" H. Matsueda, (Morikita Co.,Ltd., 2016) in Japanese

HM and T.Suzuki, JPSJ86, 104001 (2017)

- 1. General introduction (summary of important concepts)
- 2. Tensor network states, extra dimensions, and holographic geometry
- 3. Information-geometrical analysis of the correspondence between BTZ black hole and finite-T CFT

Recent development of interdisciplinary physics research

Quantum many-body Systems in condensed matter **SVD** entanglement Tensor network **Information** theory Exactly-solvable Quantum/classical/correspondence quantum systems Black hole Quantization of Space-Time Field theory String theory

Key concepts of this research field

"quantum entanglement" and "holography principle"

Entanglement entropy

- similar to the logarithm of two-point correlator
- scaling formula

<u>Tensor network states</u> Network geometry ⇔ RG

⇔CFT

variational ansatz for quantum-many body system which satisfies the entropy scaling
⇔Bethe ansatz K, post-K

Holography principle (bulk/edge correspondence) ⇔wavelets

 $\blacktriangleright \mathsf{AdS}_{d+2} \Leftrightarrow \mathsf{CFT}_{d+1}$

► classical side behaves as a memory to efficiently storage quantum data \Leftrightarrow Information geometry $g_{\mu\nu}(\theta) \approx \partial_{\mu} \partial_{\nu} S(\theta)$

Reconstruction of statistical mechanics and field theory by the information-theoretical concepts

Entanglement entropy

Total system (superblock, universe) = X+Y

$$|\psi\rangle = \sum_{x,y} \psi(x,y) |x\rangle \otimes |y\rangle$$
 $x \in X$
 $y \in Y$

Reduced density matrices for X and Y $\rho_X = \operatorname{Tr}_Y |\psi\rangle \langle \psi|$ $\rho_Y = \operatorname{Tr}_X |\psi\rangle \langle \psi|$

T 7

Entanglement entropy $S_X = -Tr_X (\rho_X \log \rho_X)$ $S_Y = -Tr_Y (\rho_Y \log \rho_Y)$

Entanglement \Leftrightarrow information flow across the boundary of X and Y

Singular Value Decomposition (SVD)

SVD of matrix Ψ

$$\psi(x, y) = \sum_{l} U_{l}(x) \sqrt{\Lambda_{l}} V_{l}(y)$$

 $\sqrt{\Lambda_l}$: singular value

 $U_l(x), V_l(y)$: unitary matrices

$$\rho_X(x,x') = \sum_y \psi(x,y) \psi^*(x',y) = \sum_l U_l(x) \Lambda_l U_l^*(x')$$
$$\rho_Y(y,y') = \sum_x \psi(x,y) \psi^*(x,y') = \sum_l V_l(y) \Lambda_l V_l^*(y')$$

Von Neumann entropy for partial systems = entanglement entropy \rightarrow Area-law scaling

$$S_X = -\sum_l \lambda_l \log \lambda_l = S_Y$$
 $\lambda_l = \Lambda_l / \sum_l \Lambda_l$

Universal scaling formulae for the entanglement entropy

Scaling formula \rightarrow criticality, space dimension d, linear size L

Gapped systems \rightarrow Area Law

$$S = \alpha L^{d-1} + \cdots$$

Critical systems \rightarrow logarithmic formula

$$S = \frac{1}{3}C L^{d-1}\log L + \cdots$$
 C: central charge (d=1)

Topological Entanglement Entropy (d=2)

$$S = \alpha L - \gamma$$

Finite-entanglement scaling (d=1)

$$S_{MPS} = \frac{1}{\sqrt{12/c} + 1} \log \chi$$

Holography principle

Holography principle String, black hole physics: t' Hooft (1974,1993), Susskind (1995), Maldacena (1997)

AdS/CFT correspondence

(d+1)-dim. Quantum system with conformal symmetry

(d+2)-dim. Classical General Relativity on Hyperbolic Space-time Supersymmetric Yang-Mills

Type IIB string theory on $AdS_5 \times S^5$ Universal Model-dependent GKP-Witten relation and Ryu-Takayanagi formula

