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quark propagator in QGP would be drastically affected…

● if AL occurred above Tpc ,                             extended Dirac modes only     

Wilson’s Lattice Gauge Theory (4D) Anderson’s tight-binding H (3D)

const

SU(N) link 
variables:  Uµ(x)

i.i.d. random 
variables: V(x)

const

Anderson Hamiltonian (AH): 

mq

: Mobility Edge

● or AL can even be a mechanism connecting Confinement  & cSB

Anderson Localization in LGT?
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Anderson H : Level Statistics

3D AH + B
on 203, Nconf=104

vs  

Gauβ Unitary Ensemble

extended modes : level statistics ⊂ RM universality
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H =

H11 H12 H13 H14 H15 H16 

H21 H22 H23 H24 H25 H26 
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sparse, dimensionful dense, indep. Gaub random
sharing involutive symmetries 

dµ(H ) = dH e−Tr H2
∝ dλi

i
∏ e−λi

2
λi −λ j

β   (=1,2,4)

i> j
∏

  

det ψn (λi )ψn (λ j )
n=0

N−1

∑
#

$
%

&

'
(
i, j=1

N

= det K(λi,λ j )#$ &'i, j=1
N

harm. osc. WF

𝜌 𝜆& …𝜌 𝜆; = det 𝐾 𝜆@, 𝜆B @,BC&
;

b =2 case

EV density correlator                                                                                   : Det process

⇨ : Fredholm Det

Random Matrices

Prob 𝑘	EVs ∈ 𝐼 =
1
𝑘! 𝜕Q

,Det	 1 + 𝑧	𝐾|T UQC%&
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bulk unfolding                      soft edge unfolding λ =
1
N1/2 x

⇒   ψn (x) ~
cos x   (n even)
sin x    (n odd)

"
#
$

%$

λ = 2N +
1
N1/6 x

⇒   ψn (x) ~ Ai(x)

Ksin (x, y) =
sin(x − y)
x − y

KAi(x, y) =
Ai(x)A !i (y)−A !i (x)Ai(x)

x − y

r(l)

€ 

2N

bulk          soft edge

yn(l) : harm. osc. WF

€ 

2N

bulk          soft edge

⇦

mean EV spacing D

RM : local EV correlation
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€ 

H = −∇2 +V (x)

€ 

Z(ε) = det(ε1 −H )n1 det(ε2 −H )n2        (replica)

   or =
det(ε1 −H )
det( $ ε 1 −H )

det(ε2 −H )
det( $ ε 2 −H )

          (SUSY)

H-S transf

Z(ε) = DU
NG mfd∫  exp 1

VΔ
ddx D tr(∇U)2 + (ε1 −ε2 ) tr ΓU{ }∫

&

'
(

)

*
+

[Wegner ’80s]

Gaussian av. over V(x)

diffusion cst

€ 

Z(ε) = dU e
δε
Δ

 tr ΓU
∫

ETh ≡ D L2 >> δε =O(Δ) : e-regime =  0 mode dominance

: 0d NLsM ⇔  RM
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€ 

Z(ε) = DU e−S[U ]∫

S[U ] =
1
VΔ

ddx D tr(∇U )2 +δε tr ΓU{ }∫

€ 

Z(ε) = dU e
δε
Δ

 tr ΓU
∫

ETh ≡ D L2 >> δε =O(Δ) : e regime,  0 mode dominance

: 0D NLsM ⇔RM

ergodic regime     ETh >> D : RMT √

diffusive regime ETh > D : perturbation √

“mobility edge”     ETh ~   D : perturbation ×,  fixed point

→ phenomenological model desirable

NLsM from AH
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II. Critical Statistics
& Deformed RM 



localized WF x≪ L

no repulsion → Poisson

multifractal WF  x ~ L

Scale Invariant Critical Statistics

on 123, 163, 203, Nconf=104

randomness W=18.1
mag. flux     F=0.4p

[Shklovskii et al ’93]Critical Statistics
ME
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Sparse overlap

distant levels become less repulsive

ψi (x)
2
ψ j (x)

2

x
∑ ∝ Ei −Ej

−(1−D2 )/d

€ 

             s small     s large
P(s)     ∝ sβ          ∝e−κ s 
Σ2(S)   ∝ log s      ∝χ S  

Level Spacing

Level # Variance
Poisson-like

[Chalker ’90]
[Zharekeshev-Kramer ’97]

“Level Repulsion without Rigidity”

ψ i (x)
2 p

x
∑ ∝ L−Dp ( p−1)

Anomalous inverse part. ratio

Critical Statistics
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Universality of 10 RM classes is very robust

r(l)yn(l) : WF

€ 

Z(ε) = dU e
δε
Δ

 tr ΓU
∫

NG mfd : 10 Riemann SS

U(n+m)/U(n)×U(m) for GUE

(s)OP method

NLsM method

EV distribution, correlation

proven to be stable against deformations

like e%VW	XY	 → 		e%VW	X[ ,	e%VW	(X\])Y	, …

proposal:  q-analog of OP 

𝜆	𝐻` 𝜆 				= 𝐻`\& 𝜆 					+ 𝑛	𝐻`%& 𝜆
			↓
𝜆	𝐻` 𝜆; 𝑞 = 𝐻`\& 𝜆; 𝑞 + [𝑛]g𝐻`%& 𝜆; 𝑞
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hn (λ  ;q) =
n
k
⎡

⎣
⎢
⎤

⎦
⎥

k=0

n

∑
q

q−k (n−k ) (−)k e(n−2k )u,    λ ≡ sinhu      (0 < q <1)

  hn (sinhu ;q) 
−∞

∞

∫ hm (sinhu ;q) du
(−qe−2u,q)∞(−qe2u,q)∞

= 0   (n ≠m)

  V (λ) ≈ 1
2a

(sinh−1λ)2    (x >>1)                                               q := e−2a,   p := e−π
2 /a

q-1-Hermite Ensemble

KN
(a) (λ, ʹλ ) dλd ʹλ   N→∞⎯ →⎯⎯  Ka (x, x) dxd ʹx   

                           λ! x = 1
2a

sinh−1λ

Ka (x, ʹx ) = cst. cosh2axcosh2a ʹx
cosha(x + ʹx )

