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Sign problem

𝑆(𝑥) ∈ ℂ

For a given partition function

Sign problem

𝑆(𝑥) ∈ ℝ

• 𝑒)* is no longer regarded as the Boltzmann weight factor.

• 𝑥 is generated with the probability distribution 𝑒)*.

n In the Monte Carlo simulation

• 𝑂(𝑥) can be obtained as the ensemble average.

• appears in finite density QCD, SYM theory, real time dynamics



Introduction

u Singular-drift problem

• associated with appearance of near-zero eigenvalues of the Dirac operator

[Nishimura, Shimasaki ’15]

The complex Langevin method is a promising approach to the sign problem.

Ø We can avoid this problem by deforming the Dirac operator. [YI-Nishimura ’16]

u Note, however, that there are many ways to deform the Dirac operator.

Whether the final result is independent of the way to deformation or not?

this method does not work due to the singular-drift problem.
However, in finite density QCD at low temperature and high density,

In this talk, I apply this technique to the simple matrix model.
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The complex Langevin method

n The probability distribution satisfies the Fokker-Planck equation

n complex Langevin eq.

𝜂 : white noise
𝑡 : Langevin time

real

Ø complexify 𝑥 and consider  holomorphic extension of 𝑆

n Langevin eq.

real

[Parisi ’83] [Klauder ’83]



Criteria for validity of the CLM

n The crucial point is that there exists a real and non-negative weight 𝑃(𝑥, 𝑦)
such that 

For holomorphic observables 𝑂 𝑥＋𝑖𝑦 ,
the expectation values is given by

• This is satisfied when

: complex ~𝑒)*(3)

n The CLM works successfully in finite density QCD and Random matrix theory.
at deconfined phase 𝑇 > 𝑇6 with quark mass at 𝑇 = 0

𝑃9:(𝑥, 𝑦) damps rapidly
in the imaginary direction.

around singularities of the drift term.
[Nishimura, Shimasaki ’15][Aarts, James, Seiler, Stamateseu ’11]

real

?
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Definition of the toy model

Di↵,j� (X) =
4X

µ=1

(�µ)↵� (Xµ)ij

u SO(4) symmetric Gaussian matrix model

u SO(4) à SO(2)   due to the fermion determinant.

Sb =
1

2
N

4X

µ=1

tr (Xµ)
2

Z =

Z 4Y

µ=1

dXµ detD (X) e�Sb[Xµ]

Xµ N ⇥N:             Hermitian matrices

fermion  determinant

predicted by the Gaussian expansion method.

[Nishimura ‘02 ]

[Nishimura-Okubo-Sugino ’05]  

�µ =

(
i�i for µ = i = 1, 2, 3,

12 for µ = 4

SSB

u Diarc operator

µ = 1, · · · , 4

u Partition function



To observe the SSB

n Introduce a symmetry breaking term in the boson action

For example, we used here

n define the order parameters of SO(4) symmetry breaking

n inequality of                     implies the SSB of SO(4).

In order to see the SSB with finite N,

represent the extent in each direction

tr
�
X2

µ

�
! (1 + ✏mµ) tr

�
X2

µ

�
mµ = (1, 2, 4, 8)

lim
✏!0

h�µi✏

Ø After taking large N limit and             limit, 

h�1i✏ ⌘
1

N
trX1X1, h�4i✏ ⌘

1

N
trX4X4.…,

✏ ! 0



dS

d (Xµ)ij
= N (1 + ✏mµ) (Xµ)ji � tr↵

⇣
D�1

ji,↵��µ,��

⌘

Applying the CLM to this model
n complex Langevin equation

n drift term

complex 𝜂 𝑡 : 𝑁×𝑁 Hermitian matrices  

𝑋>: 𝑁×𝑁 Hermitian matrices
→ 𝑁×𝑁 complex  matrices

Appearance of near-zero eigenvalues  à the drift becomes too large
“singular-drift problem”

validity of the CLM is not guaranteed.

S =
N

2
(1 + ✏mµ) trX

2
µ � ln detD (X)

n action

SU (N) ! SL (N,C)



The eigenvalue distribution of the Dirac op.

𝜖 = 0.1𝜖 = 0.3𝜖 = 0.5

n The eigenvalues around the singularity will cause the singular drift problem.
zero-eigenvalue

n For small 𝜖, the problem seems to become severe. tr
�
X2

µ

�
! (1 + ✏mµ) tr

�
X2

µ

�



SO(4) symmetry breaking?

𝜖

𝜆F = 2.37(3)

𝜆I = 0.636(6)
𝜆K = 1.91(4)

𝜆N = 1.09(3)

GEM results

The result is not clear

n It is necessary to obtain reliable results for smaller 𝜖.

That can be improved by
deforming the Dirac operator.

n In the 𝜖 → 0 limit

reliable

h�
µ
i ✏
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Deformation of the Dirac operator

mf ! 0

mf 2 R
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u Eigenvalue distribution of Dirac op.