Gubser-Klevanov-Polyakov(GKP)-Witten relation

$$\left\langle O(x_1)\cdots O(x_n)\right\rangle_{CFT} = \frac{\delta}{\delta\phi(x_1)}\cdots \frac{\delta}{\delta\phi(x_n)}\exp\left(-\frac{1}{2\kappa}I(\phi(x))\right)_{\phi=\phi_0}$$

Ryu-Takayanagi formula (2006)

 γ : gedesic distance (d=2)

$$S = \frac{\gamma}{4G}$$

 $\gamma = 2l \log L$
 γ : area of the minimal surface
Logarithmic entropy formula (d=1)

$$c = \frac{3l}{2G}$$
 Brown-Henneaux central charge

 $S = \frac{1}{2}c\log L$

Quantum-data storage to hyperbolic space

Radial axis (RG flow, scale transformation)

Information-theoretical interpretation of AdS/CFT

Excitation, finite-T

Tensor Networks States, Extra Dimensions, and Holographic Geometry

Factorization of entangled states: core algorithm for TNS

S=1/2 Heisenberg antiferromagnet (2 sites) $H = \vec{S}_1 \cdot \vec{S}_2 = \frac{1}{2} \left(S_1^+ S_2^- + S_1^- S_2^+ \right) + S_1^z S_2^z$ $H = \begin{pmatrix} \frac{1}{4} & 0 & 0 & 0 \\ 0 & -\frac{1}{4} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{1}{4} \end{pmatrix}$ bases: $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$ Single ground state (entangled) $|0\rangle = \frac{1}{\sqrt{2}} \left(\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle \right)$ $E_0 = -\frac{3}{4}$

We would like to exactly transform this non-local state to a kind of local representation by using extra dimension Local approximation cannot represent singlet !

$$\begin{split} |\Psi\rangle &= \sum_{s_{1}=\uparrow,\downarrow} a^{s_{1}} |s_{1}\rangle \otimes \sum_{s_{2}=\uparrow,\downarrow} c^{s_{2}} |s_{2}\rangle \\ &= a^{\uparrow} c^{\uparrow} |\uparrow\uparrow\rangle + a^{\uparrow} c^{\downarrow} |\uparrow\downarrow\rangle + a^{\downarrow} c^{\uparrow} |\downarrow\uparrow\rangle + a^{\downarrow} c^{\downarrow} |\downarrow\downarrow\rangle \\ &a^{\uparrow} c^{\uparrow} = 0 \\ |0\rangle &= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \qquad a^{\downarrow} c^{\downarrow} = 0 \\ a^{\uparrow} c^{\downarrow} = 1/\sqrt{2} \\ a^{\downarrow} c^{\uparrow} = -1/\sqrt{2} \end{split}$$
 No solution !

$$|\psi\rangle = |1\rangle \otimes |2\rangle$$

 $\rho_1 = Tr_2 |\psi\rangle \langle \psi| = |1\rangle \langle 1|$ $S_1 = -Tr_1 \rho_1 \log \rho_1 = 0$

Vector product state

$$|\psi\rangle = \sum_{s_1,s_2} a^{s_1} c^{s_2} |s_1 s_2\rangle \Longrightarrow \sum_{s_1,s_2} A^{s_1} C^{s_2} |s_1 s_2\rangle \qquad A^{s_1} = \begin{pmatrix} a_1^{s_1}, a_2^{s_1} \end{pmatrix}$$

$$C^{s_2} = \begin{pmatrix} c_1^{s_2} \\ c_1^{s_2} \end{pmatrix}$$

Local representation, but exact

 \rightarrow Introduction of extra dimension associated with entanglement

$$\begin{split} \left|\psi\right\rangle &= \sum_{\alpha=1}^{\chi=2} \left\{ \sum_{s_1=\uparrow,\downarrow} a_{\alpha}^{s_1} \left|s_1\right\rangle \otimes \sum_{s_2=\uparrow,\downarrow} c_{\alpha}^{s_2} \left|s_2\right\rangle \right\} \\ &= \left(a_1^{\uparrow} c_1^{\uparrow} + a_2^{\uparrow} c_2^{\uparrow}\right) \left|\uparrow\uparrow\right\rangle + \left(a_1^{\uparrow} c_1^{\downarrow} + a_2^{\uparrow} c_2^{\downarrow}\right) \left|\uparrow\downarrow\right\rangle \\ &+ \left(a_1^{\downarrow} c_1^{\uparrow} + a_2^{\downarrow} c_2^{\uparrow}\right) \left|\downarrow\uparrow\right\rangle + \left(a_1^{\downarrow} c_1^{\downarrow} + a_2^{\downarrow} c_2^{\downarrow}\right) \left|\downarrow\downarrow\right\rangle \end{split}$$