ϑ 4 (π (x + ʹx ); p)
ϑ 4 (π x; p)ϑ 4 (π ʹx ; p)

! "######## $########

ϑ1(π (x − ʹx ); p)
sinha(x − ʹx )

,        Ka (x, x) =1 

     x,x→∞,   x−x=O(1)⎯ →⎯⎯⎯⎯⎯⎯   Ka (x − ʹx ) = cst.ϑ1(π (x − ʹx );e−π
2 /a )

sinha(x − ʹx )
      

transl. non-inv. → 1

: Elliptic Kernel

: exponential unfolding

: weakly confining
potential

almost* unique deformation
of GUE universality

[Muttailb-Chen-Ismail-Nicopoulos ’93]

*disclaimer: individual 
impressions may vary

bulk limit



V (λ) ≈ 1
2a

logλ( )2    ⇒   ρ(λ) ≈ 1
2aλ

   ⇒   υ = ρ(λ)dλ
λ

∫ ≈
1

2a
logλ

denom. of Ch-D formula   :    λ − ʹλ   ≈  e2ax − e2a ʹx = ea(x+ ʹx ) sinha(x − ʹx )

[SMN ’98, ’99]

the essence is simple… Ka (x) = cst.
ϑ1(π x;e

−π 2 /a )
sinhax

2-level correlation function   R2(s) = 1 - Ka(s)2

GUE

LSD P1(s) = Det (1 - Ka|[0,s] )

GUE

Poissondeformation parameter
deformation parameter

Poisson

q-1-Hermite Ensemble

⇨ C-S MM
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III.  Ordered EV Statistics



x1,…, xM{ }∈ I,     Δx1,…,ΔxM{ }> 0Gauss-Legendre Quadrature :

[Bornemann ’10]

f (x)dx
I
∫  ≅  f (xi )Δxi

i=1

M

∑  , exact for  f (x) = xM + lower

Det 1−KI( )  ≅  det δij −K(xi, x j ) ΔxiΔx j⎡
⎣

⎤
⎦i, j=1

M
  + relative error O(e−const.M )
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flattening oscillation ⇒ larger error for fitting

Gaub-like ⇒ precise fitting possible

EVD - chGUE EVD - chGSE

[Damgaard-SMN 01]

Nystrom approximation to Fredholm Det

12/25



0.00 0.01 0.02 0.03 0.04
0

50

100

150

200

250

l

p k
HlL

UH1LLGT b=0.6, V=64, Nconf=30000

0.00 0.01 0.02 0.03 0.04
1

10

100

l

UH1LLGT b=0.6, V=64, Nconf=30000

exercise 1 : quenched compact U(1) Dirac spectrum  vs  chGUE
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0.5100

0.5105
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k

S
=
p V
D Σa3 = 0.51025(10)

Chiral condensate from ordered EVDs

β = 0.6  ,  V = 64   ,  Nconf = 30000

[SMN ’16]
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exercise 2 : quenched SU(2) Dirac spectrum  vs  chGSE

ch
ira

l
co

nd
en

sa
te

-th EV

Σa3 =1.07019(38)

β =1.0  ,  V = 64   ,  Nconf = 30000
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Chiral condensate from ordered EVDs [SMN ’16]
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[SMN ’16]

We	have	been	able	to	use	the	NEW	statistical	distributions	with	
increased	lattice	sizes	and	number	of	samples.

Critical	statistics	at	the	mobility	edge	of	QCD	Dirac	spectra	at	high	temperature
Presenter:		Takuya	Yamamoto																									Shimane	University

Collaborators:		Shinsuke M.	Nishigaki Shimane	University
T.	G.	Kovacs																																					INS,	Debrecen
M.	Giordano,	F.	Pittler MTA-ELTE,	Budapest

Nishigaki-Giordano-Kovacs-Pittler, 
PoS Lattice 2013, 018 [hep-lat/1312.3286]

[This	poster	is	an	updated	version	of	the	above	paper]

üAs	the	parameter	d is	increased,
R2(s) approaches	PS:	

R2(s) = 1 (no	correlation)

üTechnically	difficult	to	fit	lattice	data	with	R2(s)

nearest-neighbor	level	spacing	distribution	(NLSD)	

üSuitable	to fit	lattice	data	with	P1(s)
rather	than	R2(s).	

üOther	than	P1(s),	there	are	statistical	
distributions	which	can	be	used

2-level	
correlation	
function

increase	of	randomness

uME	in	energy	spectrum

ME ME

ME

üMLSDs	of	q-RM	perfectly	fit	into	MLSDs	of	AH	at	ME

By	using	these	new	observables,	we	attempt	to	refine	the	analysis	of	
QCD	Dirac	spectra	at	high	temperature

MLSDs	of	q-RM		=		statistical	distributions	which	describe	CS

üMLSDs	show	scale-invariance	at	ME

pa
ra

m
et

er
a

q-1	-HE	
parameter� a= 3.0

q-1	-HE	
parameter� a = 6.0

uQCD	Dirac spectra	at	high	T.

fix	the	width	of	EV	windows

u Fitting	MLSDs	of	lattice	data	with	MLSDs	of	q-RM
e.g. V = 563�4

P1(s)

P2(s)

P3(s)

P4(s)

χ2/dof ≈	1.0�2.0

uME	of	QCD	Dirac	spectra	at	high	T.