: deformation parameter

Ø The singularity at the origin is avoided.

deform. 1A deform. 1B

D (X;mf) =
4X

µ=1

�µ ⌦Xµ +

(
mf�3 ⌦ 1N

mf�4 ⌦ 1N

u Deformation 1

D (X) =
4X

µ=1

�µ ⌦Xµ

[YI-Nishimura ’16]

: deformation 1A

: deformation 1B

�µ =

(
i�i for µ = i = 1, 2, 3,

12 for µ = 4

This deformation explicitly breaks SO(4) to SO(3).

𝜖 = 0.1 𝜖 = 0.1, mf=0.6 𝜖 = 0.1, mf=1.0



Extrapolation of the deformation parameter
u order parameters for the SSB of SO(4)

⇢µ (✏ = 0,mf = 0) ' 0.35, 0.35, 0.167, 0.133

u prediction from the Gaussian expansion method

à This indicates the SSB from SO(4) to SO(2)

• Note that these results may contain uncontrollable systematic errors.

⇢µ (✏,mf) = lim
N!1

⌦
1
N trX2

µ

↵
✏,mfP4

⌫=1

⌦
1
N trX2

⌫

↵
✏,mf

1. limit

2. limit

✏ ! 0

mf ! 0

• confirm SO(3) à SO(2)

• confirm this SSB in the original model.   (SO(4) à SO(2))



Extrapolation of 𝜖 to zero with finite mf

n taking 𝜖 → 0 limit

This results clearly show the SSB from SO(3) to SO(2).

n We need to take limit.
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𝑚P = 0.4

⇢1 (0,mf) = 0.302(3)
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u Deformation 1A

D (X;mf) =
4X

µ=1

�µ ⌦Xµ +mf�3 ⌦ 1N
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mf ! 0
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invariant under mf ! �mf

GEM results

D (X;mf) =
4X

µ=1

�µ ⌦Xµ +mf�3 ⌦ 1N

f (mf) = c1 + c2m
2
f + c3m

4
fØ The lines are fits to
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D (X;mf) =
4X

µ=1

�µ ⌦Xµ +mf�4 ⌦ 1N
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These results are consistent with that of deformation 1A.
This suggests that the GEM results have certain systematic errors.

results of deform. 1A

invariant under mf ! �mf



Comparing with another type of deformation

u We restrict z to be real and approach z = 1.

The phase transition is expected to occur 
at some z  within 0 < z < 1.

z=1 : undeformed model

0

Im z

Re z

(det D becomes real.)

1

SO(3) SO(2)?

No sign problem

u Deformation 2

D (X; z) =
3X

i=1

�i ⌦Xi + z�4 ⌦X4

D (X) =
4X

µ=1

�µ ⌦Xµ �µ =

(
i�i for µ = i = 1, 2, 3,

12 for µ = 4

z 2 C ：deformation parameter



Results (Preliminary)
u Deformation 2

D (X; z) =
3X

i=1

�i ⌦Xi + z�4 ⌦X4

g (z) = c1 + c2z + c3z
2

Ø The lines are fits to
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Results (Preliminary)
u Deformation 2

D (X; z) =
3X

i=1

�i ⌦Xi + z�4 ⌦X4

Ø Fit using the results obtained by the “deformation 1A”.
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Summary
Ø In order to avoid the singular-drift problem in the CLM, 

we have deformed the Dirac operator.

Ø We considered two types of deformation and 
compared the results.

Ø After taking limit, the results obtained for deformation 1A  
are consistent with that for deformation 1B, 
and both the results show the SSB from SO(4) to SO(2). 

Ø However, there is a slight deviation from the prediction by the GEM, 
which indicates that the result of GEM contains certain systematic errors.

Ø As for the second deformation, further calculation is needed, 
although we expect that the result is consistent with the deformation 1.

Ø This consistency is important for usefulness of the deformation technique.
à finite density QCD, IKKT matrix model …

mf ! 0





Usual Monte Carlo sampling (Metropolis method)

Pacc = min
�
1, e��S

 

Z =

Z
dx e

�S(x)

Markov chain
x0 ! · · · ! xn ! xn+1 ! · · ·

�S = S (xn+1)� S (xn)

T T T

detailed balance

• transition probability

2.  Metropolis test
accept or reject the proposals with acceptance rate

T (xn ! xn+1) = f (xn ! xn+1)Pacc

f (xn ! xn+1) = f (xn+1 ! xn)

ex) Gaussian distribution

1.  generating a proposal with the probability
f (xn ! xn+1) , where



Reweighting method

hO (x)i =
R
dx e�S[x]O (x)R

dx e�S[x]

=

⌦
O (x) e�iImS[x]

↵
ReS⌦

e�iImS[x]
↵
ReS

n Regarding the imaginary part as the observable,
we can evaluate the expectation values.

