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THERMALIZATION OF 

ENTANGLEMENT ENTROPY



Motivation

- It showed the expected area law.

The entanglement entropy has been investigated holographically well in a UV regime.

- It produced the correct central charge and free energy.

- It plays a crucial role to prove the c- and F-theorem along the RG flow.

- It satisfies the thermodynamics-like law, which allows us to reconstruct the (linearized) AdS

geometry from the CFT data only.

Questions:

What is the IR entanglement entropy?

What is the relation between the entanglement and thermal entropies?

(Recently, it has been shown in quantum information theory that quantum information can 
evolve into the thermal entropy. )
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1. Review of the holographic entanglement entropy 

The entanglement entropy measures 
how closely and quantumly a given wave function is entangled.

Definition of EE (entanglement entropy)

- Divide a quantum system into two parts, A and B. 

- Reduced density matrix of the subsystem A : 

- The entanglement entropy (EE) 

Brief review on the holographic entanglement entropy

The entanglement entropy measures how closely and quantumly a given ground state

wave function is entangled.

Definition of entanglement entropy (EE)

Divide a quantum system into two parts, A and B

Reduced density matrix of the subsystem A

⇢B = TrA⇢tot

The entanglement entropy (Von Neumann entropty)

SB = �TrB⇢B log ⇢B
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describes the quantum entanglement detected by an observer who is only 

accessible to the subsystem B and can not receive any signal from A. 

Brief review on the holographic entanglement entropy

SB describes the quantum entanglement detected by an observer, who is only

accessible to the subsystem B and can not receive any signals from A.

This is similar to the Bekenstein-Hawking entropy of the black hole.

Since an observer sitting in the outside of the horizon, B, can not receive any

information from A, we can regard A as a black hole and the boundary of A as the

black hole horizon.

Due to this similarity to the black hole, Ryu and Takayanagi [2006] proposed the

holographic entanglement entropy (hEE) following the AdS/CFT correspondence

the EE of a d-dimensional CFT can be evaluated by

an area of the minimal surface in the d+1-dimensional dual gravity
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This is similar to the Bekenstein-Hawking entropy of the black hole.

Since an observer sitting in the outside of the horizon, B, can not receive any information from 

A, we can regard A as a black hole and the boundary of A as the black hole horizon. 

A

B

2.  The entanglement entropy is utilized to figure out 

the black hole entropy

1.  The area law of the entanglement entropy is also 

similar to that of the black hole entropy



Due to the similarity to the black hole, 

Ryu and Takayanagi [2006] proposed the holographic entanglement entropy (hEE)

following the AdS/CFT correspondence 

the EE of a d-dimensional CFT can be evaluated by the area of the minimal surface 
in the d+1-dimensional dual AdS gravity 
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FIG. 1: (a) AdS3 space and CFT2 living on its boundary
and (b) a geodesics γA as a holographic screen.

of A) and (ii) SA1
+ SA2

≥ SA1∪A2
(subadditivity) are

satisfied.
We can also define the entanglement entropy at finite

temperature T = β−1. E.g. in a 2D CFT on a infinitely
long line, it is given by replacing L in Eq. (1.3) with iβ
[10]. We argue that Eq. (1.5) still holds in T > 0 cases.
Note that SA = SB is no longer true if T > 0 since ρ
is in a mixed state generically. At high temperature, we
will see that this occurs due to the presence of black hole
horizon in the dual gravity description.

II. ENTANGLEMENT ENTROPY IN AdS3/CFT2

Let us start with the entanglement entropy in 2D
CFTs. According to AdS/CFT correspondence, gravi-
tational theories on AdS3 space of radius R are dual to
(1+1)D CFTs with the central charge [14]

c =
3R

2G(3)
N

. (2.1)

The metric of AdS3 in the global coordinate (t, ρ, θ) is

ds2 = R2
(

− coshρ2dt2 + dρ2 + sinh ρ2dθ2
)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
is identified with the static geodesic that connects the
boundary points θ = 0 and 2πl/L with t fixed, traveling
inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
above, the geodesic distance LγA is given by

cosh

(

LγA

R

)

= 1 + 2 sinh2 ρ0 sin2 πl

L
. (2.4)

Assuming the large UV cutoff eρ0 ≫ 1, the entropy
(1.5) is expressed as follows, using Eq. (2.1)

SA≃ R

4G(3)
N

log

(

e2ρ0 sin2 πl

L

)

=
c

3
log

(

eρ0 sin
πl

L

)

. (2.5)

This entropy precisely coincides with the known CFT
result (1.3) after we remember the relation Eq. (2.3).

This proposed relation (1.5) suggests that the geodesic
(or minimal surface in the higher dimensional case) γA is
analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows

A = {x|x ∈ [r1, s1] ∪ [r2, s2] ∪ · · · ∪ [rN , sN ]}, (2.6)

where 0 ≤ r1 < s1 < r2 < s2 < · · · < rN < sN ≤ L. In
the dual AdS3 description, the region (2.6) corresponds
to θ ∈ ∪N

i=1[
2πri

L , 2πsi

L ] at the boundary. In this case it
is not straightforward to determine minimal (geodesic)
lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
in the AdS3 language, the following expression of SA

SA =

∑

i,j Lrj ,si−
∑

i<j Lrj ,ri−
∑

i<j Lsj ,si

4G(3)
N

, (2.7)

where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L ≪ 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
BTZ black hole [17] with the metric given by

ds2 = (r2 − r2
+)dτ2 +

R2

r2 − r2
+

dr2 + r2dϕ2. (2.8)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to
obtain a smooth geometry in addition to the periodicity
ϕ ∼ ϕ+2π. Looking at its boundary, we find the relation
β
L = R

r+
≪ 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ϕ = 0, 2πl/L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiv-
alent to the thermal AdS3 at temperature 1/TBTZ. This
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long line, it is given by replacing L in Eq. (1.3) with iβ
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(1+1)D CFTs with the central charge [14]
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ds2 = R2
(

− coshρ2dt2 + dρ2 + sinh ρ2dθ2
)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
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inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
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This entropy precisely coincides with the known CFT
result (1.3) after we remember the relation Eq. (2.3).

This proposed relation (1.5) suggests that the geodesic
(or minimal surface in the higher dimensional case) γA is
analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows
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L ] at the boundary. In this case it
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lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
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where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L ≪ 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
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General features of the holographic entanglement entropy

General properties of the entanglement entropy

1) Area law of the entanglement entropy 

The leading term of the entanglement entropy is provided by the short distance interaction 

between two subsystems near the boundary. In the continuum limit, this term causes 

a UV divergence and its coefficient is proportional to the area of the entangling surface      

( UV cutoff sensitive,                            ).
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Holographic Derivation of Entanglement Entropy from AdS/CFT

Shinsei Ryu and Tadashi Takayanagi
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

(Dated: February 1, 2008)

A holographic derivation of the entanglement entropy in quantum (conformal) field theories is
proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement

SA ⇠ Area(@A)

ad�1
+ subleading finite terms

a : UV cuto↵



2) Subleading finite terms

There exists the terms not relying on a UV cutoff, which can provide an important physical 

information associated with the long range correlations. 

In general, the entanglement entropy depends on the shape and size of the entangling surface. 

In

3

equivalence can be interpreted as a modular transfor-
mation in the CFT side [18]. If we define the new co-
ordinates r = r+ coshρ, r+τ = Rθ, r+ϕ = Rt, then
the metric (2.8) indeed becomes the Euclidean version of
AdS3 metric (2.2). Thus the geodesic distance can be
found in the same way as in Eq. (2.4) : cosh(LγA/R) =

1 + 2 cosh2 ρ0 sinh2
(

πl
β

)

, where the UV cutoff is inter-

preted as eρ0 ∼ β/a. Then the area law (1.5) reproduces
the known CFT result [10]

SA(β) =
c

3
· log

(

β

πa
sinh

(

πl

β

))

. (2.9)

We can extend these arguments to the multi interval
cases and find the same formula (2.7) as before.

It is instructive to repeat the same analysis in the
Poincare metric ds2 = R2z−2(dz2 − dx2

0 + dr2). We de-
fine the subsystem A by the region −l/2 ≤ r ≤ l/2 at
the boundary z = 0. The geodesic line γA is given by

(r, z) =
l

2
(cos s, sin s), (ϵ ≤ s ≤ π − ϵ), (2.10)

where the infinitesimal ϵ is the UV cutoff ϵ ∼ 2a/l (or
equally zUV ∼ a). We obtain the entropy SA as follows

SA =
LγA

4G(3)
N

=
R

2G(3)
N

∫ π/2

ϵ

ds

sin s
=

c

3
log

l

a
. (2.11)

This reproduces the small l limit of Eq. (1.3) [11] .
When we perturb a CFT by a relevant perturbation,

the RG flow generically drives the theory to a trivial IR
fixed point. We denote the correlation length ξ in the
latter theory. In the AdS dual, this massive deformation
corresponds to capping off the IR region, restricting the
allowed values of z to z ≤ ξ. In the large l limit, we find

SA =
1

4G(3)
N

∫ 2ξ/l

ϵ

ds

sin s
=

c

6
log

ξ

a
. (2.12)

This agrees with the CFT result with A = 1 (1.4) [7, 10].

III. HIGHER DIMENSIONAL CASES

Motivated by the success in our gravitational deriva-
tion of the entanglement entropy for d = 1, it is inter-
esting to extend the idea to higher dimensional cases
(d ≥ 2). A natural thing to do is to replace geodesic
lines with minimal surfaces. The computations are anal-
ogous to the evaluation of Wilson loops [19], though the
dimension of relevant minimal surfaces is different.

We will work in the Poincare metric for AdSd+2

ds2 = R2z−2(dz2 − dx2
0 +

d
∑

i=1

dx2
i ). (3.1)

We consider two examples for the shape of A. The first
one is a straight belt AS = {xi|x1 ∈ [−l/2, l/2], x2,3,···,d ∈

z

x1

z

x1

L

xi>1

l

(a) (b) xi>1

l

FIG. 2: Minimal surfaces in AdSd+2: (a) AS and (b) AD.

[−∞,∞]} at the boundary z = 0 (Fig. 2 (a)). In
this case the minimal surface is defined by dz/dx1 =
√

z2d
∗

− z2d/zd, where z∗ is determined by l/2 =
∫ z∗

0 dzzd(z2d
∗

− z2d)−1/2 = z∗
√

πΓ(d+1
2d )/Γ( 1

2d ). The area
of this minimal surface is

AreaAS =
2Rd

d − 1

(

L

a

)d−1

− 2dπd/2Rd

d − 1

(

Γ(d+1
2d )

Γ( 1
2d )

)d
(

L

l

)d−1

,

(3.2)
where L is the length of AS in the x2,3,··· ,d-direction.

The second example is the disk AD defined by AD =
{xi|r ≤ l} (Fig. 2(b)) in the polar coordinate

∑

i dx2
i =

dr2 + r2dΩ2
d−1. The minimal surface is a d dimensional

ball Bd defined by (2.10). Its area is

AreaAD = C

∫ 1

a/l
dy

(1 − y2)(d−2)/2

yd

= p1 (l/a)d−1 + p3 (l/a)d−3 + · · · (3.3)

· · · +
{

pd−1 (l/a) + pd + O(a/l), d: even,
pd−2 (l/a)2 + q log (l/a) + O(1), d: odd,

where C = 2πd/2Rd/Γ(d/2) and p1/C = (d − 1)−1 etc.
For d even, pd/C = (2

√
π)−1Γ

(

d
2

)

Γ
(

1−d
2

)

and for d odd,

q/C = (−)(d−1)/2(d − 2)!!/(d − 1)!!.
From these results, the entanglement entropy can be

calculated by Eq. (1.5). Each of (3.2) and (3.3) has a
UV divergent term ∼ a−d+1 that is proportional to the
area of the boundary ∂A. This agrees with the known
‘area law’ of the entanglement entropy in quantum field
theories [5, 6]. Note that this ‘area law’ is related to ours
Eq. (1.5) via the basic property of holography.