V = 243�4 �563�4
in	thermodynamic	limit(TDL),	
approach	PS

in	TDL,	
approach	WDS

scale-invariant	fixed	point

)2(3357.0=l

e.g. V = 563�4

at	ME,	fit	lattice	data	with	q-RM

ME

examine	MLSDs	in	the	bulk	
of	QCD	Dirac	spectra

u Scale-invariance	of	MLSDs	at	ME	
V = 243�4 �563�4

P1(s)

P2(s)

P3(s)

Scale-invariance	of	MLSDs	at	ME	was	verified.	

u Results

ü increased	number	of	samples	and	lattice	sizes

ü performed	the	analysis	of	lattice	data	by	using	MLSDs	
which	have	been	able	to	use

In	the	largest	lattice	size	(V = 563�4),	
CS	at	ME	of	QCD	Dirac	spectra	at	high	T.	can	be	described	by	MLSDs	of	q-RM	

ME

uMLSDs:	AH	at	ME	and	q-RM [Nishigaki (1998,1999,2015)]

fit	MLSDs	of	AH	at	ME	with	MLSDs	of	q-RM	parameter� d = 3.55

MLSDs:	q-RM

energy	spectrum example:
3d,	V=123,163,203,	Nconf=104

randomness	W=18.1
mag.	flux					F=0.4p

3.	q-deformed	random	matrix	and	CS
uq-deformed	random	matrix (q-RM)

• violate	universality	of	GUE	by	deformation	parameter	d
• show	transition	from	WDS	to	PS	

defined	by	q-1-Hermite polynomial	

[Muttalib-Chen-Ismail-Nicopoulos (1993)]

l GUE	(WDS)l q-1-Hermite	ensemble	(q-1-HE)

ex.	1�2-level	correlation	function	R2(s) = 1 - Kd(s)2

GUE	(W-D statistics)

[Ismail-Masson (1994)]

Sine	KernelElliptic	Kernel	

ex.	2�NLSD P1(s)

GUE

l Statistical	distribution	in	order	to	describe	CS

1.	Introduction

Wilson’s	lattice	gauge	theory	(4D) Anderson’s	tight-binding	model	(3D)

const

SU(N)	link	
variables:		Ux,µ

Boltzmann weight

i.i.d.	random	
variables:	V(x)

const		

Anderson	Hamiltonian	(AH):	

level	statistics	in	bulk	
of	lattice	Dirac	spectra

Ø Halasz-Verbaarschot (1995) 

energy	level	statistics	of	
AH	with	weak	randomness

Wigner-Dyson
statistics

uAnalogy	between	lattice	gauge	theory	and	Anderson	model	

2.	Critical	statistics	(CS)	at	mobility	edge	(ME)
uAnderson localization	transition	

(as	an	example	of	3D	unitary	Anderson	model)	

ØMobility	edge:	critical statistics

ØMetal	(extended):	
Wigner-Dyson statistics (WDS) boundary	between	the	

two	regions	=	mobility edge

increase	of	randomness

ME	in	energy	spectrum	moves	
from	band	edge	to	band	center

All	eigenstates are	localized metal-insulator transition

Ø Insulator	(localized):	
Poisson statistics (PS)

l Energy	level	statistics	of	AH

uLevel	spacing	distributions	(LSDs)	of	AH

example:	
3d,	V=123,163,203,	Nconf=104

randomness	W=18.1
mag.	flux					F=0.4p

band	center band	edge

We	would	like	to	analytically	derive	statistical	distributions	in	describing	CS

[Shklovskii, et. al. (1993)]

scale-invariant	
at	band	center

P1(s) P2(s) P3(s)

NN NNN NNNN NNNNN

P4(s)
������

GUE	
parameter� a = 0

u Lattice	QCD	simulations at	the	physical	point

physical	point	determined	by	Budapest-Wuppertal	Collaboration	

gauge:		Symanzik improved	action	
fermion:		2-level	stout	smeared	staggered	Dirac	operator	

[Borsanyi, et. al. (2010)] 
[Aoki, et. al. (2006)] 

uMeasurements	of	QCD	Dirac	EVs	at	high	T.	 [Kovacs-Pittler (2012)] 

increased	number	of	samples	
from	the	previous	paper

the	result	of	the	lattice	size	is	the	first	report

4.	QCD	Dirac spectra	at	high	temperature

uAnalysis	of	QCD Dirac	spectra	at	high	T.
1. fix	a	width	of	a	EV	window	

(in	the	previous	paper,	fix	the	number	of	EVs	in	a	window)
2. in	each	of	windows,	plot	MLSDs	versus	unfolded	level	spacing s 
• nearest-neighbor	level	spacing	distribution	(NLSD)	:	P1(s) 

• next	NLSD: P2(s)

• next	to	next	NLSD: P3(s)

• next	to	next	to	next	NLSD:	P4(s)

In	this	poster,	we	attempt	to	use	
the	statistical	distributions.

3. fit	MLSDs	of	the	lattice	data	into	MLSDs	of q-RM	

4. combine	the	deformation	parameters	in	each	lattice	size

5. determine	the	best-fitting	deformation	parameter	in	each	EV	window

6. identify	the	mobility	edge	as	the	scale-invariant	fixed	point		of	MLSDs

increase	of	 number	of	samples	
and	of	lattice	sizes enable	to	use	MLSDs

5.	Summary
lQCD	bulk	Dirac	spectra	at	high	T.

• NLSD:	P1(s)

• next	NLSD:	P2(s) 

• next	to	next	NLSD:	P3(s)

In	the	largest	lattice	size,	MLSDs	at	ME	can	be	described	CS	
The	previous	observation	was	reinforced	

l Anderson	localization	transition	in	the	thermodynamic	limit:	

Wigner-Dyson	statistics

The	prediction	was	reinforced		

l Correspondence	of	(3+1)D	QCD	at	high	T.	and	3D	unitary Anderson	model

(3+1) D	
QCD	at	high	T.