$$a_{1}^{\uparrow} = c_{2}^{\uparrow} = a_{2}^{\downarrow} = c_{1}^{\downarrow} = 0 \qquad |\psi\rangle = |0\rangle \qquad \chi = 2 \rightarrow \text{exact}$$

$$a_{2}^{\uparrow} c_{2}^{\downarrow} = 1/\sqrt{2}$$

$$a_{1}^{\uparrow} c_{1}^{\uparrow} = -1/\sqrt{2} \qquad A^{\uparrow} = (x, y), A^{\downarrow} = (z, w), C^{\uparrow} = \begin{pmatrix} \frac{y}{xw - yz} \\ \frac{x}{yz - xw} \end{pmatrix}, C^{\downarrow} = \begin{pmatrix} \frac{w}{xw - yz} \\ \frac{z}{yz - xw} \end{pmatrix}$$

Matrix Product State (MPS)

Open boundary condition

$$\left|\psi\right\rangle = \sum_{\{s_1, s_2, \cdots, s_n\}} \left|A_2^{s_2} A_3^{s_3} \cdots A_{n-1}^{s_{n-1}}\right| s_n \right| \left|s_1 s_2 \cdots s_n\right\rangle$$

$$\left\langle s_{1} \right| = A_{b}^{s_{1}} \quad A_{bc}^{s_{2}} \quad A_{cd}^{s_{3}} \quad A_{de}^{s_{4}} \quad A_{ef}^{s_{5}} \quad A_{fg}^{s_{6}} \quad A_{gh}^{s_{7}} \quad A_{hi}^{s_{8}} \quad \left| s_{9} \right\rangle = A_{i}^{s_{9}}$$

 $A_{j}^{s_{j}}$ $\chi \times \chi$, χ : unphysical degree of freedom $s_{j} = \uparrow, \downarrow$: physical degree of freedom

Matrix = map from unphysical to physical degrees of freedom \downarrow What is unphysical degree ? \rightarrow entanglement !

 Ψ : product of local matrix \Leftrightarrow non-local correlation

Periodic boundary condition

$$\left|\psi\right\rangle = \sum_{\{s_1, s_2, \cdots, s_n\}} tr\left(A_1^{s_1} A_2^{s_2} \cdots A_n^{s_n}\right) s_1 s_2 \cdots s_n\right\rangle$$

Entanglement entropy

 $S = 2 \log \chi$

Evaluation of proper χ value:

Gapped $\rightarrow L^{1-1} = \text{const.}$

Critical \rightarrow O(L^{c/6})

$$2\log \chi = \frac{c}{3}\log L$$
$$\Rightarrow \chi = L^{c/6}$$

Equivalence of MPS to the Bethe ansatz

- \blacktriangleright basis change of Algebraic Bethe ansatz \Rightarrow MPS
- matrix-product Bethe ansatz

M excitations from the highest weight state

$$\psi_{\Omega}(x_{1},...,x_{M}) = Tr(E^{x_{1}-1}A E^{x_{2}-x_{1}-1}A \cdots E^{x_{M}-x_{M-1}-1}A E^{L-x_{M}}\Omega)$$

$$A = \sum_{j=1}^{M} A_{k_{j}}E \qquad E A_{k_{j}} = e^{ik_{j}}A_{k_{j}}E$$

$$A_{k_{j}}A_{k_{j}} = 0 \qquad A_{k_{j}}A_{k_{l}} = s(k_{j},k_{l})A_{k_{l}}A_{k_{j}}$$

$$E\Omega = e^{-ip}\Omega E$$

simple interpretation

$$\Psi = e^{ik_1x_1 + ik_2x_2} + \Theta e^{ik_1x_2 + ik_2x_1} = \begin{pmatrix} e^{ik_1x_1} & e^{ik_2x_1} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \Theta & 0 \end{pmatrix} \begin{pmatrix} e^{ik_1x_2} \\ e^{ik_2x_2} \end{pmatrix}$$