We may prefer a physical quantity that is independent
of the cutoff (i.e. universal). The second term in Eq. (3.2)
has this property. In general, when A is a finite size, there
is a universal and conformal invariant constant contribu-
tion to SA if d is even (see [20] for properties of minimal
surfaces in AdS). In (2+1)D topological field theories the
constant contribution to SA encodes the quantum dimen-
sion and is called the topological entanglement entropy
[8, 9]. If d is odd, the coefficient of the logarithmic term
∼ log(l/a) is universal as in Eq. (1.3).

Let us apply the previous results to a specific string
theory setup. Type IIB string on AdS5 × S5 is dual to

let us take into account the HEE of a strip (a) and disk (b) 3

equivalence can be interpreted as a modular transfor-
mation in the CFT side [18]. If we define the new co-
ordinates r = r+ coshρ, r+τ = Rθ, r+ϕ = Rt, then
the metric (2.8) indeed becomes the Euclidean version of
AdS3 metric (2.2). Thus the geodesic distance can be
found in the same way as in Eq. (2.4) : cosh(LγA/R) =

1 + 2 cosh2 ρ0 sinh2
(

πl
β

)

, where the UV cutoff is inter-

preted as eρ0 ∼ β/a. Then the area law (1.5) reproduces
the known CFT result [10]

SA(β) =
c

3
· log

(

β

πa
sinh

(

πl

β

))

. (2.9)

We can extend these arguments to the multi interval
cases and find the same formula (2.7) as before.

It is instructive to repeat the same analysis in the
Poincare metric ds2 = R2z−2(dz2 − dx2

0 + dr2). We de-
fine the subsystem A by the region −l/2 ≤ r ≤ l/2 at
the boundary z = 0. The geodesic line γA is given by

(r, z) =
l

2
(cos s, sin s), (ϵ ≤ s ≤ π − ϵ), (2.10)

where the infinitesimal ϵ is the UV cutoff ϵ ∼ 2a/l (or
equally zUV ∼ a). We obtain the entropy SA as follows

SA =
LγA

4G(3)
N

=
R

2G(3)
N
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ϵ

ds

sin s
=

c

3
log

l

a
. (2.11)

This reproduces the small l limit of Eq. (1.3) [11] .
When we perturb a CFT by a relevant perturbation,

the RG flow generically drives the theory to a trivial IR
fixed point. We denote the correlation length ξ in the
latter theory. In the AdS dual, this massive deformation
corresponds to capping off the IR region, restricting the
allowed values of z to z ≤ ξ. In the large l limit, we find

SA =
1

4G(3)
N

∫ 2ξ/l

ϵ

ds

sin s
=

c

6
log

ξ

a
. (2.12)

This agrees with the CFT result with A = 1 (1.4) [7, 10].
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tion of the entanglement entropy for d = 1, it is inter-
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dx2
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FIG. 2: Minimal surfaces in AdSd+2: (a) AS and (b) AD.

[−∞,∞]} at the boundary z = 0 (Fig. 2 (a)). In
this case the minimal surface is defined by dz/dx1 =
√

z2d
∗

− z2d/zd, where z∗ is determined by l/2 =
∫ z∗

0 dzzd(z2d
∗

− z2d)−1/2 = z∗
√

πΓ(d+1
2d )/Γ( 1

2d ). The area
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AreaAS =
2Rd

d − 1

(

L

a

)d−1

− 2dπd/2Rd

d − 1

(

Γ(d+1
2d )

Γ( 1
2d )

)d
(

L

l

)d−1

,

(3.2)
where L is the length of AS in the x2,3,··· ,d-direction.
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∑

i dx2
i =

dr2 + r2dΩ2
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yd
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√
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d
2

)

Γ
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1−d
2

)

and for d odd,

q/C = (−)(d−1)/2(d − 2)!!/(d − 1)!!.
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The entanglement entropy is an important concept to understand quantum aspects of a QFT.

It measures the entanglement between quantum states. In a 2-dimensional CFT, especially,

its analytic form has been known due to the conformal symmetry and modular invariance.

Interestingly, this result has been reproduced from a gravity theory defined on the AdS3 space

and further generalized to higher dimensional cases [9, 10]. We start with summarizing those

results.
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where L and ✏ indicate the size of the total system and a UV cuto↵ respectively. The AdS

radius is denoted by R. From now on, we set R = 1 for simplicity. This result expresses

the entanglement entropy of vacuum states. Above the first term shows the area law of the

entanglement entropy. In general, the entanglement entropy of a thin strip has no logarithmic

divergence except the d = 2 case. When a subsystem resides in a disk instead of a strip, the

entanglement entropy usually depends on the dimension of the space and time on which the
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Only for even d, a logarithmic term with a

0 = (�)d/2�1 (d�3)!!
(d�2)!! appears. This term is universal in

that it is independent of the regularization scheme. As shown in the AdS3 example [9, 10], a0

is related to the central charge of the dual CFT. In a higher dimensional CFT, a0 is related to

an A-type central charge. As a consequence, the logarithmic term related to the central charge

crucially depends on the dimensionality and the shape of the entangling surface.
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- This result represents the entanglement entropy of vacuum states.

- There is no logarithmic term except for d=2.
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Only for even d, a logarithmic term with a
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(d�2)!! appears. This term is universal in

that it is independent of the regularization scheme. As shown in the AdS3 example [9, 10], a0

is related to the central charge of the dual CFT. In a higher dimensional CFT, a0 is related to

an A-type central charge. As a consequence, the logarithmic term related to the central charge

crucially depends on the dimensionality and the shape of the entangling surface.

3

- No logarithmic term

- There exists a constant term, F, which is identified with a free energy of a CFT for d=3.

- For d=3,

F is the same as the free energy of 3-dim. CFT which has been checked by the 

comparison with the localization result. 
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crucially depends on the dimensionality and the shape of the entangling surface.

3

- There exists a universal logarithmic term because it is independent of the renormalization

scheme.

- The coefficient of the logarithmic term is independent of the entangling surface area, which

is related to the a-type anomaly.

- The Weyl anomaly of 4-dim. CFT, 

4.2.1 Entanglement Entropy from Weyl Anomaly

Central charges in CFTs can be defined from the Weyl anomaly (or conformal anomaly)

⟨T µ
µ ⟩. Define the energy-momentum tensor T µν in terms of the functional derivative of

the (quantum corrected) action S with respect to the metric gµν

T µν =
4π
√

g

δS

δgµν
. (4.17)

In 2D CFTs, the Weyl anomaly is given by the well-known formula

⟨T µ
µ ⟩ = − c

12
R, (4.18)

where R is the scalar curvature. We can regard this as a definition of the central charge

c in 2D CFTs.

Now we move on to 4D CFTs. In our normalization of (4.17), the Weyl anomaly can

be written as

⟨T α
α ⟩ = − c

8π
WµνρσW µνρσ +

a

8π
R̃µνρσR̃µνρσ. (4.19)

in a curved metric background gµν , where W and R̃ are the Weyl tensor and the dual of

the curvature tensor. Notice that the second term is the Euler density. In terms of the

ordinary curvature tensor, we can express the curvature square terms in (4.19) as follows

WµνρσW µνρσ = RµνρσRµνρσ − 2RµνR
µν +

1

3
R2,

R̃µνρσR̃µνρσ = RµνρσRµνρσ − 4RµνR
µν + R2. (4.20)

The coefficients c and a in (4.19) are called12 the central charges of 4D CFTs [48, 49,

50]. This is the original definition of the central charges in 4D CFTs. The central charge

a is believed to decrease monotonically under the renormalization group (RG) flow, while

for c this is not true and indeed counter examples are known; these properties of the

central charges a and c are confirmed in many supersymmetric examples e.g. [50].

To compute the entanglement entropy, we first consider the partition function Zn on

the d + 1 dimensional n-sheeted manifold Mn. Then we find the trace of ρn reduced to

the subsystem A is given by the formula (4.1). The entanglement entropy can be found

by taking the derivative of n with the n → 1 limit. If we define the length scale of the

manifold A by l, then the scaling of l is related to the Weyl scaling. They should be the
12The central charge a should not be confused with a UV cutoff. To avoid confusion, acutoff is used

to denote the UV cutoff in this subsection.
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central charges a and c are confirmed in many supersymmetric examples e.g. [50].

To compute the entanglement entropy, we first consider the partition function Zn on

the d + 1 dimensional n-sheeted manifold Mn. Then we find the trace of ρn reduced to

the subsystem A is given by the formula (4.1). The entanglement entropy can be found

by taking the derivative of n with the n → 1 limit. If we define the length scale of the

manifold A by l, then the scaling of l is related to the Weyl scaling. They should be the
12The central charge a should not be confused with a UV cutoff. To avoid confusion, acutoff is used

to denote the UV cutoff in this subsection.
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Even in higher dimensions and in the strong coupling regime,

is given by a co-dimension 2 surface

one can easily apply the Ryu-Takayanagi formula

In the AdS/CFT context,

the entanglement entropy is geometrized as a minimal surface area.  

2. Known results in two-dimensional CFT vs. holographic entanglement entropy
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1 Introduction

2 Entanglement entropy in a two-dimensional CFT

Although the definition of the entanglement entropy is manifest, in general, it is not an easy work to

evaluate the entanglement entropy of a general QFT. For a two-dimensional CFT, however, the exact

entanglement entropy has been well studied due to infinite conformal symmetry and modular invariance

[1]. In this situation, the gauge/gravity duality can shed light on figuring out the entanglement entropy

of a higer dimensional and non-conformal field theory. By taking the analogy to the area of the black

hole entropy, a new formulation was proposed in the holographic context where the entanglement

entropy is associated with the area of the minimal surface extended to the dual geometry [2, 3].

In order to understand the holographic entanglemnet entropy and its extension, we first need to

summarize the known results in a two-dimensional CFT [1].

• In a finite system of length L with a periodic boundary condition, the ground state entanglement

entropy in an interval l is given by

S

E

=
c

3
log


L

⇡✏

sin

✓
⇡l

L

◆�
+ c

0
1, (1)

where c01 is a constant crucailly relying on the regularization scheme and A indicates the number

of boundary for the entangling surface. For a single intervalA = 2. The above result is symmetric

under l ! L� l and has a maximal entropy when l = L/2.

• In a semi-infinite system with [0,1), the ground entanglement entropy of a subsystem defined

in the finite interval [0, l/2) leads to

S

E

=
c

6
log

✓
l

✏

◆
+ Bg + c

0
1, (2)

1

1) For a finite system of length L with a periodic boundary condition, the ground state 

entanglement entropy in an interval l is given by

2) For an infinite system without any boundary, 

the ground entanglement entropy of a single interval reduces to

where g is called the boundary entropy by A✏eck and Ludwig and B indicates the number of

the boundary for the the system we considered. For an infinite system without any boundary

(B = 0), the ground entanglement entropy of a single interval reduces to

S

E

=
c

3
log

✓
l

✏

◆
+ c

0
1. (3)

• For a thermal mixed state at finite temperature ��1, the entanglement entropy in a single interval

is

S

E

=
c

3
log


�

⇡✏

sin

✓
⇡l

�

◆�
+ c

0
1, (4)

which has been reinterpreted as the entanglement entropy of an excited state in the hologaphic

context. In the UV limit with l ⌧ �, it reduces to the above ground state etanglement entorpy

with small corrections

S

E

=
c

3
log

✓
l

✏

◆
+ · · · . (5)

In the IR limit with l � �, on the other hand, the above entanglement entropy becomes an

extensive quantity proportional to the volume of the subsystem [1]

S

E

=
c

3

⇡l

�

. (6)

In the holographic context, the temperature and thermal entropy are given by � = 2⇡z
h

and

S

th

= 1
4G

l

zh
in the dual black hole geometry, where c = 3R

2G with a unit AdS radius (R = 1).

Therefore, the IR entanglement entropy derived from a conformal field theory reduces to the

thermal entropy as discussed in the holographic set-up [5].