3D	unitary
Anderson modelCS	at	ME:

correspondence

Bruckmann-Kovacs-Schierenberg (2011):      T > TC  (deconfinement phase)

Ga
As

impurities	of	
Anderson model

islands	of	Polyakov loops	
as	“dislocations”

Polyakov loop

correspondence

t

xi

z

x

y

sample	image
sample	image

location	of	the	center	of	the	EV	window	

scale-invariant	fixed	point

intermediate	level	statistics	
between	WDS	and	PS

critical	statistics
eigenstates are	
localized	at	band	edgealmost	PS

Poisson

extended	modes

localized	modes localized	modes

A	location	of	ME	depends	on	
the	strength	of	the	disorder

multi-level	spacing	distribution

deformation parameter
deformation parameter

T = 2.6 TC

We	verified	that	CS	of	QCD	at	high	T.	belong	to	the	same	symmetry	class	
as	level	statistics	at	ME	of	3D	unitary	Anderson	model

e.g.	width	=	0.0015	a-1

the	mobility	edge

phase	transition Poisson	statistics

xj

Dirac spectrum																																						bulk origin

Ø Kovacs-Pittler (2012)

2+1	flavors	QCD	Dirac	spectrum	at	high	temperature (T > Tc)	

level	spacing	distribution										Wigner-Dyson	statistics																			Poisson statistics
mobility	edge

unused	observables

weak	randomness

1)( =xP

1)( ¹xP

0®d

¥®d

ME
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q-1-HE: 
multi-LSD



[SMN ’99, ’16]q-1-HE vs  AH@ME

We	have	been	able	to	use	the	NEW	statistical	distributions	with	
increased	lattice	sizes	and	number	of	samples.

Critical	statistics	at	the	mobility	edge	of	QCD	Dirac	spectra	at	high	temperature
Presenter:		Takuya	Yamamoto																									Shimane	University

Collaborators:		Shinsuke M.	Nishigaki Shimane	University
T.	G.	Kovacs																																					INS,	Debrecen
M.	Giordano,	F.	Pittler MTA-ELTE,	Budapest

Nishigaki-Giordano-Kovacs-Pittler, 
PoS Lattice 2013, 018 [hep-lat/1312.3286]

[This	poster	is	an	updated	version	of	the	above	paper]

üAs	the	parameter	d is	increased,
R2(s) approaches	PS:	

R2(s) = 1 (no	correlation)

üTechnically	difficult	to	fit	lattice	data	with	R2(s)

nearest-neighbor	level	spacing	distribution	(NLSD)	

üSuitable	to fit	lattice	data	with	P1(s)
rather	than	R2(s).	

üOther	than	P1(s),	there	are	statistical	
distributions	which	can	be	used

2-level	
correlation	
function

increase	of	randomness

uME	in	energy	spectrum

ME ME

ME

ü MLSDs of q-1-HE perfectly fit to Scale-inv Critical Statistics of AH at ME

apply new observables to QCD Dirac spectra at high T

pa
ra

m
et

er
a

q-1	-HE	
parameter� a= 3.0

q-1	-HE	
parameter� a = 6.0

uQCD	Dirac spectra	at	high	T.

fix	the	width	of	EV	windows

u Fitting	MLSDs	of	lattice	data	with	MLSDs	of	q-RM
e.g. V = 563�4

P1(s)

P2(s)

P3(s)

P4(s)

χ2/dof ≈	1.0�2.0

uME	of	QCD	Dirac	spectra	at	high	T.

V = 243�4 �563�4
in	thermodynamic	limit(TDL),	
approach	PS

in	TDL,	
approach	WDS

scale-invariant	fixed	point

)2(3357.0=l

e.g. V = 563�4

at	ME,	fit	lattice	data	with	q-RM

ME

examine	MLSDs	in	the	bulk	
of	QCD	Dirac	spectra

u Scale-invariance	of	MLSDs	at	ME	
V = 243�4 �563�4

P1(s)

P2(s)

P3(s)

Scale-invariance	of	MLSDs	at	ME	was	verified.	

u Results

ü increased	number	of	samples	and	lattice	sizes

ü performed	the	analysis	of	lattice	data	by	using	MLSDs	
which	have	been	able	to	use

In	the	largest	lattice	size	(V = 563�4),	
CS	at	ME	of	QCD	Dirac	spectra	at	high	T.	can	be	described	by	MLSDs	of	q-RM	

ME

uMLSDs:	AH	at	ME	and	q-RM [Nishigaki (1998,1999,2015)]

fit	MLSDs	of	AH	at	ME	with	MLSDs	of	q-1-HE	parameter� a = 3.55

MLSDs:	q-1	-HE	

AH	on	123,163,203,	Nconf=104

randomness	W=18.1
mag.	flux					F=0.4p

3.	q-deformed	random	matrix	and	CS
uq-deformed	random	matrix (q-RM)

• violate	universality	of	GUE	by	deformation	parameter	d
• show	transition	from	WDS	to	PS	

defined	by	q-1-Hermite polynomial	

[Muttalib-Chen-Ismail-Nicopoulos (1993)]

l GUE	(WDS)l q-1-Hermite	ensemble	(q-1-HE)

ex.	1�2-level	correlation	function	R2(s) = 1 - Kd(s)2

GUE	(W-D statistics)

[Ismail-Masson (1994)]

Sine	KernelElliptic	Kernel	

ex.	2�NLSD P1(s)

GUE

l Statistical	distribution	in	order	to	describe	CS

1.	Introduction

Wilson’s	lattice	gauge	theory	(4D) Anderson’s	tight-binding	model	(3D)

const

SU(N)	link	
variables:		Ux,µ

Boltzmann weight

i.i.d.	random	
variables:	V(x)

const		

Anderson	Hamiltonian	(AH):	

level	statistics	in	bulk	
of	lattice	Dirac	spectra

Ø Halasz-Verbaarschot (1995) 

energy	level	statistics	of	
AH	with	weak	randomness

Wigner-Dyson
statistics

uAnalogy	between	lattice	gauge	theory	and	Anderson	model	

2.	Critical	statistics	(CS)	at	mobility	edge	(ME)
uAnderson localization	transition	

(as	an	example	of	3D	unitary	Anderson	model)	