Tensor Product State (TPS), Tensor Network State (TNS)

Projected Entangled Pair State (PEPS)

 $|\psi\rangle = \sum_{\{s_j\}} \sum_{a,b,\dots,l} A_{ab}^{s_1} A_{bcd}^{s_2} A_{ce}^{s_3} A_{efl}^{s_4} A_{dfgh}^{s_5} A_{agi}^{s_6} A_{ij}^{s_7} A_{hjk}^{s_8} A_{kl}^{s_9} |s_1 s_2 \cdots s_9\rangle$

Entanglement structure of tensor network states

 $S = N_{bond} \log \chi \Rightarrow$ automatically satisfies the area law However, large χ of order L is necessary for critical systems

Hierarchical tensor networks, entanglement renormalization

Multiscale Entanglement Renormalization Ansatz (MERA)

MERA network \rightarrow discretized hyperbolic space

Poincare disk representation of MERA network

Geometric structure of MERA network (causal cone)

Correspondence between BTZ and finite-T MERA

Recent topics motivated from MERA networks

Exact Holographic Mapping (EHM) Xiao-Liang Qi, arXiv:1309.6282 Haal wavelet

Analytic MERA Glen Evenbly and Stenven R White, PRL116, 140403 (2016) Disentangler ⇔ Daubechies 4-tap wavelet

MERA and Quantum Integrability
H. Matsueda, arXiv
Variational optimization ⇔ Bethe equation

Relation with Loop Quantum Gravity and Spin Network Muxin Han and Ling-Yan Hung, arXiv:1610.02134 Information-Geometrical Analysis of the Correspondence between BTZ Black Hole and Finite-T CFT

HM and T.Suzuki, JPSJ86, 104001 (2017)

BTZ black hole and holography

BTZ black hole: vacuum solution of the Einstein equation in d=2 with negative Λ

Relative entanglement entropy

Schmidt decomposition of quantum pure states

(Finite-T case is also represented by the same form using TFD)

$$|\psi(\theta)\rangle = \sum_{n} \sqrt{\lambda_{n}(\theta)} |n\rangle_{A} \otimes |n\rangle_{\overline{A}} \qquad \langle \psi(\theta)|\psi(\theta)\rangle = \sum_{n} \lambda_{n}(\theta) = 1$$

Θ: canonical parameters (function of model parameters)
 Relative entanglement entropy
 (Entropy is a measure of difference between two quantum states)

$$D(\theta) = -\sum_{n} \lambda_{n}(\theta) \log \lambda_{n}(\theta) + \sum_{n} \lambda_{n}(\theta) \log \lambda_{n}(\theta + d\theta)$$
$$= \frac{1}{2} g_{\mu\nu}(\theta) d\theta^{\mu} d\theta^{\nu} + \cdots$$
Entanglement spectrum
$$\gamma_{n}(\theta) = -\log \lambda_{n}(\theta)$$

Fisher metric

$$g_{\mu\nu}(\theta) = \sum_{n} \lambda_{n}(\theta) \frac{\partial \log \lambda_{n}(\theta)}{\partial \theta^{\mu}} \frac{\partial \log \lambda_{n}(\theta)}{\partial \theta^{\nu}} = \left\langle \partial_{\mu} \gamma \partial_{\nu} \gamma \right\rangle = \left\langle \partial_{\mu} \partial_{\nu} \gamma \right\rangle$$

Purpose of this study

$$|\psi(\theta)\rangle = \sum_{n} \sqrt{\lambda_{n}(\theta)} |n\rangle_{A} \otimes |n\rangle_{\overline{A}} \qquad \langle \psi(\theta) | \psi(\theta) \rangle = \sum_{n} \lambda_{n}(\theta) = 1$$

$$\lambda_{n}(\theta)$$

$$\gamma_{n}(\theta) = -\log \lambda_{n}(\theta)$$

Entanglement entropy
$$S(\theta) = -\sum_{n} \lambda_{n}(\theta) \log \lambda_{n}(\theta) = \langle \gamma \rangle \qquad g_{\mu\nu}(\theta) = \langle \partial_{\mu} \gamma \partial_{\nu} \gamma \rangle = \langle \partial_{\mu} \partial_{\nu} \gamma \rangle$$

Once the Schmidt coefficients of a quantum system are determined, both of the entanglement entropy and the classical geometrical quantity are calculated simultaneously !