• Finally, in a massive QFT deviated from a critical point, the entanglement entropy reduces to

S

E

=
c

3
log

⇠

✏

, (7)

where the correlation distance is given by the inverse of the mass, ⇠ = 1/m.

3 Three-dimensional AdS space with various topologies

Following the gauge/gravity duality, the CFT entanglement entropy discussed above can be reproduced

by considering a minimal surface extended to the dual three-dimensional AdS geometry. Depending
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3) Away from criticality with a correlation length 

the entanglement entropy is replaced by
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Holographic Derivation of Entanglement Entropy from AdS/CFT

Shinsei Ryu and Tadashi Takayanagi
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A holographic derivation of the entanglement entropy in quantum (conformal) field theories is
proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement

where g is called the boundary entropy by A✏eck and Ludwig and B indicates the number of

the boundary for the the system we considered. For an infinite system without any boundary
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✓
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✏

◆
+ c

0
1. (3)
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�

◆�
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0
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◆
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and
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thermal entropy as discussed in the holographic set-up [5].

• Finally, in a massive QFT deviated from a critical point, the entanglement entropy reduces to

S

E

=
c

3
log

⇠

✏

, (7)

where the correlation distance is given by the inverse of the mass, ⇠ = 1/m.
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Following the gauge/gravity duality, the CFT entanglement entropy discussed above can be reproduced

by considering a minimal surface extended to the dual three-dimensional AdS geometry. Depending
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3-dimensional AdS metric
on the boundary topology, we can take into account several di↵erent parameterizations for an AdS

space. A pure three-dimensional AdS metric can generally be written as [4]

ds

2 = �
✓
r

2

R

2
+ k

◆
dt

2 +
r

2

R

2
d⌦2

k

+
1

r

2
/R

2 + k

dr

2
, (8)

where the one-dimensional metric crucially depends on the value of k. When k = 1, for instant, the

undetermined metric is given by d⌦2 = R

2
d✓

2 with 0  ✓ < 2⇡ and the boundary topology is given

by R
t

⇥ S
✓

where R
t

indicates a real line for time, t. If k = 0, on the other hand, d⌦2 = dx

2 with

�1 < x < 1 whose boundary is R
t

⇥R
x

.

3.1 Poincare patch

Let us further study the generalization of the above AdS metric for k = 0. For later convenience, we

introduce a new coordinate, z = R

2
/r. Then, the AdS metric in the Poicare patch reduces to

ds

2 =
R

2

z

2

�
�dt

2 + dx

2 + dz

2
�
. (9)

The Euclidean version of this metric is called a thermal AdS

ds

2 =
R

2

z

2

�
d⌧

2 + dx

2 + dz

2
�
. (10)

In this case, the Euclidean time, ⌧ = �it, has an arbitrary finite range and the boundary topology

changes into S
⌧

⇥ R
x

. The Einstein equation, which the above AdS metric satisfies, allows another

nontrivial solution called a black hole

ds

2 =
R

2

z

2

✓
�f(z)dt2 + dx

2 +
1

f(z)
dz

2

◆
. (11)

with

f(z) = 1� z

2

z

2
h

. (12)

After the Wick rotation, the absence of a conical singularity at the horiozn (z = z

h

) determines the

periodicity of the Euclidean time as � = 2⇡z
h

, which corresponds to the inverse Hawking temperature.

This black hole has the topology, S
�

⇥R
x

, with the periodicity, �.

3.2 Global patch

When we take k = 1, the spatial direction of the boundary is described by a circle, S
✓

, instead of R
x

.

The AdS space in the global patch is in terms of z

ds

2 = �R

2

z

2

✓
1 +

z

2

R

2

◆
dt

2 +
R

4

z

2
d✓

2 +
R

2

z

2

✓
1 +

z

2

R

2

◆�1

dz

2
. (13)
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1 Introduction

2 Entanglement entropy in a two-dimensional CFT

Although the definition of the entanglement entropy is manifest, in general, it is not an easy work to

evaluate the entanglement entropy of a general QFT. For a two-dimensional CFT, however, the exact

entanglement entropy has been well studied due to infinite conformal symmetry and modular invariance

[1]. In this situation, the gauge/gravity duality can shed light on figuring out the entanglement entropy

of a higer dimensional and non-conformal field theory. By taking the analogy to the area of the black

hole entropy, a new formulation was proposed in the holographic context where the entanglement

entropy is associated with the area of the minimal surface extended to the dual geometry [2, 3].

In order to understand the holographic entanglemnet entropy and its extension, we first need to

summarize the known results in a two-dimensional CFT [1].

• In a finite system of length L with a periodic boundary condition, the ground state entanglement

entropy in an interval l is given by

S

E

=
c

3
log


L

⇡✏

sin

✓
⇡l

L

◆�
+ c

0
1, (1)

where c01 is a constant crucailly relying on the regularization scheme and A indicates the number

of boundary for the entangling surface. For a single intervalA = 2. The above result is symmetric

under l ! L� l and has a maximal entropy when l = L/2.

• In a semi-infinite system with [0,1), the ground entanglement entropy of a subsystem defined

in the finite interval [0, l/2) leads to

S

E

=
c

6
log

✓
l

✏

◆
+ Bg + c

0
1, (2)

1

1) For a finite system of length L with a periodic boundary condition, the ground state 

entanglement entropy in an interval l is given by

In order to describe the periodic finite system, 

we consider the global patch (k=1).

A

B

2

t

θ

2πl/L

B

A
γA ρ

(a)

B

A

γA

(b)

FIG. 1: (a) AdS3 space and CFT2 living on its boundary
and (b) a geodesics γA as a holographic screen.

of A) and (ii) SA1
+ SA2

≥ SA1∪A2
(subadditivity) are

satisfied.
We can also define the entanglement entropy at finite

temperature T = β−1. E.g. in a 2D CFT on a infinitely
long line, it is given by replacing L in Eq. (1.3) with iβ
[10]. We argue that Eq. (1.5) still holds in T > 0 cases.
Note that SA = SB is no longer true if T > 0 since ρ
is in a mixed state generically. At high temperature, we
will see that this occurs due to the presence of black hole
horizon in the dual gravity description.

II. ENTANGLEMENT ENTROPY IN AdS3/CFT2

Let us start with the entanglement entropy in 2D
CFTs. According to AdS/CFT correspondence, gravi-
tational theories on AdS3 space of radius R are dual to
(1+1)D CFTs with the central charge [14]

c =
3R

2G(3)
N

. (2.1)

The metric of AdS3 in the global coordinate (t, ρ, θ) is

ds2 = R2
(

− coshρ2dt2 + dρ2 + sinh ρ2dθ2
)

. (2.2)

At the boundary ρ = ∞ of AdS3 the metric is divergent.
To regulate physical quantities we put a cutoff ρ0 and
restrict the space to the bounded region ρ ≤ ρ0. This
procedure corresponds to the UV cutoff in the dual CFTs
[15]. If L is the total length of the system with both ends
identified, and a is the lattice spacing (or UV cutoff) in
the CFTs, we have the relation (up to a numerical factor)

eρ0 ∼ L/a. (2.3)

The (1+1)D spacetime for the CFT2 is identified with
the cylinder (t, θ) at the boundary ρ = ρ0. The subsys-
tem A is the region 0 ≤ θ ≤ 2πl/L. Then γA in Eq. (1.5)
is identified with the static geodesic that connects the
boundary points θ = 0 and 2πl/L with t fixed, traveling
inside AdS3 (Fig. 1 (a)). With the cutoff ρ0 introduced
above, the geodesic distance LγA is given by

cosh

(

LγA

R

)

= 1 + 2 sinh2 ρ0 sin2 πl

L
. (2.4)

Assuming the large UV cutoff eρ0 ≫ 1, the entropy
(1.5) is expressed as follows, using Eq. (2.1)

SA≃ R

4G(3)
N

log

(

e2ρ0 sin2 πl

L

)

=
c

3
log

(

eρ0 sin
πl

L

)

. (2.5)

This entropy precisely coincides with the known CFT
result (1.3) after we remember the relation Eq. (2.3).

This proposed relation (1.5) suggests that the geodesic
(or minimal surface in the higher dimensional case) γA is
analogous to an event horizon as if B were a black hole,
though the division into A and B is just artificial. In
other words, the observer, who is not accessible to B, will
probe γA as a holographic screen [16], instead of B itself
(Fig. 1 (b)). The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows

A = {x|x ∈ [r1, s1] ∪ [r2, s2] ∪ · · · ∪ [rN , sN ]}, (2.6)

where 0 ≤ r1 < s1 < r2 < s2 < · · · < rN < sN ≤ L. In
the dual AdS3 description, the region (2.6) corresponds
to θ ∈ ∪N

i=1[
2πri

L , 2πsi

L ] at the boundary. In this case it
is not straightforward to determine minimal (geodesic)
lines responsible for the entropy. However, we can find
the answer from the entanglement entropy computed in
the CFT side. The general prescription of calculating the
entropy for such systems is given in [10] using conformal
mapping. For our system (2.6), we find, when rewritten
in the AdS3 language, the following expression of SA

SA =

∑

i,j Lrj ,si−
∑

i<j Lrj ,ri−
∑

i<j Lsj ,si

4G(3)
N

, (2.7)

where La,b is the geodesic distance between two boundary
points a and b. We can think that the correct definition
of minimal surface is given by the numerator in Eq. (2.7).

Next we turn to the entanglement entropy at finite
temperature. We assume the spacial length of the total
system L is infinitely long s.t. β/L ≪ 1. At high tem-
perature, the gravity dual of the CFT is the Euclidean
BTZ black hole [17] with the metric given by

ds2 = (r2 − r2
+)dτ2 +

R2

r2 − r2
+

dr2 + r2dϕ2. (2.8)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to
obtain a smooth geometry in addition to the periodicity
ϕ ∼ ϕ+2π. Looking at its boundary, we find the relation
β
L = R

r+
≪ 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ϕ = 0, 2πl/L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiv-
alent to the thermal AdS3 at temperature 1/TBTZ. This
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A holographic derivation of the entanglement entropy in quantum (conformal) field theories is
proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement
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Introducing another coordinate ⇢ related to z

z =
R

sinh ⇢
, (14)

the Euclidean AdS metric can be represented as a di↵erent form

ds

2 = cosh2 ⇢ d⌧

2 +R

2 sinh2 ⇢ d✓

2 +R

2
d⇢

2
. (15)

The boundary topology of the Euclidean AdS space in the global patch is represented as S
⌧

⇥S
✓

. The

black hole generalization in the globla patch is given by

ds

2 = �R

2

z

2

✓
1� z

2

z

2
h

◆
dt

2 +
R

4

z

2
d✓

2 +
R

2

z

2

✓
1� z

2

z

2
h

◆�1

dz

2
. (16)

4 Holographic entanglement entropy

We investigate the holographic entanglement entropy on the above geometries. For the Poincare patch,

the dual field theory corresponds to a CFT defined onR
t

⇥R
x

. The ground state entanglement entropy

of this CFT is holographically determined by
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From this action, the subsystem size is in terms of the turning point, z0,
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Noting that the central charge of the dual CFT is holographically given by c = 3R
2G , the ground state

entanglement entropy on R
t
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results in
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which is consistent with the previous CFT result in (3).
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Introducing another coordinate ⇢ related to z

z =
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4

At t=0, the entanglement entropy is governed by

which reproduces the known CFT result 

Contents

1 Introduction 1

2 Entanglement entropy in a two-dimensional CFT 1

3 Three-dimensional AdS space with various topologies 2

3.1 Poincare patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Global patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Holographic entanglement entropy 4

5 Discussion 5

1 Introduction

2 Entanglement entropy in a two-dimensional CFT

Although the definition of the entanglement entropy is manifest, in general, it is not an easy work to

evaluate the entanglement entropy of a general QFT. For a two-dimensional CFT, however, the exact

entanglement entropy has been well studied due to infinite conformal symmetry and modular invariance

[1]. In this situation, the gauge/gravity duality can shed light on figuring out the entanglement entropy

of a higer dimensional and non-conformal field theory. By taking the analogy to the area of the black

hole entropy, a new formulation was proposed in the holographic context where the entanglement

entropy is associated with the area of the minimal surface extended to the dual geometry [2, 3].