ØMobility	edge:	critical statistics

ØMetal	(extended):	
Wigner-Dyson statistics (WDS) boundary	between	the	

two	regions	=	mobility edge

increase	of	randomness

ME	in	energy	spectrum	moves	
from	band	edge	to	band	center

All	eigenstates are	localized metal-insulator transition

Ø Insulator	(localized):	
Poisson statistics (PS)

l Energy	level	statistics	of	AH

uLevel	spacing	distributions	(LSDs)	of	AH

example:	
3d,	V=123,163,203,	Nconf=104

randomness	W=18.1
mag.	flux					F=0.4p

band	center band	edge

We	would	like	to	analytically	derive	statistical	distributions	in	describing	CS

[Shklovskii, et. al. (1993)]

scale-invariant	
at	band	center

P1(s) P2(s) P3(s)

NN NNN NNNN NNNNN

P4(s)
������

GUE	
parameter� a = 0

u Lattice	QCD	simulations at	the	physical	point

physical	point	determined	by	Budapest-Wuppertal	Collaboration	

gauge:		Symanzik improved	action	
fermion:		2-level	stout	smeared	staggered	Dirac	operator	

[Borsanyi, et. al. (2010)] 
[Aoki, et. al. (2006)] 

uMeasurements	of	QCD	Dirac	EVs	at	high	T.	 [Kovacs-Pittler (2012)] 

increased	number	of	samples	
from	the	previous	paper

the	result	of	the	lattice	size	is	the	first	report

4.	QCD	Dirac spectra	at	high	temperature

uAnalysis	of	QCD Dirac	spectra	at	high	T.
1. fix	a	width	of	a	EV	window	

(in	the	previous	paper,	fix	the	number	of	EVs	in	a	window)
2. in	each	of	windows,	plot	MLSDs	versus	unfolded	level	spacing s 
• nearest-neighbor	level	spacing	distribution	(NLSD)	:	P1(s) 

• next	NLSD: P2(s)

• next	to	next	NLSD: P3(s)

• next	to	next	to	next	NLSD:	P4(s)

In	this	poster,	we	attempt	to	use	
the	statistical	distributions.

3. fit	MLSDs	of	the	lattice	data	into	MLSDs	of q-RM	

4. combine	the	deformation	parameters	in	each	lattice	size

5. determine	the	best-fitting	deformation	parameter	in	each	EV	window

6. identify	the	mobility	edge	as	the	scale-invariant	fixed	point		of	MLSDs

increase	of	 number	of	samples	
and	of	lattice	sizes enable	to	use	MLSDs

5.	Summary
lQCD	bulk	Dirac	spectra	at	high	T.

• NLSD:	P1(s)

• next	NLSD:	P2(s) 

• next	to	next	NLSD:	P3(s)

In	the	largest	lattice	size,	MLSDs	at	ME	can	be	described	CS	
The	previous	observation	was	reinforced	

l Anderson	localization	transition	in	the	thermodynamic	limit:	

Wigner-Dyson	statistics

The	prediction	was	reinforced		

l Correspondence	of	(3+1)D	QCD	at	high	T.	and	3D	unitary Anderson	model

(3+1) D	
QCD	at	high	T.

3D	unitary
Anderson modelCS	at	ME:

correspondence

Bruckmann-Kovacs-Schierenberg (2011):      T > TC  (deconfinement phase)

Ga
As

impurities	of	
Anderson model

islands	of	Polyakov loops	
as	“dislocations”

Polyakov loop

correspondence

t

xi

z

x

y

sample	image
sample	image

location	of	the	center	of	the	EV	window	

scale-invariant	fixed	point

intermediate	level	statistics	
between	WDS	and	PS

critical	statistics
eigenstates are	
localized	at	band	edgealmost	PS

Poisson

extended	modes

localized	modes localized	modes

A	location	of	ME	depends	on	
the	strength	of	the	disorder

multi-level	spacing	distribution

deformation parameter
deformation parameter

T = 2.6 TC

We	verified	that	CS	of	QCD	at	high	T.	belong	to	the	same	symmetry	class	
as	level	statistics	at	ME	of	3D	unitary	Anderson	model

e.g.	width	=	0.0015	a-1

the	mobility	edge

phase	transition Poisson	statistics

xj

Dirac spectrum																																						bulk origin

Ø Kovacs-Pittler (2012)

2+1	flavors	QCD	Dirac	spectrum	at	high	temperature (T > Tc)	

level	spacing	distribution										Wigner-Dyson	statistics																			Poisson statistics
mobility	edge

unused	observables

weak	randomness

1)( =xP

1)( ¹xP

0®d

¥®d

ME

move on to QCD Dirac spectra at high T
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IV. QCD Dirac Spectrum at high T



SU(3) quenched LGT
on 163~203×4, KS Dirac op.

first attempt by [Garcia-Osborn ’07]

ϕ(x) 4
x
∑

ψψ
P

・ chi symm restoration
・ localization
・ deconfinement

simultaneous?

Localization and QCD transition 
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Lattice setup
u QCD at physical point

physical point determined by BMW Coll. 

gauge:  Symanzik improved action 
quark:  2-level stout-smeared staggered Dirac op.

[Aoki, et. al., ’06] 

u Dirac EVs at high T [Kovacs-Pittler ’12, ‘13] 

#samples
increased 

new

T = 2.6 TCT = 2.6 TC

18/25



0.25 0.30 0.35

local EV window → MLSD

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

5

10

15

Dirac EV la

EV
de
ns
ity
rHlL

SUH3L dynamical, V=403¥4

Dirac spectra

19/25



We	have	been	able	to	use	the	NEW	statistical	distributions	with	
increased	lattice	sizes	and	number	of	samples.

Critical	statistics	at	the	mobility	edge	of	QCD	Dirac	spectra	at	high	temperature
Presenter:		Takuya	Yamamoto																									Shimane	University

Collaborators:		Shinsuke M.	Nishigaki Shimane	University
T.	G.	Kovacs																																					INS,	Debrecen
M.	Giordano,	F.	Pittler MTA-ELTE,	Budapest

Nishigaki-Giordano-Kovacs-Pittler, 
PoS Lattice 2013, 018 [hep-lat/1312.3286]

[This	poster	is	an	updated	version	of	the	above	paper]

üAs	the	parameter	d is	increased,
R2(s) approaches	PS:	

R2(s) = 1 (no	correlation)

üTechnically	difficult	to	fit	lattice	data	with	R2(s)

nearest-neighbor	level	spacing	distribution	(NLSD)	

üSuitable	to fit	lattice	data	with	P1(s)
rather	than	R2(s).	