Exponential family form

(environment -> finite-T effect, def. of canonical parameters)

$$|\psi(\theta)\rangle = \sum_{n} \sqrt{\lambda_{n}(\theta)} |n\rangle_{A} \otimes |n\rangle_{\overline{A}}$$
$$\lambda_{n}(\theta) = e^{-\gamma_{n}(\theta)} = \exp\{\theta^{\mu} F_{n,\mu} - \psi(\theta)\} = \frac{1}{Z} e^{\theta^{\mu} F_{n,\mu}} \quad \psi(\theta) = \log Z$$

Hessian Geometry

$$\gamma_{n}(\theta) = \psi(\theta) - \theta^{\mu} F_{n,\mu} \qquad g_{\mu\nu}(\theta) = \langle \partial_{\mu} \partial_{\nu} \gamma \rangle = \partial_{\mu} \partial_{\nu} \psi(\theta)$$

Thermodynamics law for the entanglement entropy

$$S(\theta) = \langle \gamma(\theta) \rangle = \psi(\theta) - \theta^{\mu} \langle F_{\mu} \rangle = \psi(\theta) - \theta^{\mu} \partial_{\mu} \psi(\theta)$$
$$TS = -F + E$$

Geometry of Gaussian Distribution

$$p(X) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(X-\mu)^2}{2\sigma^2}\right\}$$

Wave function of harmonic oscillator

$$= \exp\left\{-\frac{X^2}{2\sigma^2} + \frac{\mu X}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \log\left(\sqrt{2\pi\sigma}\right)\right\}$$
$$= \exp\left\{\theta^1 F_1(X) + \theta^2 F_2(X) - \psi(\theta)\right\}$$

Information-geometrical representation of BTZ black hole

$$\mu = \frac{\theta^{1}}{\theta^{2}}, \ \sigma = \frac{1}{\sqrt{\theta^{2}}} \qquad t = \frac{\theta^{0}}{\theta^{2} - a}, \ x = \frac{\theta^{1}}{\theta^{2}}, \ z = \frac{1}{\sqrt{\theta^{2}}}$$

Time near the event horizon: $t = \frac{\theta^{0}}{\theta^{2} - a} = \frac{z^{2}}{1 - az^{2}} \theta^{0} \Rightarrow \infty$

Hesse potential that exactly derives the BTZ metric

$$\psi = \frac{1}{4a} \{ (\theta^2 - a) \log(\theta^2 - a) - \theta^2 \log \theta^2 \} + \frac{1}{2} \frac{(\theta^1)^2}{\theta^2} - \frac{1}{2} \frac{(\theta^0)^2}{\theta^2 - a}$$

Entanglement entropy

$$S = \psi - \theta^{\alpha} \partial_{\alpha} \psi$$

= $-\frac{1}{4a} \log(\theta^{2} - a) - \frac{1}{2} a \left(\frac{\theta^{0}}{\theta^{2} - a}\right)^{2}$
= $\frac{1}{4} \log\left(\frac{z^{2}}{1 - az^{2}}\right) - \frac{1}{2} a t^{2}$

Derivation of Ryu–Takayanagi Formula

Duality by the Legendre Transformation and Bulk/Edge

Dual parameters: $\eta_{\alpha} = -\partial_{\alpha} \psi$

$$\theta^{0} = a \frac{e^{V}}{1 - e^{V}} \eta_{0}, \ \theta^{1} = -a \frac{1}{1 - e^{V}} \eta_{1}, \ \theta^{2} = a \frac{1}{1 - e^{V}}$$
$$V = -4a \left(\eta_{2} + \frac{1}{2} (\eta_{0})^{2} - \frac{1}{2} (\eta_{1})^{2} \right)$$

Dual potential = entanglement free energy for bosonic system

$$\varphi = -\theta^{\alpha} \eta_{\alpha} - \psi = -\frac{1}{4} \log(1 - e^{V}) + \frac{1}{4} \log a + \frac{1}{4} V + \frac{1}{2} a (\eta_{0})^{2}$$