In order to understand the holographic entanglemnet entropy and its extension, we first need to

summarize the known results in a two-dimensional CFT [1].

• In a finite system of length L with a periodic boundary condition, the ground state entanglement

entropy in an interval l is given by

S
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3
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+ c

0
1, (1)

where c01 is a constant crucailly relying on the regularization scheme and A indicates the number

of boundary for the entangling surface. For a single intervalA = 2. The above result is symmetric

under l ! L� l and has a maximal entropy when l = L/2.

• In a semi-infinite system with [0,1), the ground entanglement entropy of a subsystem defined

in the finite interval [0, l/2) leads to
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2) For an infinite system without any boundary, 

the ground entanglement entropy of a single interval reduces to

where g is called the boundary entropy by A✏eck and Ludwig and B indicates the number of

the boundary for the the system we considered. For an infinite system without any boundary

(B = 0), the ground entanglement entropy of a single interval reduces to

S

E

=
c

3
log

✓
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◆
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0
1. (3)

• For a thermal mixed state at finite temperature ��1, the entanglement entropy in a single interval

is

S
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=
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3
log
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+ c

0
1, (4)

which has been reinterpreted as the entanglement entropy of an excited state in the hologaphic

context. In the UV limit with l ⌧ �, it reduces to the above ground state etanglement entorpy

with small corrections

S

E

=
c

3
log

✓
l

✏

◆
+ · · · . (5)

In the IR limit with l � �, on the other hand, the above entanglement entropy becomes an

extensive quantity proportional to the volume of the subsystem [1]

S
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=
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3

⇡l

�

. (6)

In the holographic context, the temperature and thermal entropy are given by � = 2⇡z
h

and

S

th

= 1
4G

l

zh
in the dual black hole geometry, where c = 3R

2G with a unit AdS radius (R = 1).

Therefore, the IR entanglement entropy derived from a conformal field theory reduces to the

thermal entropy as discussed in the holographic set-up [5].

• Finally, in a massive QFT deviated from a critical point, the entanglement entropy reduces to

S

E

=
c

3
log

⇠

✏

, (7)

where the correlation distance is given by the inverse of the mass, ⇠ = 1/m.

3 Three-dimensional AdS space with various topologies

Following the gauge/gravity duality, the CFT entanglement entropy discussed above can be reproduced

by considering a minimal surface extended to the dual three-dimensional AdS geometry. Depending
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Holographic Derivation of Entanglement Entropy from AdS/CFT

Shinsei Ryu and Tadashi Takayanagi
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(Dated: February 1, 2008)

A holographic derivation of the entanglement entropy in quantum (conformal) field theories is
proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d +1 dimen-
sional conformal field theories can be obtained from the area of d dimensional minimal surfaces in
AdSd+2, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our
proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5×S5 with that of the free N = 4 super Yang-Mills.

I. INTRODUCTION

One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of
the Bekenstein-Hawking entropy SBH

SBH =
Area of horizon

4GN
, (1.1)

for BPS black holes [1]. This idea relates the gravi-
tational entropy with the degeneracy of quantum field
theory as its microscopic description. Taking near hori-
zon limit, we can regard this as a special example of
AdS/CFT correspondence [2, 3, 4]. It claims that the
d + 1 dimensional conformal field theories (CFTd+1) are
equivalent to the (super)gravity on d+2 dimensional anti-
deSitter space AdSd+2. We expect that each CFT is sit-
ting at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von-Neumann entropy) in
quantum mechanical systems. The entanglement entropy

SA = −trA ρA log ρA, ρA = trB |Ψ⟩⟨Ψ|, (1.2)

provides us with a convenient way to measure how closely
entangled (or how “quantum”) a given wave function |Ψ⟩
is. Here, the total system is divided into two subsystems
A and B and ρA is the reduced density matrix for the
subsystem A obtained by taking a partial trace over the
subsystem B of the total density matrix ρ = |Ψ⟩⟨Ψ|. In-
tuitively, we can think SA as the entropy for an observer
who is only accessible to the subsystem A and cannot
receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an
observer sitting in A, i.e., outside of the horizon. Indeed,
an original motivation of the entanglement entropy was
its similarity to the Bekenstein-Hawking entropy [5, 6].

The entanglement entropy is of growing importance
in many fields of physics in our exploration for better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded
in many-body wave functions of ground states, rather
than conventional order parameters [7, 8, 9]. Recently,
the entanglement entropy has been extensively studied in
low-dimensional quantum many-body systems as a new

tool to investigate the nature of quantum criticality (refer
to [10] and references therein for example).

For one-dimensional (1D) quantum many-body sys-
tems at criticality (i.e. 2D CFT), it is known that the
entanglement entropy is given by [10, 11]

SA =
c

3
· log

(

L

πa
sin

(

πl

L

))

, (1.3)

where l and L are the length of the subsystem A and
the total system A ∪ B (both ends of A ∪ B are peri-
odically identified), respectively; a is a ultra violet (UV)
cutoff (lattice spacing); c is the central charge of the CFT.
When we are away from criticality, Eq. (1.3) is replaced
by [7, 10]

SA =
c

6
· A · log

ξ

a
, (1.4)

where ξ is the correlation length and A is the number of
boundary points of A (e.g. A = 2 in the setup of (1.3)).

In spite of these recent developments, and its simi-
larity to the black hole entropy, a comprehensive gravi-
tational interpretation of the entanglement entropy has
been lacking so far. Here, we present a simple proposal
on this issue in the light of AdS/CFT duality. Earlier
discussions from different viewpoints can be found in e.g.
papers [12, 13]. Define the entanglement entropy SA in
a CFT on R1,d (or R×Sd) for a subsystem A that has an
arbitrary d − 1 dimensional boundary ∂A ∈ Rd (or Sd).
In this setup we propose the following ‘area law’

SA =
Area of γA

4G(d+2)
N

, (1.5)

where γA is the d dimensional static minimal surface in

AdSd+2 whose boundary is given by ∂A, and G(d+2)
N is

the d + 2 dimensional Newton constant. Intuitively, this
suggests that the minimal surface γA plays the role of a
holographic screen for an observer who is only accessible
to the subsystem A. We show explicitly the relation (1.5)
in the lowest dimensional case d = 1, where γA is given
by a geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From
(1.5), it is readily seen that the basic properties of the
entanglement entropy (i) SA = SB (B is the complement

where g is called the boundary entropy by A✏eck and Ludwig and B indicates the number of

the boundary for the the system we considered. For an infinite system without any boundary

(B = 0), the ground entanglement entropy of a single interval reduces to

S

E

=
c

3
log

✓
l

✏

◆
+ c

0
1. (3)

• For a thermal mixed state at finite temperature ��1, the entanglement entropy in a single interval

is

S

E

=
c

3
log


�

⇡✏

sin

✓
⇡l

�

◆�
+ c

0
1, (4)

which has been reinterpreted as the entanglement entropy of an excited state in the hologaphic

context. In the UV limit with l ⌧ �, it reduces to the above ground state etanglement entorpy

with small corrections

S

E

=
c

3
log

✓
l

✏

◆
+ · · · . (5)

In the IR limit with l � �, on the other hand, the above entanglement entropy becomes an

extensive quantity proportional to the volume of the subsystem [1]

S

E

=
c

3

⇡l

�

. (6)

In the holographic context, the temperature and thermal entropy are given by � = 2⇡z
h

and

S

th

= 1
4G

l

zh
in the dual black hole geometry, where c = 3R

2G with a unit AdS radius (R = 1).

Therefore, the IR entanglement entropy derived from a conformal field theory reduces to the

thermal entropy as discussed in the holographic set-up [5].

• Finally, in a massive QFT deviated from a critical point, the entanglement entropy reduces to

S

E

=
c

3
log

⇠

✏

, (7)

where the correlation distance is given by the inverse of the mass, ⇠ = 1/m.

3 Three-dimensional AdS space with various topologies

Following the gauge/gravity duality, the CFT entanglement entropy discussed above can be reproduced

by considering a minimal surface extended to the dual three-dimensional AdS geometry. Depending

2

describing such an RG flow nonperturbatively and correctly is a very interesting and important prob-

lem we should do. In the holographic model, such a mass gap can be imitated by introducing an

IR cuto↵ which is the simplest holographic toy model called the hard wall model. In this hard wall

model, the range of z covered by a minimal surface is restricted to 0  z  zmin, where zmin implies

the minimum value between z0 and zir. For zmin = z0 (z0 < zir), the range of z is restricted to the

UV regime and the entanglement entropy cannot be aware of the mass gap because it a↵ects only the

low energy physics in the hard wall model. On the other hand, if zmin = zir (zir < z0), it describes

the IR regime and the mass gap significantly a↵ects the entanglement entropy. These properties can

be naturally encoded into the holographic entanglement entropy formula in (7). Rewriting it in terms

of z instead of x, the mass gap dependence becomes manifest

SE =
1

2G

Z ⇠/2

✏
dz

z0

z

p
z

2
0 � z

2
. (10)

From now on, we focus on the IR regime (zir  z0) because the UV entanglement entropy in the hard

wall model reproduces the exact same result obained in the case without a mass gap.

If we set zir = ⇠/2, the entanglement entropy relying on the subsystem size yields

SE(l) =
1

2G
log

⇠

✏

⇣
1 +

p
1� ⇠

2
/l

2
⌘
, (11)

where l � ⇠. The resulting entanglement entropy at l = ⇠ reproduces the known CFT result shown in

(4), while in the l � ⇠ limit it gives rise to

SE(1) =
1

2G
log

⇠

2✏
. (12)

These results show that the entanglement entropy decreases as the subsystem size increases. More

precisely, since the RG equation of the entanglement entropy is always negative

dSE(l)

d log l
=

1

2G

⇠

2

⇠

2 � l

2
⇣
1 +

p
1� ⇠

2
/l

2
⌘
< 0, (13)

the resulting entanglement entropy monotonically decreases along the RG flow. In order to define the

RG flow of the entanglement entropy more physically, we define a renormalized entanglement entropy

by subtracting the ground state entanglement entropy

S̄E ⌘ SE � S0 =
1

2G
log

⇠

l

⇣
1 +

p
1� ⇠

2
/l

2
⌘
. (14)

The defineition of the renormalized entanglement entropy leads to a finite entanglement entropy and

beomces independent of the renormalization scheme. The RG flow of the renormalized entanglement

entropy is depicted in Fig. 1. For l < ⇠, there is no nontrivial RG flow in the hard wall model. However,

5

Using the similar calculation,  

the entanglement entropy is governed by

SE =
1

2G
log

l

✏

(1)

SE =
c

3
log

✓
L

⇡✏

sin
⇡l

L

◆
⇡ c

3
log

l

✏

(2)

x z(x)

c =
3R

2G
(3)

z =
q

l2
4 � x

2
✏ ! 0 �(l � l⇤)/2
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For the entanglement entropy

we can derive the entanglement entropy of an excited state by using the AdS/CFT 

correspondence

For the three-dimensional AdS (BTZ) black hole (dual to a 2-dim. CFT)

Chanyong Park

a,b⇤

a
Asia Pacific Center for Theoretical Physics, Pohang, 790-784, Korea

b
Department of Physics, Postech, Pohang, 790-784, Korea

=======================================================

Holographic renormalization and entanglement entropy

Recently, the AdS/CFT correspondence has been widely used in order to understand universal

features of strongly interacting systems. In this lecture, I will discuss how to extract various informa-

tion of a strongly interacting system by using the holographic technique. After briefly reviewing the

holographic renormalization and entanglement entropy, I will discuss their relation and RG flow.
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- Renormalization schemes of the dual gravity
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2

z
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R

2

z
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2
+

R

2

z

2
dx

2
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2

z

2
h
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TH =

1

2⇡

1

zh
,

Sth =

1

4G

l

zh
,

E =

1

16⇡G

l

z2h
. (1)

the first law of thermodynamics, dE = THdSth, leads to the following internal energy

E =

1

16⇡G

l

z2h
. (2)

This internal energy satisfies

E =

1

2�
THSth, (3)

⇤
e-mail : chanyong.park@apctp.org
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and satisfy the first law of thermodynamics

The equation of motion derived from this action allows the following analytic black hole solution

ds2 = �R2�

z2�
f(z)dt2 +

R2

z2f(z)
dz2 +

R2

z2
dx2, (24)

with

f(z) = 1� z�+1

z�+1
h

(25)

where � is a free parameter denoting the dynamical critical exponent. Especially, it reduces the AdS

geometry for � = 1. From now on, we set R = 1 for simplicity. Using the Hawking temperature and

Bekenstein-Hawking entropy contained in the volume l

TH =
� + 1

4⇡

1

z2��1
h

,

Sth =
1

4G

l

zh
, (26)

the first law of thermodynamics, dE = THdSth, leads to the following internal energy

E =

Z
THdSth =

(� + 1)

32⇡�G

l

z2�h
. (27)

This internal energy satisfies

E =
1

2�
THSth, (28)

where the multiplication factor of the right hand side naturally appears because the temperature in

the first law of thermodynamics relies on the entropy nontrivially.