üOther	than	P1(s),	there	are	statistical	
distributions	which	can	be	used

2-level	
correlation	
function

increase	of	randomness

uME	in	energy	spectrum

ME ME

ME

ü MLSDs of q-1-HE perfectly fit to Scale-inv Critical Statistics of AH at ME

move on to QCD Dirac spectra at high T

pa
ra

m
ete

ra

q-1	-HE	
parameter� a= 3.0

q-1	-HE	
parameter� a = 6.0

width	of	EV	windows	fixed

P1(s)

P2(s)

P3(s)

P4(s)

χ2/dof ≈	1.0�2.0

uME	of	QCD	Dirac	spectra	at	high	T.

V = 243�4 �563�4
in	thermodynamic	limit(TDL),	
approach	PS

in	TDL,	
approach	WDS

scale-invariant	fixed	point

)2(3357.0=l

e.g. V = 563�4

at	ME,	fit	lattice	data	with	q-RM

ME

u Scale-invariance	of	MLSDs	at	ME	
V = 243�4 �563�4

P1(s)

P2(s)

P3(s)

Scale-invariance	of	MLSDs	at	ME	was	verified.	

u Results

ü increased	number	of	samples	and	lattice	sizes

ü performed	the	analysis	of	lattice	data	by	using	MLSDs	
which	have	been	able	to	use

In	the	largest	lattice	size	(V = 563�4),	
CS	at	ME	of	QCD	Dirac	spectra	at	high	T.	can	be	described	by	MLSDs	of	q-RM	

ME

uMLSDs:	AH	at	ME	and	q-RM [Nishigaki (1998,1999,2015)]

fit	MLSDs	of	AH	at	ME	with	MLSDs	of	q-1-HE	parameter� a = 3.55

MLSDs:	q-1	-HE	

AH	on	123,163,203,	Nconf=104

randomness	W=18.1
mag.	flux					F=0.4p

3.	q-deformed	random	matrix	and	CS
uq-deformed	random	matrix (q-RM)

• violate	universality	of	GUE	by	deformation	parameter	d
• show	transition	from	WDS	to	PS	

defined	by	q-1-Hermite polynomial	

[Muttalib-Chen-Ismail-Nicopoulos (1993)]

l GUE	(WDS)l q-1-Hermite	ensemble	(q-1-HE)

ex.	1�2-level	correlation	function	R2(s) = 1 - Kd(s)2

GUE	(W-D statistics)

[Ismail-Masson (1994)]

Sine	KernelElliptic	Kernel	

ex.	2�NLSD P1(s)

GUE

l Statistical	distribution	in	order	to	describe	CS

1.	Introduction

Wilson’s	lattice	gauge	theory	(4D) Anderson’s	tight-binding	model	(3D)

const

SU(N)	link	
variables:		Ux,µ

Boltzmann weight

i.i.d.	random	
variables:	V(x)

const		

Anderson	Hamiltonian	(AH):	

level	statistics	in	bulk	
of	lattice	Dirac	spectra

Ø Halasz-Verbaarschot (1995) 

energy	level	statistics	of	
AH	with	weak	randomness

Wigner-Dyson
statistics

uAnalogy	between	lattice	gauge	theory	and	Anderson	model	

2.	Critical	statistics	(CS)	at	mobility	edge	(ME)
uAnderson localization	transition	

(as	an	example	of	3D	unitary	Anderson	model)	

ØMobility	edge:	critical statistics

ØMetal	(extended):	
Wigner-Dyson statistics (WDS) boundary	between	the	

two	regions	=	mobility edge

increase	of	randomness

ME	in	energy	spectrum	moves	
from	band	edge	to	band	center

All	eigenstates are	localized metal-insulator transition

Ø Insulator	(localized):	
Poisson statistics (PS)

l Energy	level	statistics	of	AH

uLevel	spacing	distributions	(LSDs)	of	AH

example:	
3d,	V=123,163,203,	Nconf=104

randomness	W=18.1
mag.	flux					F=0.4p

band	center band	edge

We	would	like	to	analytically	derive	statistical	distributions	in	describing	CS

[Shklovskii, et. al. (1993)]

scale-invariant	
at	band	center

P1(s) P2(s) P3(s)

NN NNN NNNN NNNNN

P4(s)
������

GUE	
parameter� a = 0

u Lattice	QCD	simulations at	the	physical	point

physical	point	determined	by	Budapest-Wuppertal	Collaboration	

gauge:		Symanzik improved	action	
fermion:		2-level	stout	smeared	staggered	Dirac	operator	

[Aoki, et. al. (2006)] 

uMeasurements	of	QCD	Dirac	EVs	at	high	T.	 [Kovacs-Pittler (2012)] 

#samples
increased	

new

4.	QCD	Dirac spectra	at	high	temperature

uAnalysis	of	QCD Dirac	spectra	at	high	T.
1. fix	a	width	of	a	EV	window	

(in	the	previous	paper,	fix	the	number	of	EVs	in	a	window)
2. in	each	of	windows,	plot	MLSDs	versus	unfolded	level	spacing s 
• nearest-neighbor	level	spacing	distribution	(NLSD)	:	P1(s) 

• next	NLSD: P2(s)

• next	to	next	NLSD: P3(s)

• next	to	next	to	next	NLSD:	P4(s)

In	this	poster,	we	attempt	to	use	
the	statistical	distributions.