n This method is successful as long as the fluctuation of 
the phase                     is small.

n The fluctuation increases exponentially with the system size.

e�iImS[x]

• Holomorphic gradient flow (Lefschetz thimble)

• Complex Langevin method

=

R
dx e�ReS[x]e�iImS[x]O (x) /

R
dx e�ReS[x]

R
dx e�ReS[x]e�iImS[x]/

R
dx e�ReS[x]

Ø promising  approaches



Stochastic process

𝑣(𝑡)

n Brownian motion

𝑚 : mass of the particle
𝛼 : friction coefficient of the fluid
𝜂(𝑡) : force due to the collision with the molecules

Velocity of  the particle is described as

n Langevin equation

𝑥 S (𝑡) is obtained by the stochastic process with the

When it is difficult to generate 𝑥 directly with the distribution 𝑒)T(3),
one can obtain the configurations by a stochastic process.



Stochastic quantization
n Langevin eq.

: noise

𝑡 : Langevin time

n 𝑃(𝑥; 𝑡) satisfies the Fokker-Planck eq.

n probability distribution function of 𝑥

is generated with the Gaussian distribution



:  self-adjoint op.

Equivalence to the path integral
n We assume

Then, the FP eq. becomes

𝑡 → ∞

mode expansion

Thus, we obtain

up to normalization dominant

n The expectation value



Proof of the relation

n at 𝑡 = 0, we can choose
The relation holds.

n for an arbitrary 𝑡,   we need to show the below relations

𝑃9:(𝑥, 𝑦) damps rapidly

in the imaginary direction.

around singularities of the drift term.

n the time-dependent observable is defined by



partial derivative

FP eq.

for a holomorphic function

n We show that 𝐹(𝑡, 𝜏) is independent of 𝜏

n consider time interpolating function



Example of the singular-drift [Nishimura, Shimasaki ’15]

n action

n drift term

n partition function

distribution of 𝑥

distance from the pole

The pole exists at



Improvement by means of the fermion bilinear term

n introduce a bilinear term to fermions

n This term shifts the eigenvalue distribution 
to the real direction.

. we can extrapolate using much smaller 𝜖.
𝜖 = 0.2,  𝑚P = 0.6

𝜖 = 0.2,  𝑚P = 0
N=48

N=48

n It explicitly breaks the SO(4) symmetry.

SO(3) symmetry still remains.

here, we used

We can investigate the SSB of SO(3).



𝜆F = 2.10(7)

𝜆I = 0.74(2)

𝜆K = 2.03(5)

𝜆N = 1.02(2)

n In the 𝑚P → 0 limit

previous result
SSB from SO(4) to SO(2)

SO(2)

Improvement by means of the fermion bilinear term



Summary

n The matrix model with the SSB of SO(4)

n The complex Langevin method

• we introduce the fermion bilinear term in the action

• This term makes the probability distribution 𝑃(𝑋, 𝑡) to avoid the pole of Dirac op..

• The result clearly shows the SSB from SO(4) to SO(2).

• damp rapidly in the imaginary direction

• avoid singularities of the drift term

• The pole arises in the drift term due to the zero-eigenvalues of Dirac op..

For holomorphic action, 𝑃(𝑥, 𝑦, 𝑡)	has to



Future Works
n Application to the IKKT matrix model which has the SO(10) symmetry.

It is suggested that the SO(10)  breaks down to SO(3)  
by the Gaussian expansion method.

• The non-perturbative formulation of superstring theory.
• It is expected that 4d space emerges from compact 10d space.

We need to study this from first-principle calculation using the CLM.

It is based on the systematic calculation, and using approximations.

n The finite density QCD

In the high density low temperature phase, introducing an external source
as we did here may help reduce the singular-drift problem.

[Nishimura, Okubo, Sugino ’05]



Improvement by means of fermion mass terms
Introducing a mass term to fermions

Here, we used

This term makes the eigenvalue distribution of 𝐷 to avoid the pole.

𝑚P = 0.5𝑚P = 0for 𝜖 = 0.1

we can extrapolate the values of  𝜆[ using much smaller 𝜖.



1. taking the 𝜖 → 0 limit with 𝑚P fixed.

2. taking the 𝑚P → 0 limit.
𝜆F = 2.15(6)

𝜆I = 0.654(9)

𝜆K = 2.15(7)

𝜆N = 0.99(4)

previous result

The result clearly shows the SSB from SO(4) to SO(2).

SO(2)

Improvement by means of fermion mass terms
𝜆 [



𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.5



Idea of “gauge cooling”

“gauge cooling”

For lattice gauge theory,

Link variables 𝑈3,>
𝑆𝑈 𝑁 → 𝑆𝐿(𝑁, ℂ)

Considering unitarity norm.

It is no longer zero.

• It is necessary to control the norm to be small.

Ω3 ∈ 𝑆𝐿(𝑁, ℂ)

• Gauge inv. observables are independent of the gauge cooling.