3.1 Holographic IR entanglement entropy of a two-dimensional CFT

Let us first study quantum aspects of the CFT dual to the three-dimensional AdS black hole by taking

� = 1 in (24). In the holographic contexts, the entanglement entropy can be represented as a minimal

surface extended in the dual geometry. If we set the subsystem size to be l, the area of the minimal

surface is governed by

A =

Z l/2

0
dx

R

z

s

1 +
z02

f
, (29)

where the prime means a derivative with respect to x. Since this action does not explicitly rely on the

coordinate x, there exists a well-defined conserved quantity

H = �R

z

1p
1 + z02/f

. (30)

In addition, the Z2 symmetry (x ! �x) allows a turning point at x = 0 and, at the same time, the

smoothness of the minimal surface at this point leads to z0 = 0. These constraints determine the
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4) At finite temperature,

the entanglement entropy is 

where g is called the boundary entropy by A✏eck and Ludwig and B indicates the number of

the boundary for the the system we considered. For an infinite system without any boundary

(B = 0), the ground entanglement entropy of a single interval reduces to

S

E

=
c

3
log

✓
l

✏

◆
+ c

0
1. (3)

• For a thermal mixed state at finite temperature ��1, the entanglement entropy in a single interval

is

S

E

=
c

3
log


�

⇡✏

sin

✓
⇡l

�

◆�
+ c

0
1, (4)

which has been reinterpreted as the entanglement entropy of an excited state in the hologaphic

context. In the UV limit with l ⌧ �, it reduces to the above ground state etanglement entorpy

with small corrections

S

E

=
c

3
log

✓
l

✏

◆
+ · · · . (5)

In the IR limit with l � �, on the other hand, the above entanglement entropy becomes an

extensive quantity proportional to the volume of the subsystem [1]

S

E

=
c

3

⇡l

�

. (6)

In the holographic context, the temperature and thermal entropy are given by � = 2⇡z
h

and

S

th

= 1
4G

l

zh
in the dual black hole geometry, where c = 3R

2G with a unit AdS radius (R = 1).

Therefore, the IR entanglement entropy derived from a conformal field theory reduces to the

thermal entropy as discussed in the holographic set-up [5].

• Finally, in a massive QFT deviated from a critical point, the entanglement entropy reduces to

S

E

=
c

3
log

⇠

✏

, (7)

where the correlation distance is given by the inverse of the mass, ⇠ = 1/m.

3 Three-dimensional AdS space with various topologies

Following the gauge/gravity duality, the CFT entanglement entropy discussed above can be reproduced

by considering a minimal surface extended to the dual three-dimensional AdS geometry. Depending
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In the holographic context

the entanglement entropy can be evaluated as the area 

of the minimal surface extended in the dual geometry.

The equation of motion derived from this action allows the following analytic black hole solution

ds2 = �R2�

z2�
f(z)dt2 +

R2

z2f(z)
dz2 +

R2

z2
dx2, (24)

with

f(z) = 1� z�+1

z�+1
h

(25)

where � is a free parameter denoting the dynamical critical exponent. Especially, it reduces the AdS

geometry for � = 1. From now on, we set R = 1 for simplicity. Using the Hawking temperature and

Bekenstein-Hawking entropy contained in the volume l

TH =
� + 1

4⇡

1

z2��1
h

,

Sth =
1

4G

l

zh
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Let us first study quantum aspects of the CFT dual to the three-dimensional AdS black hole by taking

� = 1 in (24). In the holographic contexts, the entanglement entropy can be represented as a minimal

surface extended in the dual geometry. If we set the subsystem size to be l, the area of the minimal

surface is governed by

A =

Z l/2

0
dx

R

z

s

1 +
z02

f
, (29)

where the prime means a derivative with respect to x. Since this action does not explicitly rely on the

coordinate x, there exists a well-defined conserved quantity

H = �R

z

1p
1 + z02/f

. (30)

In addition, the Z2 symmetry (x ! �x) allows a turning point at x = 0 and, at the same time, the

smoothness of the minimal surface at this point leads to z0 = 0. These constraints determine the
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subsystem size and the holographic entanglement entropy in terms of the turning point denoted by z0

l = 2

Z z0

0
dz

zp
f
p
z20 � z2

, (31)

SE ⌘ A

4G
=

1

2G

Z z0

✏
dz

z0

z
p
f
p
z20 � z2

, (32)

where a UV cuto↵ ✏ is introduced to regularize the entanglement entropy. Performing these integra-

tions, we obtain the following analytic solutions

z0 = zh tanh

✓
l

2zh

◆
, (33)

SE =
1

2G
log

2z0
✏

� 1

4G
log

✓
1� z20

z2h

◆
. (34)

When zh ! 1, the turning point reduces to z0 = l/2 and the entanglement entropy becomes

S0
E =

1

2G
log

l

✏
. (35)

This is the entanglement entropy of the ground state discussed before and shows a logarithmic UV

divergence. The coe�cient of the logarithmic term is associated with the central charge of the dual

CFT, c = 3R
2G .

In order to get rid of the UV divergence, we introduce a renormalized entanglement entropy by

subtracting the ground state entanglement entropy

S̄E ⌘ SE � S0
E . (36)

Then, the exact renormalized entanglement entropy becomes in terms of the subsystem size

S̄E =
1

2G
log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (37)

Now, let us define a generalized entanglement temperature as

1

T̄E
⌘ 1

2

S̄E

Ē
=

4⇡z2h
l

log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (38)

where we introduced a factor 1/2 for the comparison with the black hole thermodynamics in (28).

Above the excitation energy contained in the volume l is defined as Ē ⌘ E � E0. Since the vacuum

energy E0 of the pure AdS space vanishes, Ē is equal to the excitation energy. It should be noted that

the generalized entanglement temperature defined here is di↵erent from the one used in the previous

works. The definition of T̄E in (38) involves not only the leading contribution but also all higher order

corrections, whereas TE used in the previous work contains only the leading contribution in the UV

limit (l/zh ⌧ 1). Their explicit relation in the UV region reads

1

T̄E
=

1

TE

✓
1� l2

120z2h
+ · · ·

◆
(39)
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Then, the subsystem size and the entanglement entropy

can be rewritten in terms of the turning point

subsystem size and the holographic entanglement entropy in terms of the turning point denoted by z0

l = 2
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0
dz

zp
f
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z20 � z2

, (31)

SE ⌘ A

4G
=

1

2G

Z z0

✏
dz

z0

z
p
f
p
z20 � z2

, (32)

where a UV cuto↵ ✏ is introduced to regularize the entanglement entropy. Performing these integra-

tions, we obtain the following analytic solutions

z0 = zh tanh

✓
l

2zh

◆
, (33)

SE =
1

2G
log

2z0
✏

� 1

4G
log

✓
1� z20

z2h

◆
. (34)

When zh ! 1, the turning point reduces to z0 = l/2 and the entanglement entropy becomes

S0
E =

1

2G
log

l

✏
. (35)

This is the entanglement entropy of the ground state discussed before and shows a logarithmic UV

divergence. The coe�cient of the logarithmic term is associated with the central charge of the dual

CFT, c = 3R
2G .

In order to get rid of the UV divergence, we introduce a renormalized entanglement entropy by

subtracting the ground state entanglement entropy

S̄E ⌘ SE � S0
E . (36)

Then, the exact renormalized entanglement entropy becomes in terms of the subsystem size

S̄E =
1

2G
log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (37)

Now, let us define a generalized entanglement temperature as

1

T̄E
⌘ 1

2

S̄E

Ē
=

4⇡z2h
l

log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (38)

where we introduced a factor 1/2 for the comparison with the black hole thermodynamics in (28).

Above the excitation energy contained in the volume l is defined as Ē ⌘ E � E0. Since the vacuum

energy E0 of the pure AdS space vanishes, Ē is equal to the excitation energy. It should be noted that

the generalized entanglement temperature defined here is di↵erent from the one used in the previous

works. The definition of T̄E in (38) involves not only the leading contribution but also all higher order

corrections, whereas TE used in the previous work contains only the leading contribution in the UV

limit (l/zh ⌧ 1). Their explicit relation in the UV region reads

1

T̄E
=

1

TE

✓
1� l2

120z2h
+ · · ·

◆
(39)
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This is an exact and analytic result.

When           

subsystem size and the holographic entanglement entropy in terms of the turning point denoted by z0

l = 2
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0
dz
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f
p
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, (31)

SE ⌘ A

4G
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1

2G

Z z0

✏
dz

z0

z
p
f
p
z20 � z2

, (32)

where a UV cuto↵ ✏ is introduced to regularize the entanglement entropy. Performing these integra-

tions, we obtain the following analytic solutions

z0 = zh tanh

✓
l

2zh

◆
, (33)

SE =
1

2G
log

2z0
✏

� 1

4G
log

✓
1� z20

z2h

◆
. (34)

When zh ! 1, the turning point reduces to z0 = l/2 and the entanglement entropy becomes

S0
E =

1

2G
log

l

✏
. (35)

This is the entanglement entropy of the ground state discussed before and shows a logarithmic UV

divergence. The coe�cient of the logarithmic term is associated with the central charge of the dual

CFT, c = 3R
2G .

In order to get rid of the UV divergence, we introduce a renormalized entanglement entropy by

subtracting the ground state entanglement entropy

S̄E ⌘ SE � S0
E . (36)

Then, the exact renormalized entanglement entropy becomes in terms of the subsystem size

S̄E =
1

2G
log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (37)

Now, let us define a generalized entanglement temperature as
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2

S̄E
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✓
2zh
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✓
l

2zh

◆◆
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where we introduced a factor 1/2 for the comparison with the black hole thermodynamics in (28).

Above the excitation energy contained in the volume l is defined as Ē ⌘ E � E0. Since the vacuum

energy E0 of the pure AdS space vanishes, Ē is equal to the excitation energy. It should be noted that
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+ · · ·

◆
(39)
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In the UV region

with

TE =
6

⇡l
. (40)

In the UV region, the renormalized entanglement entropy of the excited state becomes

S̄E =
1

48G

l2

z2h

✓
1� l2

120z2h
+ · · ·

◆
. (41)

The entanglement entropy grows by l2 when the subsystem size increases, whereas the thermal entropy

grows by l. Comparing these result with the black hole quantities in (26), one can easily see that

the entanglement entropy and entanglement temperature in the UV region have nothing to with

thermodynamics of the black hole. Ignoring higher order corrections of T̄E and S̄E , it has been known

that they satisfy the thermodynamics-like law which plays a crucial role in reconstructing the dual

linearized geometry only from CFT data. To go beyond the linearized level, it would be interesting

to investigate the above generalized thermodynamics-like law in (38). Since it contains information of

all higher order corrections, it would be helpful to construct a nonlinear Einstein equation of the dual

geometry.