3. fit	MLSDs	of	the	lattice	data	into	MLSDs	of q-RM	

4. combine	the	deformation	parameters	in	each	lattice	size

5. determine	the	best-fitting	deformation	parameter	in	each	EV	window

6. identify	the	mobility	edge	as	the	scale-invariant	fixed	point		of	MLSDs

increase	of	 number	of	samples	
and	of	lattice	sizes enable	to	use	MLSDs

5.	Summary
lQCD	bulk	Dirac	spectra	at	high	T.

• NLSD:	P1(s)

• next	NLSD:	P2(s) 

• next	to	next	NLSD:	P3(s)

In	the	largest	lattice	size,	MLSDs	at	ME	can	be	described	CS	
The	previous	observation	was	reinforced	

l Anderson	localization	transition	in	the	thermodynamic	limit:	

Wigner-Dyson	statistics

The	prediction	was	reinforced		

l Correspondence	of	(3+1)D	QCD	at	high	T.	and	3D	unitary Anderson	model

(3+1) D	
QCD	at	high	T.

3D	unitary
Anderson modelCS	at	ME:

[Bruckmann-Kovacs-Schierenberg, 2011]      T > TC  (deconfinement phase)

atom	A
atom	B

impurities	of	
Anderson model

islands	of	Polyakov loops	
as	“dislocations”

Polyakov loop

t

x

z

x

y

location	of	the	center	of	the	EV	window	

scale-invariant	fixed	point

intermediate	level	statistics	
between	WDS	and	PS

critical	statistics
eigenstates are	
localized	at	band	edgealmost	PS

Poisson

extended	modes

localized	modes localized	modes

A	location	of	ME	depends	on	
the	strength	of	the	disorder

multi-level	spacing	distribution

deformation parameter
deformation parameter

T = 2.6 TC

We	verified	that	CS	of	QCD	at	high	T.	belong	to	the	same	symmetry	class	
as	level	statistics	at	ME	of	3D	unitary	Anderson	model

e.g.	width	=	0.0015	a-1

the	mobility	edge

phase	transition Poisson	statistics

y

Dirac spectrum																																						bulk origin

Ø Kovacs-Pittler (2012)

2+1	flavors	QCD	Dirac	spectrum	at	high	temperature (T > Tc)	

level	spacing	distribution										Wigner-Dyson	statistics																			Poisson statistics
mobility	edge

unused	observables

weak	randomness

1)( =xP

1)( ¹xP

0®d

¥®d

ME

Dirac spectra: 
Multi LSD
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finite fraction of small EVs Anderson-localizes
even in presence of very light quarks

@ME
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TDL : localized←ME→extended
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finite fraction of small EVs Anderson-localizes
even in presence of very light quarks
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spatial size  vs  deform parameter

weighted av. of 4

Multi LSD
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We	have	been	able	to	use	the	NEW	statistical	distributions	with	
increased	lattice	sizes	and	number	of	samples.

Critical	statistics	at	the	mobility	edge	of	QCD	Dirac	spectra	at	high	temperature
Presenter:		Takuya	Yamamoto																									Shimane	University

Collaborators:		Shinsuke M.	Nishigaki Shimane	University
T.	G.	Kovacs																																					INS,	Debrecen
M.	Giordano,	F.	Pittler MTA-ELTE,	Budapest

Nishigaki-Giordano-Kovacs-Pittler, 
PoS Lattice 2013, 018 [hep-lat/1312.3286]

[This	poster	is	an	updated	version	of	the	above	paper]

üAs	the	parameter	d is	increased,
R2(s) approaches	PS:	

R2(s) = 1 (no	correlation)

üTechnically	difficult	to	fit	lattice	data	with	R2(s)

nearest-neighbor	level	spacing	distribution	(NLSD)	

üSuitable	to fit	lattice	data	with	P1(s)
rather	than	R2(s).	

üOther	than	P1(s),	there	are	statistical	
distributions	which	can	be	used

2-level	
correlation	
function

increase	of	randomness

uME	in	energy	spectrum

ME ME

ME

ü MLSDs of q-1-HE perfectly fit to Scale-inv Critical Statistics of AH at ME

move on to QCD Dirac spectra at high T

pa
ra

m
et

er
a

q-1	-HE	
parameter� a= 3.0

q-1	-HE	
parameter� a = 6.0

width	of	EV	windows	fixed

P1(s)

P2(s)

P3(s)

P4(s)

χ2/dof ≈	1.0�2.0

uME	of	QCD	Dirac	spectra	at	high	T.

V = 243�4 �563�4

Poisson	in	TDL

GUE	in	TDL

scale-invariant	FP	=	ME

)2(3357.0=l

V = 563�4

fit	lattice	data	@ME	with	q-1-HE

ME

u Scale-invariance	of	MLSDs	at	ME	
V = 243�4 �563�4

P1(s)

P2(s)

P3(s)

Scale-invariance	of	MLSDs	at	ME	was	verified.	

u Results

ü increased	number	of	samples	and	lattice	sizes

ü performed	the	analysis	of	lattice	data	by	using	MLSDs	
which	have	been	able	to	use

In	the	largest	lattice	size	(V = 563�4),	
CS	at	ME	of	QCD	Dirac	spectra	at	high	T.	can	be	described	by	MLSDs	of	q-RM	

ME

uMLSDs:	AH	at	ME	and	q-RM [Nishigaki (1998,1999,2015)]

fit	MLSDs	of	AH	at	ME	with	MLSDs	of	q-1-HE	parameter� a = 3.55

MLSDs:	q-1	-HE	

AH	on	123,163,203,	Nconf=104

randomness	W=18.1
mag.	flux					F=0.4p

3.	q-deformed	random	matrix	and	CS
uq-deformed	random	matrix (q-RM)

• violate	universality	of	GUE	by	deformation	parameter	d
• show	transition	from	WDS	to	PS	

defined	by	q-1-Hermite polynomial	

[Muttalib-Chen-Ismail-Nicopoulos (1993)]

l GUE	(WDS)l q-1-Hermite	ensemble	(q-1-HE)

ex.	1�2-level	correlation	function	R2(s) = 1 - Kd(s)2

GUE	(W-D statistics)

[Ismail-Masson (1994)]

Sine	KernelElliptic	Kernel	

ex.	2�NLSD P1(s)