Reconstruction of statistical mechanics and field theory by using information-theoretical concepts

Informaion theory \Leftrightarrow CFT, integrability, geometry, \cdots

- (1) Entanglement entropy scaling
- (2) extra dimension and tensor networks
- (3) Network structure + RG concept \rightarrow discretized geometry
- (4) Information-geometrical interpretation of AdS/CFT

Anti de Sitter space and CFT

Isometry trans. \Rightarrow conformal Killing equation at $z \rightarrow 0$

Boundary of $AdS_{d+1} \Rightarrow CFT_{d}$

相対エントロピーを計量とみなすことのイメージ

Monte Carlo Simulation of the 2D Ising Model

Classical Ising Spin Model:
$$H = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z$$
 $\sigma_i^z = \pm 1$

Snapshots at various temperature

2次元イジング模型

 $H = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z$

臨界点でのスナップショット → フラクタル的なスピン構造

白枠で囲まれた部分系の集合 →全ての熱揺らぎを近似的に表す

A typical snapshot of the Ising model 256x256, T=2.26J

臨界点での1枚のスナップショット⇔分配関数とほぼ同じ情報量

Density matrix of a snapshot

A snapshot determined by Monte Carlo simulation

Matrix product \rightarrow trace over partial degree of freedom

Singular Value Decomposition (SVD)

Singular Value Decomposition of matrix Ψ (Snapshot Data) $\psi(x, y) = \sum_{l} U_{l}(x) \sqrt{\Lambda_{l}} V_{l}(y)$

 Λ_l : singular value (non-negative, uniquely determined)

 $U_l(x), V_l(y)$: (unitary matrices, various choices)

$$\rho_X(x,x') = \sum_y \psi(x,y) \psi^*(x',y) = \sum_l U_l(x) \Lambda_l U_l^*(x')$$
$$\rho_Y(y,y') = \sum_x \psi(x,y) \psi^*(x,y') = \sum_l V_l(y) \Lambda_l V_l^*(y')$$

Snapshot Entropy \rightarrow boundary law (not extensive)

$$S_X = -\sum_l \lambda_l \log \lambda_l = S_Y$$
 $\lambda_l = \Lambda_l / \sum_l \Lambda_l$

スナップショット・SVDに隠れた双曲的空間構造

±1エンコーディング

$$\psi(x, y) = \sum_{l=1}^{L} \psi^{(l)}(x, y) \qquad \psi^{(l)}(x, y) = U_l(x) \sqrt{\Lambda_l} V_l(y)$$

Tensor-product construction of scale-invariant systems

Sierpinski carpet \rightarrow fractal structure

 $h \times h(=3 \times 3) \text{ unit cell}$ $H = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

Factorized form

 $M = H \otimes H \otimes \cdots \otimes H \otimes H$

Fractal image
→ L×L matrix
→ N different scales

$$L = h^N$$

SVD spectrum of Sierpinski carpet

$$M = H \otimes H \otimes \dots \otimes H \otimes H$$
$$\left(-\sum_{i=\pm} \gamma_i \ln \gamma_i\right) \frac{1}{\ln h} = \frac{c}{3}$$
$$M^2 = H^2 \otimes H^2 \otimes \dots \otimes H^2 \otimes H^2$$

Two non-zero eigenvalues of H² : $\Gamma_{\pm} = 4 \pm 2\sqrt{3}$

Normalization of
$$\Gamma: \gamma_{\pm} = \frac{1}{2} \pm \frac{\sqrt{3}}{4} \qquad \gamma_{-} = 1 - \gamma_{+}$$

Eigenvalues of M²: $\lambda_j = \gamma_+^j \gamma_-^{N-j} = \gamma_+^j (1 - \gamma_+)^{N-j}$ (Degeneracy : $_N C_j$)

Snapshot entropy \Leftrightarrow entanglement entropy of 1D free fermions

$$S = -\sum_{j=0}^{N} {}_{N} C_{j} (\lambda_{j} \ln \lambda_{j}) = \left(-\sum_{i=\pm} \gamma_{i} \ln \gamma_{i} \right) N = \left(-\sum_{i=\pm} \gamma_{i} \ln \gamma_{i} \right) \frac{\ln L}{\ln h}$$

C.H.Lee, Y.Yamada, T.Kumamoto, and HM, JPSJ 84, 013001 (2015)

臨界点の画像情報を非臨界的情報の和で表すこと

行列の特異値分解

$$M(x, y) = \sum_{n} U_{n}(x) \sqrt{\Lambda_{n}} V_{n}(y)$$

密度行列(相関関数)

$$\rho(x,x') = \sum_{n} U_{n}(x) U_{n}(x') \Lambda_{n}$$

連続極限での分解公式(Mellin変換)

臨界点では $\Lambda_n \propto n^{\eta-1}$

How to identify the canonical parameters ?