In order to account for the connection between the entanglement and thermal entropies, we should

further investigate the entanglement entropy of the IR region corresponding to the z0 ⇡ zh limit where

l becomes large. From the exact solution in (33), the IR limit implies the large subsystem size and

the renormalized entanglement entropy reduces to

S̄E =
1

4G

l

zh
� 1

2G
log

✓
l

4zh

◆
+O

⇣
✏�l/zh

⌘
. (42)

Reexpressing the IR entanglement entropy in terms of the black hole entropy strored in the volume l

S̄E = Sth � 1

2G
logSth +O (1) , (43)

it resembles the previous CFT results in (16), (20) and (21). Since Sth is large in the IR limit, the

leading contribution to the IR entanglement entropy comes from the thermal entropy as mentioned

before and the first quantum correction is proportional to the logarithm of the thermal entropy.

Intriguingly, these results show that the UV entanglement entropy, which has no any connection to

the thermal entropy, can evolve into the thermal entropy in the IR region along the RG flow.

For understanding more details of the entanglement RG flow, we take into account the inverse

of the entanglement temperature, �E = 1/T̄E , which represents how the entanglement entropy is

thermalized in the IR regime more manifestly. In the UV regime, the leading behaviors of �E and

its RG flow are linearly proportional to l, while the thermal temperature in (26) does not rely on the

system size. Thus, we can say that the entanglement temperature in the UV region is di↵erent from

the real temperature, and that it describes a quantum entanglement entropy rather than a thermal

8

In order to go beyond the linearized lever and to describe the RG flow correctly,

we need generalized concepts involving all higher order corrections.

We define a generalized thermodynamics-like law and generalized entanglement

temperature involving all higher order correction and satisfying in the entire region
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zh
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- This relation is defined in the UV region with neglecting higher order corrections.

with

- It is not valid in the IR region.

- It reproduces the linearized Einstein equation of the dual geometry.

Thermodynamics-like law of the entanglement entropy
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Define a renormalized entanglement entropy (subtracting the ground state EE)

subsystem size and the holographic entanglement entropy in terms of the turning point denoted by z0

l = 2

Z z0

0
dz

zp
f
p

z20 � z2
, (31)

SE ⌘ A

4G
=

1

2G

Z z0

✏
dz

z0

z
p
f
p

z20 � z2
, (32)

where a UV cuto↵ ✏ is introduced to regularize the entanglement entropy. Performing these integra-

tions, we obtain the following analytic solutions

z0 = zh tanh

✓
l

2zh

◆
, (33)

SE =
1

2G
log

2z0
✏

� 1

4G
log

✓
1� z20

z2h

◆
. (34)

When zh ! 1, the turning point reduces to z0 = l/2 and the entanglement entropy becomes

S0
E =

1

2G
log

l

✏
. (35)

This is the entanglement entropy of the ground state discussed before and shows a logarithmic UV

divergence. The coe�cient of the logarithmic term is associated with the central charge of the dual

CFT, c = 3R
2G .

In order to get rid of the UV divergence, we introduce a renormalized entanglement entropy by

subtracting the ground state entanglement entropy

S̄E ⌘ SE � S0
E . (36)

Then, the exact renormalized entanglement entropy becomes in terms of the subsystem size

S̄E =
1

2G
log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (37)

Now, let us define a generalized entanglement temperature as

1

T̄E
⌘ 1

2

S̄E

Ē
=

4⇡z2h
l

log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (38)

where we introduced a factor 1/2 for the comparison with the black hole thermodynamics in (28).

Above the excitation energy contained in the volume l is defined as Ē ⌘ E � E0. Since the vacuum

energy E0 of the pure AdS space vanishes, Ē is equal to the excitation energy. It should be noted that

the generalized entanglement temperature defined here is di↵erent from the one used in the previous

works. The definition of T̄E in (38) involves not only the leading contribution but also all higher order

corrections, whereas TE used in the previous work contains only the leading contribution in the UV

limit (l/zh ⌧ 1). Their explicit relation in the UV region reads

1

T̄E
=

1

TE

✓
1� l2

120z2h
+ · · ·

◆
(39)
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where we introduced a factor 1/2 for the comparison with the black hole thermodynamics in (28).
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energy E0 of the pure AdS space vanishes, Ē is equal to the excitation energy. It should be noted that

the generalized entanglement temperature defined here is di↵erent from the one used in the previous
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7Ignoring  order corrections, they are reduced to the known results.
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energy E0 of the pure AdS space vanishes, Ē is equal to the excitation energy. It should be noted that
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works. The definition of T̄E in (38) involves not only the leading contribution but also all higher order
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with

TE =
6

⇡l
. (40)

In the UV region, the renormalized entanglement entropy of the excited state becomes

S̄E =
1

48G

l2

z2h

✓
1� l2

120z2h
+ · · ·

◆
. (41)

The entanglement entropy grows by l2 when the subsystem size increases, whereas the thermal entropy

grows by l. Comparing these result with the black hole quantities in (26), one can easily see that

the entanglement entropy and entanglement temperature in the UV region have nothing to with

thermodynamics of the black hole. Ignoring higher order corrections of T̄E and S̄E , it has been known

that they satisfy the thermodynamics-like law which plays a crucial role in reconstructing the dual

linearized geometry only from CFT data. To go beyond the linearized level, it would be interesting

to investigate the above generalized thermodynamics-like law in (38). Since it contains information of

all higher order corrections, it would be helpful to construct a nonlinear Einstein equation of the dual

geometry.

In order to account for the connection between the entanglement and thermal entropies, we should

further investigate the entanglement entropy of the IR region corresponding to the z0 ⇡ zh limit where

l becomes large. From the exact solution in (33), the IR limit implies the large subsystem size and

the renormalized entanglement entropy reduces to

S̄E =
1

4G

l

zh
� 1

2G
log

✓
l

4zh

◆
+O

⇣
✏�l/zh

⌘
. (42)

Reexpressing the IR entanglement entropy in terms of the black hole entropy strored in the volume l

S̄E = Sth � 1

2G
logSth +O (1) , (43)

it resembles the previous CFT results in (16), (20) and (21). Since Sth is large in the IR limit, the

leading contribution to the IR entanglement entropy comes from the thermal entropy as mentioned

before and the first quantum correction is proportional to the logarithm of the thermal entropy.

Intriguingly, these results show that the UV entanglement entropy, which has no any connection to

the thermal entropy, can evolve into the thermal entropy in the IR region along the RG flow.

For understanding more details of the entanglement RG flow, we take into account the inverse

of the entanglement temperature, �E = 1/T̄E , which represents how the entanglement entropy is

thermalized in the IR regime more manifestly. In the UV regime, the leading behaviors of �E and

its RG flow are linearly proportional to l, while the thermal temperature in (26) does not rely on the

system size. Thus, we can say that the entanglement temperature in the UV region is di↵erent from

the real temperature, and that it describes a quantum entanglement entropy rather than a thermal

8

subsystem size and the holographic entanglement entropy in terms of the turning point denoted by z0
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Z z0

0
dz

zp
f
p

z20 � z2
, (31)

SE ⌘ A

4G
=

1

2G

Z z0

✏
dz

z0

z
p
f
p

z20 � z2
, (32)

where a UV cuto↵ ✏ is introduced to regularize the entanglement entropy. Performing these integra-

tions, we obtain the following analytic solutions

z0 = zh tanh

✓
l

2zh

◆
, (33)

SE =
1

2G
log

2z0
✏

� 1

4G
log

✓
1� z20

z2h

◆
. (34)

When zh ! 1, the turning point reduces to z0 = l/2 and the entanglement entropy becomes

S0
E =

1

2G
log

l

✏
. (35)

This is the entanglement entropy of the ground state discussed before and shows a logarithmic UV

divergence. The coe�cient of the logarithmic term is associated with the central charge of the dual

CFT, c = 3R
2G .
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E . (36)
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S̄E =
1

2G
log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (37)

Now, let us define a generalized entanglement temperature as

1

T̄E
⌘ 1

2

S̄E

Ē
=

4⇡z2h
l

log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (38)

where we introduced a factor 1/2 for the comparison with the black hole thermodynamics in (28).

Above the excitation energy contained in the volume l is defined as Ē ⌘ E � E0. Since the vacuum
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corrections, whereas TE used in the previous work contains only the leading contribution in the UV

limit (l/zh ⌧ 1). Their explicit relation in the UV region reads

1

T̄E
=

1

TE

✓
1� l2

120z2h
+ · · ·

◆
(39)
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TE =
6

⇡l
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l2
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✓
1� l2

120z2h
+ · · ·

◆
. (41)

The entanglement entropy grows by l2 when the subsystem size increases, whereas the thermal entropy
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thermodynamics of the black hole. Ignoring higher order corrections of T̄E and S̄E , it has been known

that they satisfy the thermodynamics-like law which plays a crucial role in reconstructing the dual

linearized geometry only from CFT data. To go beyond the linearized level, it would be interesting

to investigate the above generalized thermodynamics-like law in (38). Since it contains information of

all higher order corrections, it would be helpful to construct a nonlinear Einstein equation of the dual

geometry.

In order to account for the connection between the entanglement and thermal entropies, we should

further investigate the entanglement entropy of the IR region corresponding to the z0 ⇡ zh limit where

l becomes large. From the exact solution in (33), the IR limit implies the large subsystem size and

the renormalized entanglement entropy reduces to

S̄E =
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4G

l

zh
� 1

2G
log

✓
l

4zh

◆
+O

⇣
✏�l/zh

⌘
. (42)

Reexpressing the IR entanglement entropy in terms of the black hole entropy strored in the volume l

S̄E = Sth � 1
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it resembles the previous CFT results in (16), (20) and (21). Since Sth is large in the IR limit, the

leading contribution to the IR entanglement entropy comes from the thermal entropy as mentioned

before and the first quantum correction is proportional to the logarithm of the thermal entropy.

Intriguingly, these results show that the UV entanglement entropy, which has no any connection to

the thermal entropy, can evolve into the thermal entropy in the IR region along the RG flow.

For understanding more details of the entanglement RG flow, we take into account the inverse

of the entanglement temperature, �E = 1/T̄E , which represents how the entanglement entropy is

thermalized in the IR regime more manifestly. In the UV regime, the leading behaviors of �E and

its RG flow are linearly proportional to l, while the thermal temperature in (26) does not rely on the

system size. Thus, we can say that the entanglement temperature in the UV region is di↵erent from

the real temperature, and that it describes a quantum entanglement entropy rather than a thermal
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leading contribution to the IR entanglement entropy comes from the thermal entropy as mentioned

before and the first quantum correction is proportional to the logarithm of the thermal entropy.

Intriguingly, these results show that the UV entanglement entropy, which has no any connection to

the thermal entropy, can evolve into the thermal entropy in the IR region along the RG flow.

For understanding more details of the entanglement RG flow, we take into account the inverse

of the entanglement temperature, �E = 1/T̄E , which represents how the entanglement entropy is

thermalized in the IR regime more manifestly. In the UV regime, the leading behaviors of �E and

its RG flow are linearly proportional to l, while the thermal temperature in (26) does not rely on the

system size. Thus, we can say that the entanglement temperature in the UV region is di↵erent from

the real temperature, and that it describes a quantum entanglement entropy rather than a thermal
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Note that the generalized entanglement temperature was defined to satisfy the 

thermodynamics-like law exactly with involving all higher order correction. Therefore, 

we can apply the thermodynamics-like law to the IR entanglement entropy. 

Rewriting the entanglement entropy in terms of the subsystem size, it leads to

SE =
1

2G
log

✓
�

⇡✏
sinh

✓
⇡l

�

◆◆
, (34)

where � = 2⇡zh was used. This is the exact same as the entanglement entropy of a two-dimensional

CFT at finite temperature, � = 1/TH . For a pure AdS (zh = 1), the turning point is at z0 = l/2 and

the entanglement entropy becomes

S0
E =

1

2G
log

l

✏
, (35)

which has a logarithmic UV divergence and corresponds to the ground state entanglement entropy.