GUE

l Statistical	distribution	in	order	to	describe	CS

1.	Introduction

Wilson’s	lattice	gauge	theory	(4D) Anderson’s	tight-binding	model	(3D)

const

SU(N)	link	
variables:		Ux,µ

Boltzmann weight

i.i.d.	random	
variables:	V(x)

const		

Anderson	Hamiltonian	(AH):	

level	statistics	in	bulk	
of	lattice	Dirac	spectra

Ø Halasz-Verbaarschot (1995) 

energy	level	statistics	of	
AH	with	weak	randomness

Wigner-Dyson
statistics

uAnalogy	between	lattice	gauge	theory	and	Anderson	model	

2.	Critical	statistics	(CS)	at	mobility	edge	(ME)
uAnderson localization	transition	

(as	an	example	of	3D	unitary	Anderson	model)	

ØMobility	edge:	critical statistics

ØMetal	(extended):	
Wigner-Dyson statistics (WDS) boundary	between	the	

two	regions	=	mobility edge

increase	of	randomness

ME	in	energy	spectrum	moves	
from	band	edge	to	band	center

All	eigenstates are	localized metal-insulator transition

Ø Insulator	(localized):	
Poisson statistics (PS)

l Energy	level	statistics	of	AH

uLevel	spacing	distributions	(LSDs)	of	AH

example:	
3d,	V=123,163,203,	Nconf=104

randomness	W=18.1
mag.	flux					F=0.4p

band	center band	edge

We	would	like	to	analytically	derive	statistical	distributions	in	describing	CS

[Shklovskii, et. al. (1993)]

scale-invariant	
at	band	center

P1(s) P2(s) P3(s)

NN NNN NNNN NNNNN

P4(s)
������

GUE	
parameter� a = 0

u Lattice	QCD	simulations at	the	physical	point

physical	point	determined	by	Budapest-Wuppertal	Collaboration	

gauge:		Symanzik improved	action	
fermion:		2-level	stout	smeared	staggered	Dirac	operator	

[Aoki, et. al. (2006)] 

uMeasurements	of	QCD	Dirac	EVs	at	high	T.	 [Kovacs-Pittler (2012)] 

#samples
increased	

new

4.	QCD	Dirac spectra	at	high	temperature

uAnalysis	of	QCD Dirac	spectra	at	high	T.
1. fix	a	width	of	a	EV	window	

(in	the	previous	paper,	fix	the	number	of	EVs	in	a	window)
2. in	each	of	windows,	plot	MLSDs	versus	unfolded	level	spacing s 
• nearest-neighbor	level	spacing	distribution	(NLSD)	:	P1(s) 

• next	NLSD: P2(s)

• next	to	next	NLSD: P3(s)

• next	to	next	to	next	NLSD:	P4(s)

In	this	poster,	we	attempt	to	use	
the	statistical	distributions.

3. fit	MLSDs	of	the	lattice	data	into	MLSDs	of q-RM	

4. combine	the	deformation	parameters	in	each	lattice	size

5. determine	the	best-fitting	deformation	parameter	in	each	EV	window

6. identify	the	mobility	edge	as	the	scale-invariant	fixed	point		of	MLSDs

increase	of	 number	of	samples	
and	of	lattice	sizes enable	to	use	MLSDs

5.	Summary
lQCD	bulk	Dirac	spectra	at	high	T.

• NLSD:	P1(s)

• next	NLSD:	P2(s) 

• next	to	next	NLSD:	P3(s)

In	the	largest	lattice	size,	MLSDs	at	ME	can	be	described	CS	
The	previous	observation	was	reinforced	

l Anderson	localization	transition	in	the	thermodynamic	limit:	

Wigner-Dyson	statistics

The	prediction	was	reinforced		

l Correspondence	of	(3+1)D	QCD	at	high	T.	and	3D	unitary Anderson	model

(3+1) D	
QCD	at	high	T.

3D	unitary
Anderson modelCS	at	ME:

[Bruckmann-Kovacs-Schierenberg, 2011]      T > TC  (deconfinement phase)

atom	A
atom	B

impurities	of	
Anderson model

islands	of	Polyakov loops	
as	“dislocations”

Polyakov loop

t

x

z

x

y

scale-invariant	fixed	point

intermediate	level	statistics	
between	WDS	and	PS

critical	statistics
eigenstates are	
localized	at	band	edgealmost	PS

Poisson

extended	modes

localized	modes localized	modes

A	location	of	ME	depends	on	
the	strength	of	the	disorder

multi-level	spacing	distribution

deformation parameter
deformation parameter

T = 2.6 TC

We	verified	that	CS	of	QCD	at	high	T.	belong	to	the	same	symmetry	class	
as	level	statistics	at	ME	of	3D	unitary	Anderson	model

e.g.	width	=	0.0015	a-1

phase	transition Poisson	statistics

y

Dirac spectrum																																						bulk origin

Ø Kovacs-Pittler (2012)

2+1	flavors	QCD	Dirac	spectrum	at	high	temperature (T > Tc)	

level	spacing	distribution										Wigner-Dyson	statistics																			Poisson statistics
mobility	edge

unused	observables

weak	randomness

1)( =xP

1)( ¹xP

0®d

¥®d

ME

Multi LSD
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V. Conclusion
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ME : “identical”
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(3+1) D 
QCD at high T.

3D unitary
Anderson modelCS at ME:

[Bruckmann-Kovacs-Schierenberg, 2011]      T > TC  (deconfinement phase)

atom A
atom B

impurities of 
Anderson model

islands of Polyakov
loops as dislocations

Polyakov loop

t

x

z

x

y

y

1)( =xP

1)( ¹xP

Polyakov loop as Impurity?
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QCD D  on L3 × 1/T (<1/Tc)                            Anderson H  on L3

media: vacuum electrons in crystal
scale: O(108eV) O(1eV)
disorder: Polyakov loop impurity

deformation par. :   a=3.65(6) a=3.57(2)
critical exponent: n=1.43(6) n=1.43(4)

/

conclusion from multi-LSD improvement :  DIFFERENT critical statistics
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