Is the exponential family form really a reasonable assumption \rightarrow yes!

The ground-state properties of this model are completely characterized by L and δ .

 \rightarrow L and δ are relevant model parameters. (Be careful that they are 'not' canonical parameters) Partial density matrix and entanglement spectrum (t=0)

$$\rho_A \propto \exp\left\{-\sum_{l=1}^L \varphi_l(L,\delta)n_l\right\}$$

S.-A. Cheong and C. L. Henley, PRB69, 075111 (2004)

Scaling relations for the entanglement spectrum

$$\varphi_{l}(L,\delta) = Lf(\delta,x) \qquad \begin{cases} f(\delta,0) = 0\\ f'(\delta,0) > 0\\ L \end{cases} \quad l_{F} = \delta L + \frac{1}{2} \qquad \begin{cases} f(\delta,0) = 0\\ f'(\delta,0) > 0\\ f(\delta,-x) = -f(1-\delta,x) \end{cases}$$

 Numerical results suggest $\gamma_2(\theta) - \gamma_1(\theta) = Lf(\delta, 1/L) = f'(\delta, 0) + \frac{f''(\delta, 0)}{2L} + \frac{f''(\delta, 0)}{6L^2} + \cdots$

only weak δ dependence

We can identify two of canonical parameters as

$$\left(\theta^{1},\theta^{2}\right) = \left(\frac{f''(\delta,0)}{L},\frac{1}{L^{2}}\right)$$

Resolution of entanglement spectrum for finite L systems

Truncated quantum state

$$|\psi\rangle \approx |\psi_{\chi}\rangle = \sum_{n=1}^{\chi} \sqrt{\lambda_n} |n\rangle_A \otimes |n\rangle_{\overline{A}} \qquad \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{\chi}$$

Two scaling relations (area law and finite-entanglement scaling) for the entanglement entropy (ζ : finite-entanglement exponent)

$$S \approx \zeta \log \chi = a L^{d-1} \qquad \qquad \zeta(c) \log \chi = \frac{c}{6} \log \xi = \frac{c}{6} \log L$$
$$\Rightarrow \chi \approx \exp\left(\frac{a}{\zeta} L^{d-1}\right) \qquad \qquad \Rightarrow \xi = L \Rightarrow \theta \approx \xi^{-1}$$

The parameter χ is related to how many states are necessary to keep numerical accuracy of the optimization of Ψ .

Thus, the inverse of χ is roughly the resolution of the entanglement spectrum.

$$\theta \approx \chi^{-1} \approx \exp\left(-\frac{a}{\varsigma}L^{d-1}\right)$$

$$\theta = e^{-aL/\kappa} (d = 2)$$
$$\varsigma \approx \kappa$$

$$g_{\mu\nu}(\theta) = \langle \partial_{\mu} \partial_{\nu} \gamma \rangle \approx \partial_{\mu} \partial_{\nu} S(\theta)$$

One of θ control the energy scale of the entanglement spectrum, and this should be related to L.

Owing to the positivity of the Fisher metric, we require (d=1)

$$S(\theta) \approx -\kappa \log \theta, \theta = \frac{1}{L^{\nu}} \Longrightarrow S = \kappa \nu \log L, g_{\theta\theta} \approx \frac{\kappa}{\theta^2}$$

Then, the warp factor of AdS naturally appears and the entropy coincides with the logarithmic violation formula.

d=2 case \rightarrow area law scaling can be reproduced

$$S(\theta) \approx -\kappa \log \theta, \theta = e^{-aL/\kappa} \Longrightarrow S = aL, g_{\theta\theta} \approx \frac{\kappa}{\theta^2}$$