The coe�cient of the logarithmic term is associated with the central charge of the dual CFT, c = 3R
2G .

In order to remove the UV divergence, we introduce a renormalized entanglement entropy by

subtracting the above ground state entanglement entropy

S̄E ⌘ SE � S0
E . (36)

Then, the renormalized entanglement entropy of an excited state (zh 6= 0) becomes in terms of the

subsystem size

S̄E =
1

2G
log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (37)

whose leading behavior in the UV regime is given by

S̄UV
E ⇡ 1

48G

l2

z2h
. (38)

Using the entanglement temperature defined in the previous works [27, 28, 32]

TE =
6

⇡l
, (39)

the entanglement entropy in (38) satisfies the thermodynamics-like law, E = 1/2 TES̄
UV
E . It is worth

noting that this thermodynamics-like law is valid only in the UV limit because it does not involves

higher order corrections.

In order to study the RG flow of the entanglement entropy in the IR as well as UV regimes, one

should take into account all higher oder corrections correctly. To do so, we need to define a generalized

entanglement temperature, T̄E , newly

1

T̄E
⌘ 1

2

S̄E

Ē
=

4⇡z2h
l

log

✓
2zh
l

sinh

✓
l

2zh

◆◆
, (40)

where we introduced a factor 1/2 for the comparison with the black hole thermodynamics in (27).

Under this definition, the generalized thermodynamics-like law, Ē = 1/2 T̄ES̄E , is generally satisfied in

the entire region of l including the IR region (l ! 1). In this case, the excitation energy accumulated

in the volume l is defined as Ē ⌘ E �E0 and reduces to Ē = E because the vacuum energy vanishes,
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- When the dynamical critical exponent is 1 (           ), the Lifshitz geometry 

reduces to the AdS one.
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- For            , the dual field theory corresponds to a non-relativistic Lifshitz theory
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Kubo formula for γ ≥ 1. This is due to the change of the asymptotic boundary condition. While the

membrane paradigm does not care about the change of the asymptotic boundary condition [41, 42], the

Kubo formula crucially depends on it [43, 44, 45]. On the other hand, the fluctuation of the background

gauge field corresponds to the Lifshitz matter. The DC conductivity carried by it shows totally different

behavior from that of impurity because it is coupled to the metric fluctuation through the background

gauge field even at quadratic order. The Kubo formula says that the DC conductivity carried by the

Lifshitz matter is proportional to the square of temperature. In certain condensed matter systems

like semiconductor, impurity is important to explain their electric property. Therefore it is interesting

to understand the role of impurity in the medium. We find that at high temperature impurity with

γ < −2 can change the electric property of the non-relativistic Lifshitz medium significantly.

The rest of the paper is organized as follows: In Sec. 2, we represent the Lifshitz black brane

solution including the manifest hyperscaling symmetry and its thermodynamics with explaining our

conventions. In Sec. 3, the DC conductivities carried two different charge carriers in the non-relativistic

Lifshitz medium are studied. The results show that impurity with γ < −2 significantly changes the

electric property of the Lifshitz medium at high temperature. Finally, we finish this work with some

concluding remarks.

2 Thermodynamic properties

There exist many scale-invariant field theories without the Lorentz invariance near the critical points

[5, 7]. One of such examples is the Lifshitz theory

S[χ] =
∫

d3x
[

(∂tχ)
2 −K

(

∇2χ
)2
]

, (1)

which describes a fixed line parameterized by K with a dynamical exponent z = 2 [11]. Following the

gauge/gravity duality, such a non-relativistic theory can be mapped to a Lifshitz geometry as a dual

gravity. There are several bottom-up models, gravity with higher form fields [9] and gravity with a

massive gauge field and non-dynamical scalar field. These models have been widely investigated by

many authors [11, 33, 46]. Another example appears as a geometric solution of the Einstein-Maxwell-

dilaton theory. In this paper we will concentrate on the latter case.

Our starting action is the Einstein-Maxwell-dilaton theory with a negative cosmological constant

Λ

SEMd =
1

16πG

∫

dDx
√
−g

(

R− 2Λ−
1

2
∂µφ ∂µφ−

1

4
eλφFµνF

µν
)

, (2)

with

Fµν = ∂µAν − ∂νAµ, (3)

where λ is a constant describing the coupling between the gauge field and dilaton. From this action,
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3. Universality of the holographic entanglement entropy 
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- E and S are extensive quantities. - is not an extensive quantity.

Chanyong Park

a,b⇤

a
Asia Pacific Center for Theoretical Physics, Pohang, 790-784, Korea

b
Department of Physics, Postech, Pohang, 790-784, Korea

=======================================================

Holographic renormalization and entanglement entropy

Recently, the AdS/CFT correspondence has been widely used in order to understand universal

features of strongly interacting systems. In this lecture, I will discuss how to extract various informa-

tion of a strongly interacting system by using the holographic technique. After briefly reviewing the

holographic renormalization and entanglement entropy, I will discuss their relation and RG flow.

dE = TE d SE (1)

⇤
e-mail : chanyong.park@apctp.org

1

- T is independent of the system size.

- Universal 

(independent of microscopic details)

- relies on the subsystem size.
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In the IR region (      ),

with

TE =
6

⇡l
. (40)

In the UV region, the renormalized entanglement entropy of the excited state becomes

S̄E =
1

48G

l2

z2h

✓
1� l2

120z2h
+ · · ·

◆
. (41)

The entanglement entropy grows by l2 when the subsystem size increases, whereas the thermal entropy

grows by l. Comparing these result with the black hole quantities in (26), one can easily see that

the entanglement entropy and entanglement temperature in the UV region have nothing to with

thermodynamics of the black hole. Ignoring higher order corrections of T̄E and S̄E , it has been known

that they satisfy the thermodynamics-like law which plays a crucial role in reconstructing the dual

linearized geometry only from CFT data. To go beyond the linearized level, it would be interesting

to investigate the above generalized thermodynamics-like law in (38). Since it contains information of

all higher order corrections, it would be helpful to construct a nonlinear Einstein equation of the dual

geometry.

In order to account for the connection between the entanglement and thermal entropies, we should

further investigate the entanglement entropy of the IR region corresponding to the z0 ⇡ zh limit where

l becomes large. From the exact solution in (33), the IR limit implies the large subsystem size and

the renormalized entanglement entropy reduces to

S̄E =
1

4G

l

zh
� 1

2G
log

✓
l

4zh

◆
+O

⇣
✏�l/zh

⌘
. (42)

Reexpressing the IR entanglement entropy in terms of the black hole entropy strored in the volume l

S̄E = Sth � 1

2G
logSth +O (1) , (43)

it resembles the previous CFT results in (16), (20) and (21). Since Sth is large in the IR limit, the

leading contribution to the IR entanglement entropy comes from the thermal entropy as mentioned

before and the first quantum correction is proportional to the logarithm of the thermal entropy.

Intriguingly, these results show that the UV entanglement entropy, which has no any connection to

the thermal entropy, can evolve into the thermal entropy in the IR region along the RG flow.

For understanding more details of the entanglement RG flow, we take into account the inverse

of the entanglement temperature, �E = 1/T̄E , which represents how the entanglement entropy is

thermalized in the IR regime more manifestly. In the UV regime, the leading behaviors of �E and

its RG flow are linearly proportional to l, while the thermal temperature in (26) does not rely on the

system size. Thus, we can say that the entanglement temperature in the UV region is di↵erent from

the real temperature, and that it describes a quantum entanglement entropy rather than a thermal
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we reach to the similar result obtained from the black hole and CFT calculations 

Since           in the IR limit,
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the IR entanglement entropy reduces to the thermal entropy with small quantum corrections.
Also, we can see that the generalized entanglement temperature reduces to the real temperature.
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Figure 1: (a) The inverse of the entanglement temperature depending on the subsystem size and (b) its RG
flow.

one. This is not true in the IR regime corresponding to the large l limit. In the IR regime, �E behaves

as

�E = 2⇡zh +
4⇡z2h
l

log
⇣zh

l

⌘
+ · · · , (44)

and approaches to the inverse of the Hawking temperature. In Fig. 1(a), we depict how the entangle-

ment temperature approaches to the Hawking temperature in the IR regime. In order to distinguish

the thermal behavior from the quantum entanglement entropy, let us consider the RG flow of �E
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We plot the RG flow of �E in Fig. 1(b), where it approaches to zero as l ! 1. Recalling that the

RG flow of the Bekenstein-Hawking temperature is trivial because it does not rely on the system size,

the RG flow of �E in the IR limit confirms that the entanglement temperature really becomes the real

temperature. Fig. 1(b) shows a maximum at a point l = 7.019. When the subsystem size is smaller

than this critical value the system behaves like a quantum system, whereas above the critical point

the system approaches to a thermal system.

In the quantum information theory, recently, there was an interesting study on the connection

between the quantum information and thermodynamics. It has been showed that pure quantum states

can evolve into a thermal equilibrium through the unitary time evolution. Although it is not clear

how the unitary time evolution of the quantum information theory is associated with the RG flow, the

holographic RG flow studied here shows a similar behavior between the quantum entanglement entropy

and thermodynamics. In the quantum information theory, the link between quantum information and
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Regardless of the dimensionality and microscopic detail of the dual field theory,

the IR entanglement entropy reduces to 

: Universal
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: depending on the dual theory

For a two-dimensional scale invariant theory

occurs in the real space renormalization group flow of the lattice theory (Ising model). 

Chanyong Park

a,b⇤

a
Asia Pacific Center for Theoretical Physics, Pohang, 790-784, Korea

b
Department of Physics, Postech, Pohang, 790-784, Korea

=======================================================

Holographic renormalization and entanglement entropy

Recently, the AdS/CFT correspondence has been widely used in order to understand universal

features of strongly interacting systems. In this lecture, I will discuss how to extract various informa-

tion of a strongly interacting system by using the holographic technique. After briefly reviewing the

holographic renormalization and entanglement entropy, I will discuss their relation and RG flow.

TH =

1

2⇡

1

zh
,

Sth =

1

4G

l

zh
,

E =

1

16⇡G

l

z2h
. (1)

the first law of thermodynamics, dE = THdSth, leads to the following internal energy

E =

1

16⇡G

l

z2h
. (2)

This internal energy satisfies

¯SE = Sth + Scorrection (3)

Scorrection ⇠ � logSth (4)

¯SE ⇡ Sth (5)

⇤
e-mail : chanyong.park@apctp.org

1

Intriguingly, the universality of the IR entanglement entropy proposed from the holography
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Universality of the IR entanglement entropy

A general (d+1)-dimensional gravity theory 

Rewriting it by using (49), we finally reaches to

SE =
⌦1l

2
x

8Gz2h
+ · · · , (51)

which is the main contribution to the IR entanglement entropy. In the IR limit, since lx ⇡ l, this

result exactly reproduces the thermal entropy corresponding to the Bekenstein-Hawking entropy of the

dual black hole. This result indicates that the IR excited state entanglement entropy is thermalized

from the center of the entangling region. This result becomes more manifest when we rewrite the

renormalized entropy as the form in (44)

S̄ =
⌦1

4Gz20

Z l

0
d⇢ ⇢+

⌦1

4G

0

@
Z z0

✏
dz

⇢
⇣
z20
p

1 + f⇢02 � z2
p

f⇢02
⌘

z20z
2
p
f

� l

✏

1

A+
⌦1

4G
. (52)

In the IR limit the first term corresponds to the thermal entropy appearing in (51), while the remaining

terms represent the quantum correction which is finite in the entire region of l. Since the thermal

entropy is dominant in the IR limit, the IR entanglement entropy of the ball-shaped region reduces

to the thermal entropy, as mentioned before.

4 Universal thermal entropy from the IR entanglement entropy

In the previous sections, we showed that the main contribution to the IR entanglement entropy comes

from the thermal entropy regardless of the shape of the entangling surface for a d-dimensional CFT. In

order to figure out this feature holographically, an important ingredient is the existence of the horizon

in the dual geometry. The minimal surface extended near the horizon, corresponding to the center of

the entangling region, leads to the most of the entanglement entropy in the IR limit. The existence of

the horizon is a natural property of a black hole solution even for non-AdS geometries. Applying the

gauge/gravity duality, therefore, one can expect that the thermal entropy universally appears in the

IR entanglement entropy even for non-conformal field theories. In order to check the universal feature

of the IR entanglement entropy, in this section we will show holographically that the thermal entropy

leads to the main contribution to the IR entanglement entropy even for non-conformal relativistic field

theories.

For a (d + 1)-dimensional gravity theory, an almost general black hole metric can be represented

as

ds2 =
1

z2

 
�e2A(z)f(z)dt2 + e2B(z)�ijdx

idxj +
e2C(z)

f(z)
dz2

!
, (53)

where i = 1, · · · , d� 1 and f(z) indicates the black hole factor. Depending on the detail of the gravity

theory, the black hole factor can have several roots. We denotes the largest root as zh which is called
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1 Introduction

The field values at the horizon for ↵1 = 2. (i) Near ↵2 = 0, A(1), B(1) and �(1) are depicted

for  = 0.5 [lower (red) curves], 1 [middle (blue) curves], and 2 [upper (green) curves]. (ii) We

also draw ⇢z for  = 0.5 [upper (red) curve], 1 [middle (blue) curve], and 2 [lower (green) curve]

near ↵2 = 0.

The electric conductivities for  = 1 and ↵1 = 2. Near !̄ = 1.5, they are depicted as

the lowest (blue), lower middle (black), upper middle (red), and upper (green) curves for

↵2 = 0, 2, 4, and 6. The small figures indicate the finiteness of the electric conductivity at

!̄ = 0.

• For e2A(z) = e

2B(z) = 1, the metric reduces to that of the AdS black hole studied in the

previous sections. The dual field theory is conformal.

• For e

2A(z) 6= e

2B(z) = 1, it reduces to the Lifshitz black hole which breaks the boost

symmetry in the t � x

i plane. The resulting dual field theory is a non-relativistic field

theory with a scale invariance.

• For e

2A(z) = e

2B(z) 6= 1, it leads to a black hole on the hyperscaling violation geometry

which has no scale symmetry. The dual field theory can be identified with a relativistic

quantum field theory without a scale symmetry.

• For e

2A(z) 6= 1, e2B(z) 6= 1 and e

2A(z) 6= e

2B(z), it is the combination of the previous two

cases. In this case, the scale and boost symmetry are broken and the dual field theory is

given by a non-relativistic theory without a scale symmetry.

1

the black hole horizon. For convenience, the black hole factor can be further rewritten as the following

form

f(z) =

✓
1� z

zh

◆
F (z), (54)

where F (z) must be regular for 0  z  zh and approaches to 1 as z ! 0. The other unknown

functions, e2A(z), e2B(z) and e2C(z), are also regular except z = 0. Using these facts, the Bekenstein-

Hawking entropy reads from the area law

Sth =
Vd�1

4G

e(d�1)B(zh)

zd�1
h

, (55)

where Vd�1 indicates a regularized volume inR

d�1. Following the gauge/gravity duality, the Bekenstein-

Hawking entropy can be reinterpreted as the thermal entropy of the dual QFT. In this case, the area

of the black hole proportional to Vd�1 can be mapped to the volume of the dual QFT. This fact is

important to identify the Bekenstein-Hawking entropy with the thermal entropy because the thermal

entropy of a usual thermal system should be an extensive quantity. Above we assumed a rotational

invariance in R

d�1. We can further generalized it to a more general black hole solution breaking such

a rotational symmetry. However, since breaking of the rotational invariance does not a↵ect our study

on the universality of the IR entanglement entropy, we concentrate on the above black hole metric.

Note that we can set e2C(z) = 1 without loss of generality because of the di↵eomorphsim invariance.

In this case, the resulting metric and its dual field theory can be classified by A(z) and B(z) as follows:

• For e2A(z) = e2B(z) = 1, the metric reduces to that of the AdS black hole studied in the previous

sections. The dual field theory is conformal.

• For e2A(z) 6= e2B(z) = 1, it reduces to the Lifshitz black hole which breaks the boost symmetry

in the t� xi plane. The resulting dual field theory is a non-relativistic field theory with a scale

invariance [56, 57, 58].

• For e2A(z) = e2B(z) 6= 1, it leads to a black hole on the hyperscaling violation geometry which

has no scale symmetry. The dual field theory can be identified with a relativistic quantum field

theory without a scale symmetry [59, 60, 61, 62, 63].

• For e2A(z) 6= 1, e2B(z) 6= 1 and e2A(z) 6= e2B(z), it is the combination of the previous two cases.

In this case, the scale and boost symmetry are broken and the dual field theory is given by a

non-relativistic theory without a scale symmetry.

For a strip-shaped region, the entanglement entropy is governed by

SE =
Ld�2

4G

Z l/2

�l/2
dx

e(d�2)B
p
fe2B + z02

zd�1
p
f

. (56)
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the Bekenstein-Hawking entropy from the area law 
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The entanglement entropy in a strip-shaped region

Using the conserved quantity caused by the translational symmetry in the x-direction, the width of

the strip and the entanglement entropy are parameterized as functions of the turning point, z0,

l = 2

Z z0

0
dz

zd�1 e(d�1)B0

eB
p
f

q
e2(d�1)Bz

2(d�1)
0 � e2(d�1)B0z2(d�1)

, (57)

SE =
Ld�2

2G

Z z0

0
dz

zd�1
0 e(2d�3)B0

zd�1
p
f

q
e2(d�1)Bz

2(d�1)
0 � e2(d�1)B0z2(d�1)

, (58)

where B0 implies the value of B(z) at z = z0. Here the range of the turning point is restricted to

0  z0  zh and 1/z corresponds to the energy scale of the dual QFT. This relations imply that z0 = 0

and z0 = zh can map to a UV and IR limit of the dual QFT. When z0 approaches to 0, the integral

in (57) automatically vanishes. On the other hand, if z0 approaches zh the integrand of (57) gives rise

to a simple pole. Performing the integral in(57) near z0 = zh yields the following relation at leading

order

l ⇡ z0 log (zh � z0) . (59)

This implies that the width of the strip diverges logarithmically in the IR limit. Rewriting the

entanglement entropy by using (57), we can find the following form

SE =
lLd�2

4G

e(d�1)B0

zd�1
0

+
Ld�2

2Gzd�1
0

Z z0

✏
dz

q
e2(d�1)Bz

2(d�1)
0 � e2(d�1)B0z2(d�1)

zd�1eB
p
f

. (60)

Noting that the volume of the strip is given by Vd�1 = lLd�2, we can easily see that in the IR limit

(l ! 1), the first term exactly reduces to the thermal entropy of the dual field theory. Ignoring the

UV divergence which is absent for the renormalized entropy, the quantum correction part gives rise

to the regular contribution. As a consequence, since the first term is dominant in the IR region, the

IR entanglement entropy reduces to the thermal entropy, as expected before.

Now, let us further study the entanglement entropy accumulated in a ball-shaped region. Due to

the rotational symmetry of the ball-shaped region, it is more convenient to rewrite the metric in (53)

as the following form, which makes the rotational symmetry manifest

ds2 =
1

z2

✓
�e2A(z)f(z)dt2 + e2B(z)d⇢2 + e2B(z)⇢2d⌦2

d�2 +
1

f(z)
dz2

◆
. (61)

On this background metric, the entanglement entropy reads
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For a pure AdS geometry with B = 0 and f = 1, the exact configuration of the minimal surface has

been known as z =
p
l2 � ⇢2. However, if B 6= 0 or f 6= 1, it is not easy to find an exact solution. In
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Using the conserved quantity caused by the translational symmetry in the x-direction, the width of

the strip and the entanglement entropy are parameterized as functions of the turning point, z0,
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where B0 implies the value of B(z) at z = z0. Here the range of the turning point is restricted to

0  z0  zh and 1/z corresponds to the energy scale of the dual QFT. This relations imply that z0 = 0

and z0 = zh can map to a UV and IR limit of the dual QFT. When z0 approaches to 0, the integral

in (57) automatically vanishes. On the other hand, if z0 approaches zh the integrand of (57) gives rise

to a simple pole. Performing the integral in(57) near z0 = zh yields the following relation at leading

order

l ⇡ z0 log (zh � z0) . (59)

This implies that the width of the strip diverges logarithmically in the IR limit. Rewriting the

entanglement entropy by using (57), we can find the following form
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Noting that the volume of the strip is given by Vd�1 = lLd�2, we can easily see that in the IR limit

(l ! 1), the first term exactly reduces to the thermal entropy of the dual field theory. Ignoring the

UV divergence which is absent for the renormalized entropy, the quantum correction part gives rise

to the regular contribution. As a consequence, since the first term is dominant in the IR region, the

IR entanglement entropy reduces to the thermal entropy, as expected before.
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In the IR limit

spite of this fact, there are several constraints the solution must satisfy. First, the entangling surface

is located at the boundary, so that the solution must have z(l) = 0. Another constraint is that z has a

turning point at ⇢ = 0 due to the rotational symmetry. Furthermore, the smoothness of the minimal

surface requires to be z0 = 0 at the turning point. Due to these constraints, the entanglement entropy

near the turning point should be approximately proportional to

⌦d�2e
(d�1)B0

4Gzd�1
0

Z

z⇡z0

d⇢ ⇢d�2. (63)

This behavior becomes manifest when we rewrite the above entanglement entropy as the following

form
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p
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p
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zd�1
p
f

. (64)

Noting that the volume of the ball-shaped region is given by Vd�2 = ⌦d�2
R l
0 d⇢ ⇢d�2, one can see

that in the z0 ! zh limit the first integral is exactly reduced to the thermal entropy which diverges

as l ! 1. Ignoring the UV divergence, the second term corresponding to the quantum correction is

always finite. Similar to the strip case, the IR entanglement entropy of the ball-shaped region exactly

reduces to the thermal entropy in the IR limit.

Intriguingly, all results studied in this work show that the IR entanglement entropy reduces to

the thermal entropy in the IR limit regardless of the microscopic detail. This implies that, through

the generalized temperature defined in this work, the macroscopic thermodynamic law can be derived

from the thermodynamics-like law of the quantum entanglement entropy in the IR limit.

5 Discussion

In the quantum information theory, it has been shown that quantum information evolves into the ther-

mal entropy via a unitary time evolution [1, 2]. This fact implies that there exists a connection between

the quantum entanglement entropy and the thermal entropy. Thus, clarifying such a connection plays

a crucial role for understanding the microscopic origin of various macroscopic and thermodynamic

phenomena. In this work, we introduced the generalized temperature, which is valid even in the IR

region and required to describe the RG flow correctly, and then investigated holographically how the

quantum entanglement entropy evolves into the thermal entropy along the RG flow.

In the UV regime, the entanglement entropy has nothing to do with the thermal entropy. This

becomes manifest from the UV behavior of the generalized temperature. In the UV region, the leading

contribution to the generalized temperature is inversely proportional to the subsystem size, while the

thermodynamic temperature must be independent of the system size. Due to this fact, although the
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In the IR limit, the entanglement entropy reduces to the thermal entropy regardless of 

the microscopic detail and the shape of the entangling surface.



4. Discussion

- We showed that the quantum entanglement entropy evolves into the thermal entropy along 

the RG flow regardless of the microscopic details

- The thermodynamics-like law of the entanglement entropy leads to the exact thermodynamic 

law in the IR limit.

- The universal feature of the IR entanglement entropy has been shown in the holographic 

setup. Therefore, it would be interesting to check this IR universality also occurs in a 

quantum field theory (or lattice model).



Thank you !


